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Abstract

Desiccation cracking of soil-like materials is a common phenomenon in natural dry environment, however, it remains a challenge

to model and simulate complicated multi-physical processes inside the porous structure. With the goal of tracking such physical

evolution accurately, we propose an MPM based method to simulate volumetric shrinkage and crack during moisture diffusion.

At the physical level, we introduce Richards equations to evolve the dynamic moisture field to model evaporation and diffusion

in unsaturated soils, with which a elastoplastic model is established to simulate strength changes and volumetric shrinkage via

a novel saturation-based hardening strategy during plastic treatment. At the algorithmic level, we develop an MPM-fashion

numerical solver for the proposed physical model and achieve stable yet efficient simulation towards delicate deformation and

fracture. At the geometric level, we propose a correlating stretching criteria and a saturation-aware extrapolation scheme to

extend existing surface reconstruction for MPM, producing visual compelling soil appearance. Finally, we manifest realistic

simulation results based on the proposed method with several challenging scenarios, which demonstrates usability and efficiency

of our method.
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Abstract

Desiccation cracking of soil-like materials is a common phenomenon in natural dry
environment, however, it remains a challenge to model and simulate complicated
multi-physical processes inside the porous structure. With the goal of tracking such
physical evolution accurately, we propose an MPM based method to simulate vol-
umetric shrinkage and crack during moisture diffusion. At the physical level, we
introduce Richards equations to evolve the dynamic moisture field to model evapora-
tion and diffusion in unsaturated soils, with which a elastoplastic model is established
to simulate strength changes and volumetric shrinkage via a novel saturation-based
hardening strategy during plastic treatment. At the algorithmic level, we develop an
MPM-fashion numerical solver for the proposed physical model and achieve stable
yet efficient simulation towards delicate deformation and fracture. At the geometric
level, we propose a correlating stretching criteria and a saturation-aware extrapola-
tion scheme to extend existing surface reconstruction for MPM, producing visual
compelling soil appearance. Finally, we manifest realistic simulation results based
on the proposed method with several challenging scenarios, which demonstrates us-
ability and efficiency of our method.
KEYWORDS:
physics-based simulation, soil cracks simulation, material point method, mesh reconstruction

1 INTRODUCTION

As one of the most common seen and fundamental materials in the natural environment, the modeling and simulation of soil
become one of the most important parts in the physics based nature scene simulation. In the computer graphics community, soil
is usually considered as an air-water-solid composite of porous-elastoplastic material. The process of soil desiccation can be
described as a complicated multi-physics system, involving coupling and interactions among air, water and solids. According to
geoscience theories1,2, the loss of pore water during evaporation raises the negative pressure within soil, which causes volumetric
shrinkage and subsequent initiation and propagation of desiccation cracks as it illustrated in Fig. 1. During the process of drying,
there are typically two types of fractures (see Fig. 2). One type occurs vertically to the soil surface, leading to the formation
of polygonal sections in the soil. While another type occurs in tandem with the formation of shrinkage cracks and is known as
"soil curling" or "soil peeling." In this case, a "peeling" crack propagates parallel to the surface, causing the top layer of soil
to peel off. To capture the "peeling" crack, the soil moisture content plays a significant role in the deformation evolution of the
microscopic pore structure, which dominates macroscopic phenomena such as shrinkage, fracture, and curling.
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Evaporation
Air entry

Tensile Stress

Figure 1 Tensile stress on soil surface increases as evaporation of water, causing soil failure and fracture.

Vertical cracksHorizontal cracks

Figure 2 Soil cracking and curling are caused by the formation of vertical and horizontal cracks.

In recent years, MPM has become a proven method for simulating realistic cracking phenomena such as sand-water coupling3,
baking and cooking4. However, there still lacks comprehensive exploration on modelling soil-like materials during the moisture
movement with MPM for the sake of following challenges.

Firstly, up-to-date fracture simulation methods can not handle horizontal cracks, which frequently occur in multi-layer mate-
rials, especially in soils. Secondly, to simulate porous media, most previous methods introduced multi-species theory to model
complicated air-water-solid coupling, leading numerical instability and computational inefficiencies. Last but not least, current
mesh reconstruction techniques for mesh-free simulation lack of ability to handle cracking surface caused by self-shrinkage.

To overcome the aforementioned challenges, this paper presents a novel approach for simulating the desiccation cracking
phenomena for soil-like materials involving shrinkage, curling and fracture. Our contributions are as following:

1. A saturation-centric elastoplastic model for simulating the dynamic strength and deformation of soil. We incor-
porate saturation based pore deformation to track the volumetric changes and hardening states of soil due to pore water
movements. As a consequence, our novel model gives prominence to faithful soil phenomena such as desiccation cracking
and curling.

2. An MPM-fashion implicit solver to track pore water movements using Richards equation. By discretizing Richards
equation into MPM, we can evolve the moisture field to effectively handle the pore water movement and evaporation in
unsaturated soils, while avoiding time-consuming water-solid coupling in previous techniques.

3. A surfacing technique that incorporates the moisture to capture visually realistic soil cracking. We extend previous
surfacing techniques for MPM by taking the effects of pore deformation into consideration. By improving the position
extrapolation strategy and stretching criteria, our method can preserve more cracking details in soils.

2 RELATED WORK

Fracture Dynamics
Fracture simulation is a significant research area in the field of computer graphics. FEM was first used to solve large stress prob-
lems in brittle and ductile fracture simulations5,6. To enhance the level of detail, BEM was introduced by7 to track boundaries of
crack surface. On the other hand, Mesh-free methods such as SPH8 and MPM9 have also been proposed. In recent years, Wang
et al.10 successfully captures ductile fracture using MPM and provides a practical way to visualize fracture surface. Further,
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combining phase-field-based fracture with MPM11,12 has shown significant advantages in visualizing the crack surface, Fan et
al.13 further extends this strategy to brittle fracture in MPM.
Surface Tracking Techniques
Surface tracking, i.e, surface reconstruction has been a challenging problem, particularly for objects with frequent changes in
topology such as fluids. Osher et al.14 first applies level-set method for surface tracking, which later be further improved with the
inclusion of particles to achieve high-resolution results as proposed by Enright et al.15. Brochu et al.16 developed a framework for
robust topological operations on explicit surface meshes, which was further extended to tracking the evolution of multi-material
interfaces17. Müller et al.18 employed an Eulerian velocity field to advect the mesh. Wojtan et al.19 relied on conventional
isosurface creation method to generate local meshes when merging and splitting of surface occur. As a post-processing based
reconstruction method, Wang et al.10 tracked surface per-frame instead of per-time-step to gain high performance.
Material Point Method
MPM is considered as a generalization of hybrid methods, such as FLIP20, to capture both fluid and solid dynamics. MPM
was first introduced into computer graphics by9 to simulate snow. Due to its excellent physical accuracy and natural support
for topology changes, MPM has been extensively applied to simulate various phenomena including sand21, lava22, viscoelas-
tic/viscoplastic foam23,24, cloth25, fracture10,26,11, magnetized material27, multi-species coupling28,4,3, even hydrophobicity and
hydrophilicity29. In order to address the significant numerical dissipation in MPM, affine particle-in-cell (APIC)30 incorpo-
rated a local velocity gradient to preserve the momentum of particles, and Fei et al.31 further improved it with several advection
strategies.

3 GOVERNING EQUATIONS

Towards modeling such phenomena, we follow traditional MPM techniques where continuous material is a set of material
points carrying certain masses. Motions of these material points are tracked by 𝜙 ∶ Ω0 × [0, 𝑇 ] → ℝ3, where Ω𝑡 denotes the
configuration at time 𝑡. Motions at time 𝑡 is defined as 𝐱 = 𝜙(𝐗, 𝑡), and its gradient as 𝐅 = 𝜕𝜙

𝜕𝐗 . We further assume that each
particle can be treated as a soil solid with its internal pore water, and air is ignored. Therefore, we have𝑚 = 𝑚𝑠+𝑚𝑤, 𝑉 = 𝑉𝑠+𝑉𝑤,
𝜌 = 𝑚∕𝑉 , where the quantities with subscripts 𝑠 and 𝑤 represent the amounts of soil and water, and 𝑚, 𝑉 , 𝜌 denote the particle
mass, volume, and density, respectively. Here 𝜌𝑠, 𝜌𝑤 are considered as constants, and their ratio affects the overall density.

Compared with current MPM techniques which model interactions of porous water and soil particles as intricacies, we propose
a rather concise pipeline under the assumption that contributions of internal moisture movements to the kinematics of soil points
can be negligible, based on which the mass and momentum conservation equations of water-soil system can be written as:

D𝜌
D𝑡

+ 𝜌∇ ⋅ 𝐯𝑠 = 0, (1)
𝜌
D𝐯𝑠
D𝑡

= ∇ ⋅ 𝝈𝑠 + 𝜌𝐠, (2)
where D(⋅)

D𝑡
= 𝜕(⋅)

𝜕𝑡
+𝐯𝑠 ⋅∇(⋅) denotes the material derivative, and 𝐠 denotes the gravity. We introduce Richards equation to describe

the movement of porous water content in unsaturated soils, which is written as:
D𝜃
D𝑡

= ∇𝐷(𝜃)∇𝜃, (3)
where 𝜃 denotes volumetric water content calculated as 𝑉𝑤∕𝑉 , 𝐷(𝜃) denotes the soil water diffusivity, which reflects the changes
of diffusion rate based on concentration. In practice, 𝐷 is a constant, since detailed moisture movement is neglected during crack
propagation.

We assume that there are no pore structures within completely dry soil and loss of water content causes the pore structures to
become closed, vice versa. Therefore, saturation 𝑠 of porous water content can be calculated as 𝑠 = 𝜃∕𝜂, where initial porosity
𝜂 is set as the maximum value of volumetric water content.
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4 CONSTITUTIVE MODEL

4.1 Porous Hyperelasticity
Our moisture-aware deformation 𝐅 can be defined as a multiplicative decomposition 𝐅 = 𝐅𝐸

𝑠 𝐅
𝑃
𝑠 𝐅𝑤, where 𝐅𝐸

𝑠 and 𝐅𝑃
𝑠 denote

the elastic and plastic deformation contributed by solid, 𝐅𝑤 denotes the pore deformation, which represents the changes in pore
volume caused by moisture movements.

For solid stress, the variation of Neo-Hookean model26 which splits elastic potential into deviatoric and volumetric parts is
employed as:

Ψ(𝐅) = Ψ𝑑𝑒𝑣(𝐅𝐸
𝑠 ) + Ψ𝑣𝑜𝑙(𝐅𝐸

𝑠 ),

Ψ𝑑𝑒𝑣 =
𝜇
2
(𝐽𝐸,−2∕𝑑

𝑠 tr(𝐛) − 𝑑),

Ψ𝑣𝑜𝑙 =
𝜅
2
(
𝐽𝐸,2
𝑠 − 1
2

− log(𝐽𝐸
𝑠 )),

(4)

where 𝑑 denotes the dimension, 𝜇 denotes shear modulus, 𝜅 denotes bulk modulus, 𝐛 = 𝐅𝐸
𝑠
𝑇𝐅𝐸

𝑠 is left Cauchy-Green elastic
strain tensor, 𝐽𝐸

𝑠 = det(𝐅𝐸
𝑠 ), Ψ𝑑𝑒𝑣 and Ψ𝑣𝑜𝑙 are penalty terms for deviatoric and dilational changes, respectively.

The Kirchhoff stress tensor 𝝉 can be calculated as:
𝝉 = 𝝉𝑑𝑒𝑣 + 𝝉𝑣𝑜𝑙,

𝝉𝑑𝑒𝑣 = 𝜇𝐽𝐸
𝑠

−2∕𝑑 dev(𝐛),

𝝉𝑣𝑜𝑙 =
𝜅
2
(𝐽𝐸

𝑠
2 − 1)𝐈,

(5)

where dev(𝝉) = 𝝉− 1
𝑑
tr(𝝉)𝐈 denotes the deviatoric part of the tensor. This decomposition greatly simplifies the plasticity solver,

as detailed in Sec. 4.2.
For water stress, we assume a linear shrinkage during water loss. Benefiting from above decomposition, the volumetric changes

can be solved with the pore deformation 𝐅𝑤 given by:
𝐅𝑤 = ((1 − 𝜂)(1 − 𝑠) + 𝑠)1∕𝑑𝐈, (6)

where 𝜂 denotes the maximum of volumetric water content, and 𝑠 denotes the current saturation. Inspired by32, we use similar
strategy to always compensate the solid elastic deformation 𝐅𝐸

𝑠 to keep the overall 𝐅 unchanged when updating the pore defor-
mation 𝐅𝑤. For example, as the pore saturation decreases, the pore deformation shrinks. To compensate for this shrinkage, the
solid elastic deformation 𝐅𝐸

𝑠 expands and effectively cancels out the pore shrinks, creating a false compression that is intuitively
caused by local negative pressure. As a result, the material points shrink. Eq. (6) enables our method to capture squeezing stress
of pore structure in solids caused by local negative pressure.

4.2 Saturation-based Hardening Plasticity
Plasticity treatment in MPM involves a yield criterion 𝑦(𝝉), where 𝑦 ≤ 0 defines the legal region of Kirchhoff stress 𝝉 . Any
stress violating the condition (𝑦 > 0) should be projected to the yield surface using return mapping techniques. We adopt the
non-associative return mapping algorithm used in26, which enforces volume preservation, and is written as:

𝐛𝑛+1 − 𝐛𝑡𝑟 = −2𝛿𝛾𝑮(𝐛𝑛+1)𝐛𝑛+1, (7)
where 𝐛 = 𝐅𝐸

𝑠
𝑇𝐅𝐸

𝑠 denotes the left Cauchy-Green elastic strain tensor, 𝑮 = dev( 𝜕𝑦
𝜕𝝉
) denotes the projection direction, and

𝛿𝛾 = Δ𝑡𝛾 is an unknown value that represents the projection distance. In practice, we first update the deformation 𝐅𝑠 consid-
ering only elasticity to obtain 𝐅𝑡𝑟

𝑠 , and then correct the illegal deformation using return mapping to obtain the final 𝐅𝑛+1
𝑠 . More

implementation details will be discussed in Section 5.1.
To address the realistic soils elastoplasticity, Non-Associated Cam-Clay (NACC) model26 is widely used to describe soil-like

materials as:
𝑦(𝑝, 𝑞) = 𝑞2(1 + 2𝛽) +𝑀2(𝑝 + 𝛽𝑝0)(𝑝 − 𝑝0), (8)

where 𝑝 = − 1
3
tr(𝝉𝑣𝑜𝑙) denotes the pressure, 𝑞 =

√

6−𝑑
2
||𝝉𝑑𝑒𝑣|| denotes the shearing, 𝑀 denotes the friction, and 𝛽 denotes the

cohesivity. And 𝑝0 is a yield pressure related to hardening behavior as 𝑝0 = 𝜅 sinh(𝜉max(−𝛼, 0)), where 𝜅 is the bulk modulus,
𝜉 is the hardening factor, and 𝛼 is an auxiliary parameter for tracking hardening state.
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Particles at 

Moisture P2G

Solve

Moisture G2P

Particles at 
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G
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Updated Moisture

Position & Velocity

Figure 3 The workflow of our MPM framework, consisting of two solvers staggered coupled with each other.

Based on Eq. (8), we propose a saturation-based hardening strategy for tracking strength changes during desiccation.
Specifically, we combine pore deformation to 𝛼 and track the volumetric shrinkage due to water loss as:

𝛼 ∝ log(𝐽𝑃
𝑠 𝐽𝑤), (9)

where 𝐽𝑃
𝑠 = det(𝐅𝑃

𝑠 ) and 𝐽𝑤 = det(𝐅𝑤), which intuitively connects the moisture loss with hardening process, leading to harder
and more brittle behaviors during the shrinkage. We also incorporate the saturation to 𝛽 as 𝛽 = 𝛽0(1 − 𝑠) + 𝛽1𝑠 to model the
dynamic cohesivity in consideration of porous water content. ·

5 DISCRETIZATION AND ALGORITHMIC FLOW FOR SOIL DYNAMICS

Our MPM framework includes two main procedures: solid elastoplastic treatments and moisture evolution. To solve desiccation
cracking for soils stably, we discretize proposed dynamic equations to a staggered grid for both solid and moisture steps as
detailed in the following paragraphs. For clarity, we denote particle quantities with subscript 𝑝, grid node position with subscript
𝑖, 𝑗 and time step with superscript 𝑛.

Frame  0 Frame 15 Frame 40 Frame 150

Figure 4 A bunny made with wet soil gradually breaks into a pile of pieces as the water evaporates.
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5.1 Solid Discretization
We discretize governing equations of solid following MLS-MPM33 as:

Particles to Grid (P2G). We transfer mass and momentum from particles to grid with APIC30 style: 𝑚𝑖 =
∑

𝑝 𝑤
𝑛
𝑖𝑝𝑚𝑝, (𝑚𝐯)𝑛𝑖 =

∑

𝑝 𝑤
𝑛
𝑖𝑝𝑚𝑝

(

𝐯𝑛𝑝 + 𝐂𝑛
𝑝(𝐱𝑖 − 𝐱𝑛𝑝)

)

, where 𝑤𝑛
𝑖𝑝 is the interpolation weight between node 𝑖 and particle 𝑝 at time 𝑛, and 𝐂𝑛

𝑝 is the local
velocity gradient.

Grid Momentum Update. We calculate forces on grid node as:
𝐟∗𝑖 = −

∑

𝑝
𝑉 0
𝑝 𝑀

−1
𝑝 𝑤𝑛

𝑖𝑝
𝜕Ψ
𝜕𝐅

(𝐅𝑛
𝑝,𝑠)𝐅

𝑛,𝑇
𝑝,𝑠 (𝐱𝑖 − 𝐱𝑛𝑝),

where 𝑀−1
𝑝 = 4∕ℎ2 is a quadratic interpolation kernel, and 𝑉 0

𝑝 is the initial particle volume. Afterwards, we update grid node
velocity with 𝐟𝑛𝑖 as: 𝐯𝑛+1𝑖 = 𝐯𝑛𝑖 + Δ𝑡 𝐟

∗
𝑖

𝑚𝑖
.

Grid to Particles (G2P). We transfer the updated velocities on grids to particles as 𝐯𝑛+1𝑝 =
∑

𝑝 𝑤
𝑛
𝑖𝑝𝐯

𝑛+1
𝑖 , also update velocity

gradients to 𝐂𝑛+1
𝑝 =

∑

𝑝 𝑀−1
𝑝 𝑤𝑛

𝑖𝑝𝐯
𝑛+1
𝑖 (𝐱𝑖 − 𝐱𝑛𝑝)

𝑇 .
Deformation Gradient Update. We update deformation gradient of particles as: 𝐅𝑡𝑟

𝑠 = (𝐈+Δ𝑡𝐂𝑛+1
𝑝 )𝐅𝑛

𝑠 . Refer to Section 4.2,
we apply the plasticity return mapping to obtain final 𝐅𝑛+1

𝑠 . In detail, there are two types of projections:
• When the volumetric limit is violated (𝑝𝑡𝑟 > 𝑝0 or 𝑝𝑡𝑟 < −𝛽𝑝0), the final 𝐅𝑛+1

𝑠 should ensure that the corresponding stress
stays on the nearest tips along the diagonal axis of NACC yield surface.

• When the deviatoric limit is still violated (𝑦 > 0), we follow the Eq. (7) to obtain the 𝐛𝑛+1 then reconstruct 𝐅𝑛+1
𝑠 . (See

supplementary document of26 for a detailed derivation)
Particles Advection. Finally, we advect particles with updated velocity as: 𝐱𝑛+1𝑝 = 𝐱𝑛𝑝 + Δ𝑡𝐯𝑛+1𝑝 .

5.2 Moisture Discretization
Discretization steps for updating moisture 𝜃𝑝 are proposed as following:

Moisture P2G. We transfer the 𝜃𝑝 from particles to grid: 𝜃𝑛𝑖 =
∑

𝑝 𝑤
𝑛
𝑖𝑝𝜃

𝑛
𝑝 .

Moisture Update. To update moisture, we discretize Eq. (3) in a MPM-fashion, similar to34, which results in solving a large
linear system as:

(𝐌 + 𝐋)𝜽𝑛+1 = 𝐌𝜽𝑛 + 𝐫,

𝐌 = [𝑚𝑖𝑖] =
∑

𝑝

𝑉 𝑛
𝑝

Δ𝑡
𝑤𝑛

𝑖𝑝,

𝐋 = [𝑙𝑖𝑗] =
∑

𝑝
𝑉 𝑛
𝑝 𝐷∇𝑤𝑛

𝑖𝑝 ⋅ ∇𝑤
𝑛
𝑗𝑝,

𝐫 = [𝑟𝑖] =
∑

𝑝∈𝜕Ω𝑡𝑛

𝑆𝑛
𝑝𝜆(𝜃

𝑛
𝑝 − 𝜃0)𝑤𝑛

𝑖𝑝,

where 𝜽𝑛+1 is the vector of unknown moisture nodes in the next time step, 𝑉 𝑛
𝑝 , 𝑆

𝑛
𝑝 represent volume and area of particle 𝑝 at time

𝑛, 𝜃0 is the ambient moisture outside. To calculate the contribution of evaporation (introduced in 𝐫), we identify boundary grid
adjacent to zero-mass grids, and mark all particles within these grids as boundary particles. We use the conjugate gradients (CG)
with a Jacobi preconditioner to solve this system, taking the advantage of its high convergence rate for s.p.d. matrices. In practice,
the system converges to acceptable residual within 5 iterations.

Moisture G2P. We transfer the updated moisture from grid back to particles as: 𝜃𝑛+1𝑝 =
∑

𝑖 𝑤
𝑛
𝑖𝑝(𝜃

𝑛+1
𝑖 − 𝜃𝑛𝑖 ). To avert numerical

noise, we further clamp the water content in between [0, 𝜂] .
Porosity Update. We first evolve saturation and pore deformation with the updated 𝜃𝑛+1𝑝 . Inspired by32, we make the

assumption that the total deformation gradient will not be affected by pore water changes thus causing no plastic deformation,
we then update elastic deformation of solid so as to remain 𝐅𝑛

𝑝 be invariant as:
𝐅𝐸,∗
𝑝,𝑠 = 𝐅𝑛

𝑝(𝐅
𝑛+1
𝑝,𝑤 )

−1(𝐅𝑃
𝑝,𝑠)

−1. (10)
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Meanwhile, we update mass loss and hardening state of each particle according to the saturation-based hardening in Sec. 4.2 as:
𝑚∗

𝑝 = 𝑚𝑛
𝑝
𝑘𝑟 + 𝑠𝑛+1

𝑘𝑟 + 𝑠𝑛
, (11)

𝛼∗
𝑝 = 𝛼𝑛

𝑝 + 𝜖 log
𝐽 𝑛+1
𝑤

𝐽 𝑛
𝑤

, (12)
where 𝑘𝑟 = 𝜌𝑠∕𝜌𝑤 is a constant ratio during simulation, and 𝜖 is the hardening rate caused by pore deformation. Finally, our
method succeeds in tackling the effects of horizontal soil fracture, i.e., soil peeling and curling. Dataflow of all variables is
illustrated in Fig. 3.

Figure 5 The riverbed dried in the sun appears deep cracks after the ebb tide.

Figure 6 The scale of soil curling varies at different hardening rates.
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6 SURFACE RECONSTRUCTION

Following current MPM mesh reconstruction technique10, our approach relies on the particle core structure, which is constructed
by tetrahedralization (triangulation for 2D cases) of MPM particles, to represent surfaces. As proposed by10, two key factors that
dominate mesh reconstruction effects are extrapolation strategy and stretching criteria which influence movement and splitting
of particle cores respectively. Towards dedicating surface reconstruction for soil, we additionally introduce the influence of
moisture to both factors.

Mesh Extrapolation. We modify the vertices extrapolation strategy in previous technique10 by introducing 𝐅𝑤 as an extra
scaling factor:

𝐲𝑛𝑝 = 𝐅𝑤𝐑(𝐲0𝑝 − 𝐱0𝑝) + 𝐱𝑛𝑝 , (13)
where 𝐲𝑛𝑝 is the core vertex position of MPM particle 𝑝, and 𝐑𝑛

𝑝 is the rotation matrix which can be calculated by polar de-
composition of 𝐅𝑛

𝑝. Hence, we can accurately track the mesh shrinkage caused by pore water loss, which is ignored in previous
works.

Stretching Criteria. For capturing the crack propagation caused by the shrinkage, we replace the constant of stretching
criteria with another moisture-correlating scaling factor 𝐽𝑤 as:

||𝐱𝑡𝑝 − 𝐱𝑡𝑞||
||𝐱0𝑝 − 𝐱0𝑞 ||

> 0.5(𝐽𝑝,𝑤 + 𝐽𝑞,𝑤)𝜁, 𝑡 ≤ 𝑛, (14)
where 𝐽𝑝,𝑤 and 𝐽𝑞,𝑤 are determinants of 𝐅𝑤 of particle 𝑝 and 𝑞, 𝜁 is a constant threshold. When Eq. (14) is met, the edge
connecting 𝑝 and 𝑞 is considered as broken. Benefiting from our adaptive criteria, subtle cracks are more likely to appear on dry
soil surface.

Scene #Particles Grid Res. Δ𝑡 (𝜌𝑠, 𝐸, 𝜈) NACC(𝛼0, 𝛽, 𝜉,𝑀) Moisture(𝜂, 𝑘𝑟, 𝜖)
(Fig. 8) 21K 0.05 1e-3 (1, 2k, 0.35) (-0.04, 1, 1, 1.87) (0/0.4, 1, 0/1)
(Fig. 7) 69K 0.03 1e-3 (1, 2K, 0.35) (0, 0.5, 0.5, 2.43) (0.5, 1, 0.5)
(Fig. 4) 92K 0.06 1e-3 (2, 1K, 0.35) (-0.05, 1, 0.5, 2.43) (0.5, 2, 0.5)
(Fig. 5) 778K 0.2 1e-3 (2, 2K, 0.35) (-0.05, 1, 0.5, 2.43) (0.5, 2, 0.6)
(Fig. 6) 230K 0.02 1e-3 (1, 1K, 0.35) (0, 0.5, 0.5, 2.43) (0.4, 1, 0.2/0.5/1)
(Fig. 10) 152K 0.06 1e-3 (1, 2K, 0.35) (0, 0.5, 0.5, 2.43) (0.5, 1, 0.5)

Table 1 Summary of the simulation settings.

7 RESULTS

7.1 Implementation Details
We implement our approach on an AMD Ryzen 7 3700X 8-Core Processor @3.59 GHz CPU, 32G RAM memory, and config-
urations of our experiments are documented in Tab. 1. To initialize the particles, we generate a high-quality tetrahedral mesh
following the approach in35, then each vertex in the tetrahedral mesh is treated as a MPM particle with full saturation. For better
rendering results, our surface reconstruction technique outputs the boundary and crack surface mesh separately, and the UV for
suitable texturing is constructed according to the initial mesh.

7.2 Soil Shrinkage, Crack and Curling
Our proposed method is capable of simulating compelling cracking effects in several challenging scenes, which are described
in this subsection. Here we utilize the color intensity as an indicator of the moisture.
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Frame  0 Frame 30 Frame 60 Frame 150

Figure 7 A wet, mossy ground gradually shrinks, cracks and curls as the moisture evaporates.

Fig. 7 shows simulation results of the hardening process. As moisture evaporates with time passes by, the wet and mossy
ground simulated with our method appears to shrink, crack and curl as soil in nature will do. We further demonstrate that our
method supports simulating soil of complex shapes as depicted in Fig. 4, and can work in conjunction with traditional softening-
based fracture. In Fig. 5 we employ our method for a riverbed to further verify the robustness and efficiency of our framework
in simulating large-scale terrain.

Fig. 6 shows the simulation results with various hardening rates 𝜖. Soil with a larger 𝜖 tends to be curled more apparently and
breach into larger fragments, vice versa.

s=0

s=1

(a) No Plasticity

(b) NACC

(c) NACC + Our Hardening

Figure 8 Desiccation experiments under different elastoplastic treatments.

7.3 Evaluations
To demonstrate the effectiveness of our method, we manifest results simulated with different combination strategies proposed in
this paper, including porosity-based shrinkage, NACC with or without our saturation-based hardening. Results in Fig. 8 show ef-
fects of our porous term which solves the volumetric shrinkage of soil and produces a rather compacted state. Moreover, Fig. 8(b)
and (c) showcase the effects of our saturation-based hardening strategy. In comparison to results simulated with NACC merely
(depicted in Fig. 8(b)), where only vertical cracking appears, results using our saturation-based hardening strategy succeeds in
simulating surface curling caused by horizontal fractures. We visualize the hardening states of particles as colors in Fig. 9 to
intuitively show whether the particles are being stretched or compressed. We also compare surface reconstruction results of our
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Figure 9 Hardening states during the desiccation.

[Wang et al. 2019] Ours

Figure 10 Surface reconstruction results using10 and our method under the same settings.

saturation-based scheme with previous MPM approach10. As shown in Fig. 10, our scheme is able to generate more crackings.
What’s more, our scheme also accords with the observation that fractures are more likely to appear at dry areas.

7.4 Limitations
Our approach has certain limitations. Firstly, the presence of sticky numerical artifacts introduced by MPM makes it challenging
to generate a clean and sharp internal crack surface. Additionally, due to the lack of geometric definition of cracks during
simulation, the local velocity discontinuity caused by cracks cannot be well represented. Furthermore, despite the improved
surfacing approach that makes the cracks more prominent, the limitations from the original surfacing technique described in10
still persist.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to capture the desiccation cracking of soils, especially vertical and horizontal cracks.
We proposed a saturation-centric elastoplastic treatment, in detail, a pore deformation is added to the multiplicative decompo-
sition of deformation gradient to describe the volumetric changes, and a saturation-based hardening strategy is introduced into
NACC to enhance the dynamic strength. Also, we developed an MPM-fashion implicit numerical solver to track moisture diffu-
sion and evaporation based on Richards equation, without complicated water-solid coupling handling. For better visual realism,
we extended previous surfacing techniques in MPM by introducing the saturation-based scaling factor to reflect the observation
that cracks are more likely to appear in dry soil. Based on above technologies, our approach can produce visually compelling
results of soil cracks and curls.
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In the future, we look forward to apply our method to more porous materials with dynamic moisture by introducing more
physical properties and process into our framework. Moreover, it is an exciting direction of investigation to parallelize our method
on GPUs to achieve real-time simulations. Finally, our surface reconstruction method is still less ideal, thus its improvement
would also be a worthwhile future work.
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