
P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Constraint-Based Multi-Agent Reinforcement Learning for

Collaborative Tasks

xiumin shang1, Tengyu Xu2, Ioannis Karamouzas3, and Marcelo Kallmann1

1University of California Merced
2Meta Platforms Inc
3Clemson University

May 2, 2023

Abstract

In order to be successfully executed, collaborative tasks performed by two agents often require a cooperative strategy to be

learned. In this work, we propose a constraint-based multi-agent reinforcement learning approach called Constrained Multi-

agent Soft Actor Critic (C-MSAC) to train control policies for simulated agents performing collaborative multi-phase tasks.

Given a task with n phases, the first n-1 phases are treated as constraints for the final task phase objective, which is addressed

with a centralized training and decentralized execution approach. We highlight our framework on a tray balancing task including

two phases: tray lifting and cooperative tray control for target following. We evaluate our proposed approach and compare it

against its unconstrained variant (MSAC). The performed comparisons show that C-MSAC leads to higher success rates, more

robust control policies, and better generalization performance.

1

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

2

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

3

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

4

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

5

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

6

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

7

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

8

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

9

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

10

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

11

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

12

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

13

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
30
16
58
.8
04
53
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

14

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Constraint-Based Multi-Agent Reinforcement Learning for
Collaborative Tasks

Xiumin Shang*1 | Tengyu Xu2 | Ioannis Karamouzas3 | Marcelo Kallmann1,4

1Electrical Engineering and Computer
Science, University of California Merced,
California, United States.

2Meta Platform Inc.
3School of Computing, Clemson University,
South Carolina, United States.

4 Marcelo Kallmann is now a Principal
Scientist at Amazon Robotics - this work
was initiated before joining Amazon and is
not related to Amazon work.

Correspondence
*Xiumin Shang, University of California
Merced, California, United States. Email:
xshang@ucmerced.edu

Summary

In order to be successfully executed, collaborative tasks performed by two agents
often require a cooperative strategy to be learned. In this work, we propose a
constraint-based multi-agent reinforcement learning approach called Constrained
Multi-agent Soft Actor Critic (C-MSAC) to train control policies for simulated agents
performing collaborative multi-phase tasks. Given a task with 𝑛 phases, the first 𝑛−1
phases are treated as constraints for the final task phase objective, which is addressed
with a centralized training and decentralized execution approach. We highlight our
framework on a tray balancing task including two phases: tray lifting and cooperative
tray control for target following. We evaluate our proposed approach and compare
it against its unconstrained variant (MSAC). The performed comparisons show that
C-MSAC leads to higher success rates, more robust control policies, and better gen-
eralization performance.
KEYWORDS:
multi-agent, reinforcement learning, tray balance task, collaborative tasks

1 INTRODUCTION

In recent years deep Reinforcement Learning (RL) approaches have shown great potential in training control policies used
in gaming and robotics. In particular, a family of actor critic algorithms has been developed for tackling tasks with complex
continuous action spaces which have become widely used in the field of deep RL. Extensive research and development have

Figure 1 Agents collaboratively balancing a tray for a ball to follow a moving target.

2

been dedicated to such methods, which include Deep Deterministic Policy Gradient (DDPG)1, Proximal Policy Optimization
(PPO)2, and Soft Actor Critic (SAC)3. In this paper we address the use of SAC for multi-phase collaborative tasks.

Many applications such as gaming and robotics often depend on multiple agents cooperating together to solve a complex
task. Some of these tasks are sequential in nature and have distinct phases that are governed by different objectives as the task
progresses. While it is generally easy for humans to discover cooperative interaction strategies, training agents to handle such
tasks is a fairly complex problem, mostly because of two fundamental challenges. The first is related to building a framework
where the agents can interact in a collaborative manner, and the second pertains to the training of the agents allowing them to
take appropriate actions while intelligently cooperating with each other in order to achieve a common task objective.

With respect to the first challenge, there is a rich collection of available frameworks for experimenting with single-agent
reinforcement learning algorithms, such as OpenAI Gym4, RoboGym5, ML-Agents6, and Atari games7. These frameworks have
been used for controlling both simple objects and complex human-like characters or robots, and as well for learning policies in an
end-to-end manner. There are also frameworks developed for specific purposes. Examples include controlling an agent to play Go
at a world-class level8, controlling a robotic arm to grasp or manipulate objects9, and simulating physical characters to perform
realistic human level skills10. However, building a framework for multi-agent problems is significantly more challenging because
the behavior of one agent is affected by the other agent, requiring synchronizing movements in the same dynamic environment
and designing a reward function that incentivizes coordination or competition according to possibly different objectives.

With respect to the second challenge, single-agent RL approaches have already been extended to the multi-agent domain for
solving tasks that need multi-agent interactions, such as for two-player competitive sports11 and cooperative agent communi-
cation1,12,13. In such domains, the centralized training and decentralized execution (CTDE) paradigm, and its integration with
DDPG14, called MADDPG1, has been widely used. In this paradigm, agents are trained using centralized information but ex-
ecute separate policies in a decentralized manner. We adopt a similar architecture in our work, but rely on the SAC learning
method3 because of its superior ability to solve tasks in continuous action spaces over other actor critic learning methods.

While CTDE can learn both cooperative and competitive strategies, directly using it to solve a complex task that can be decom-
posed into multiple phases is not straightforward due to the complexity of designing a proper multi-objective reward function.
A common solution is to use hierarchical RL controllers to solve each sub-objective separately with lower-level controllers,
and then train an upper-level controller to provide intermediate goals for the lower-level ones15,16. However, implementing
multi-level controllers introduces complexity to the architecture and requires additional hyperparameter tuning.

To address these issues, we adopt the safe RL concept from Xu et al.17. The original idea behind safe RL is to define task
constraints for the purpose of safety and stability. However, constraints can also be leveraged to model the different sub-objectives
of a task which can be decomposed into sequential sub-tasks or phases. In this paper we propose to treat all sub-objectives
except the final one as constraints inside a multi-agent learning framework, and optimize the final objective only if none of the
constraints’ objectives are violated for each agent.

We define a tray balancing task (Figure 1) in order to train and evaluate the proposed training approach. To solve it, two agents
need to cooperate for controlling the position and orientation of a tray. They need to control it precisely so that a ball rolling on
the surface of the tray can follow a pre-defined target trajectory. We define two phases: the objective of the first phase is for the
agents to lift the tray appropriately, and the objective of the second phase is to control the tray in order to make the ball follow its
target trajectory. We study the performance of our model by analyzing the objective rewards for different trajectories. We also
evaluate the model on trajectories that are unseen during training in order to study the generalization capability of our method,
and we analyze our model robustness by evaluating its performance in the presence of disturbance forces.

Overall, our contributions to this work can be summarized as follows:
• we develop a multi-agent framework able to physically simulate collaborative tasks in a shared environment,
• we propose a constraint-based algorithm to learn policies for multi-agent cooperative tasks with sequential objectives, and
• we evaluate the trained policies with tray balance tasks in order to study their performance, generalization, and robustness.

3

2 RELATED WORK

2.1 Multi-Agent Environment
Building multi-agent environments is very challenging since the reward design has to not only consider task objectives but also
interaction strategies between agents. Works on multi-agent learning have addressed control and communication strategies be-
tween 2D agents1, and also emergent strategies during learning18,19. There is however a lack of frameworks for experimentation
with human-like behaviors achieved from joint-level control. Recently, one work has created such an environment for training
human-like characters to compete with each other in sports games like fencing and boxing11. While these environments are
task-focused, our environment expands the possibilities for accomplishing cooperative tasks that include human upper-body and
arms movement.

2.2 Multi-Agent Reinforcement Learning
The multi-agent learning problem is challenging because of difficulties with agent scalability, non-stationarity of the environ-
ment, and non-unique learning objectives. A straightforward approach to solving multi-agent control problems is to train a joint
action policy for all agents using a single-agent RL algorithm, or directly extend single-agent RL algorithms where each agent
learns independently by considering other agents as part of the environment, such as by independent Q-learning20. However,
the above solutions suffer from scalability and stability issues. Lowe et al.1 proposed a parameter sharing approach to tackle
this problem, called centralized training and decentralized execution approach (CTDE). This is extended from the actor-critic
framework, where each agent uses a centralized critic to access all agents’ observations and action parameters so that it can
learn an approximate model of the other agents’ online policies within a stationary environment. The learned policy only uses
local information so it can be used by each agent without further communication between agents. Thereafter, additional algo-
rithms have been developed based on the CTDE framework in order to address different aspects of typical multi-agent systems,
for example, credit assignment with integration of the independent actor-critic method21, scalability by adding mean field Q
learning and actor-critic learning22, stability with SAC learning23, and incorporation of attention with SAC learning12 in order
to enable faster and more stable learning24.

Our work also adopts the concept of improving the stability in multi-agent learning23 by integrating SAC3 into the CTDE
framework. However, in comparison to other recent approaches23,25,26, we study the applicability of CTDE with SAC in a
complex human coordination task that is decomposed into multiple phases. As evaluation (see Section 6) we use CTDE with
SAC as a baseline to evaluate our proposed constraint-based learning model.

2.3 Multi-Objective Learning
Multi-objective learning involves learning tasks that have two or more objectives to optimize. It has the lifelong learning prop-
erties27, which means an agent can be trained on a sequence of relatively easy tasks to gain experience and develop a more
informative measure of reward, which can then be leveraged when performing harder tasks. Complex tasks that need to be bro-
ken down into sub-tasks based on their sub-objectives are quite common. When designing the objectives of a given task, the
sub-objectives can be defined as separate objectives without connection but sharing the same action space, like a robot arm
picking and placing objects in different boxes28, agents working together to push different objects into different locations29.
Sub-objectives can also be defined as sequential objectives, such that in order to finish the final objective, the previous objec-
tives have to be completed first, which is aligned with our task design. Example tasks solved in this manner are: an agent moving
to a target location while moving objects or obstacles along the moving path30, a biped character walking and needing to main-
tain natural gait motion with a walking target31, and a four-legged robot walking to a target location15. While most of existing
works focus on optimizing multi-objective learning for a single agent, in this paper, we extend the approach to a multi-agent
multi-task setup, where two virtual agents need to control the force applied on each side of a tray in order to solve a cooperative
tray balancing problem.

2.4 Reinforcement Learning with Constraints
Learning while considering constraints is a popular approach used in safe reinforcement learning32, where the focus is on
preventing the agent from taking actions or entering states that are too risky, since ensuring safety is always critical when the

4

learned strategies need to be deployed to real world systems. Different ways of specifying constraints have been proposed by
previous researchers, including using constraints on the expected return or cumulative costs33,17, and defining regions of the
state space that will result in agent failure. In our work, we focus on addressing a new formulation for a cooperative task that
involves two sequential objectives, and we propose to define our constraint as a threshold on the expected return from the first
objective. The learning process will advance to optimize the final objective only when the constraint has been satisfied.

3 OVERVIEW

We are interested in solving multi-agent collaborative tasks in a physically-simulated environment, with focus on a tray balancing
task. In this section we provide details of our task design. The overall framework used to train and evaluate our method is
illustrated in Figure 2.

3.1 Environment and Tasks
The environment is simulated inside the physics simulator of the Unity game engine, and it includes two virtual agents, a ball,
a moving target, and a tray with four anchor points at each corner. We consider two trajectories for the tray balancing task: an
ellipse trajectory and an 𝑆-curve trajectory as shown in figure 3. The details of these trajectories are described in Section 6.1.
In order to complete the task, the two agents start with a standing initial pose along the two sides of the tray, and then outstretch
their arms to reach the two anchor points on their side of the tray. The arms of the humanoids are controlled by inverse kinematics
(IK)34, the end effectors are their hands’ position and rotation, and the two anchor points’ position and rotation are their desired
targets. After reaching the anchor points, we require the agents to perform the tray balancing task in a sequential manner in 2
phases: in phase 1, they need to lift up the tray to a fixed height while maintaining the balance of the tray, and in phase 2, they
need to manipulate the tray to guide the ball to follow the target on a moving trajectory. The task process inside the physics
simulator in Figure 2 illustrates this process.

3.2 Framework
Our framework has three main components, the physics simulator, the MARL (Multi-Agent Reinforcement Learning) controller,
and the IK (Inverse Kinematic) controller. The physics simulator is used to simulate different task environments, the MARL
controller is the Python API that runs our multi-agent learning approaches during both the training and execution processes,
and the IK controller is used to control the humanoid arms during both processes. At each learning step, the MARL controller
receives the states and rewards information and sends out the actions to the physics simulator via the communication channels
provided by the Unity ML-Agents plugin35. In the meantime, the MARL controller collects the anchor points’ position and
rotation information and sends them to the IK controller as its desired control target for the agents’ arm movement.

4 APPROACH

4.1 Problem Formulation
We formulate our problem as a two-agent cooperative game, modeled as a partially observable Markov Decision Process
(MDP); our approach can be easily extended to more agents. At each time step 𝑡 ∈ [0, 𝑇], the MDP tuple is defined as
{,  𝑡

𝑖 , 
𝑡
𝑖, 

𝑡+1
𝑖 ,𝑡

𝑖,  }, where 𝑇 is the max steps of each episode, 𝑖 ∈ {0, 1} is the index of the agent. Agent 𝑖 observes par-
tial state 𝑠𝑡𝑖 ∈  𝑡

𝑖 from environment , takes action 𝑎𝑡𝑖 ∈ 𝑡
𝑖 that leads to a new state according to the dynamics model  , and

receives a scalar reward signal from its reward function 𝑟𝑡𝑖 = (𝑠𝑡𝑖, 𝑎
𝑡
𝑖), and 𝑟𝑡𝑖 ∈ [0, 1]. For each agent 𝑖, the goal is to find an

optimal policy 𝜋𝜃𝑖(𝑎|𝑠) that maximizes its expected accumulated reward 𝐽𝑖, where 𝜃𝑖 denotes the parameters of the policy.

4.2 Multi-Agent Soft Actor Critic Learning (MSAC)
In our multi-agent setup, we adopt the CTDE framework incorporated with SAC algorithm3 because its extra entropy term in-
creases the policy’s exploration ability and robustness, and we name it Multi-agent Soft Actor Critic algorithm (MSAC). During

5

Figure 2 The overview of our environment and framework.

training, we jointly conduct policy evaluation and policy iteration, where for each agent 𝑖 we concurrently learn a stochastic
policy 𝜋𝜃𝑖 and two Q-functions with parameters 𝜙𝑖,𝑗 , 𝑗 is identifier of Q function, in the range of [1, 2].

During policy iteration, we use Eq 1 to optimize, in the direction of maximizing the accumulated reward, the policy function
𝐽 (𝜃𝑖):

∇𝜃𝑖𝐽 (𝜃𝑖) = ∇𝜃𝑖
1

|𝑖|

∑

𝑖

{min
𝑗=1,2

𝑄𝜙𝑖,𝑗
(s𝑡, a𝑡) − 𝛼 log𝜋𝜃𝑖(𝑎

𝑡
𝑖|𝑠

𝑡
𝑖)}. (1)

The policy function for each agent is parameterized as 𝜃𝑖, 𝑖 denotes a batch of experiences sampled from the replay buffer,
log𝜋𝜃𝑖(𝑎

𝑡
𝑖|𝑠

𝑡
𝑖) is the entropy term to increase the variation of action space, and 𝛼 is a learned variable indicating the contribution

of an entropy regularization term. 𝑄𝜙𝑖,𝑗
(s𝑡, a𝑡) is calculated from the states s and actions a of all agents, as a centralized evaluation

operation.
During policy evaluation, we optimize the loss function (𝜙𝑖,𝑗) using Eq 2 to evaluate the learned policies by minimizing the

difference of the value function 𝑄𝜙𝑖,𝑗
(s𝑡, a𝑡) and its target value 𝑦𝑖 for each agent:

∇𝜙𝑖,𝑗
(𝜙𝑖,𝑗) = ∇𝜙𝑖,𝑗

1
|𝑖|

∑

𝑖

(𝑄𝜙𝑖,𝑗
(s𝑡, a𝑡) − 𝑦𝑖)2. (2)

The target value 𝑦𝑖 is calculated with a separate target value network 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1, 𝑎𝑡+1) in order to maintain stability when
updating policy network, as shown in Eq 3:

𝑦𝑖 = 𝑟𝑖 + 𝛾{min
𝑗=1,2

𝑄𝜙𝑖,𝑗,𝑡𝑎𝑟𝑔𝑒𝑡
(s𝑡+1, a𝑡+1) − 𝛼 log𝜋𝜃𝑖(𝑎

𝑡+1
𝑖 |𝑠𝑡+1𝑖)}. (3)

Both value functions 𝑄𝜙𝑖,𝑗
and their target value functions 𝑄𝜙𝑖,𝑗,𝑡𝑎𝑟𝑔𝑒𝑡

share the same network structure, and they are
parameterized as 𝜙𝑖 and 𝜙𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 separately.

4.3 MSAC with Constraints
Constraints used in safe RL problems can be categorized into primal and primal-dual approaches. Primal approaches focus on
the design of objective functions and do not need Lagrange multipliers as dual variables during the optimization process, thus
simplifying the implementation process and reducing training time32. Due to its proven global convergence, we adopt the primal
approach17 in our framework and call it Constrained Multi-agent Soft Actor Critic (C-MSAC).

6

We assume the task can be divided into 𝑛 sequential phases; we consider objectives in the first 𝑛 − 1 phases as constraints
while the 𝑛𝑡ℎ phase objective determines the final objective. The idea is to optimize the final objective function with reward
accumulated from the 𝑛𝑡ℎ phase while guaranteeing that all constrained objectives from previous phases can be satisfied. Our
multi-agent problem with constraints can thus be formalized as the following optimization problem:

max
𝜃𝑖

𝐽𝑖,𝑛(𝜃𝑖), 𝑠.𝑡.𝐽𝑖,𝑘(𝜃𝑖) >= 𝑑𝑖,𝑘, 𝑘 < 𝑛, (4)
where 𝐽𝑖,𝑘 denotes the total expected return of the 𝑘-th constraint phase, and 𝑑𝑖,𝑘 is a threshold that is calculated from a Monte
Carlo estimate return with step reward 𝑟0 = 0.9, and discount parameter 𝛾 = 0.99 for the 𝑘-th constraint:

𝑑𝑖,𝑘 =
𝑇−1
∑

𝑡=0
𝛾 𝑡𝑟0. (5)

Hence, when all constraint phases reach their respective thresholds 𝑑𝑖,𝑘, we find the optimal policy 𝜋𝜃,𝑖 for each agent. For
each phase 𝑘, we learn a separate value function 𝑄𝑖,𝑘, that is, we learn 𝑛 𝑄 functions for each agent, and during each optimization
step, one 𝑄 function will be optimized based on Eq 7. In this section, we use 𝑄𝑖,𝑘 as the shortened version of 𝑄𝜙𝑖,𝑗,𝑘

for simplicity.
At phase 𝑘, the expected return 𝐽𝑖,𝑘 is calculated as:

𝐽𝑖,𝑘(𝜃𝑖) =
1
|𝑚|

𝑚
∑

𝑠0𝑖 ,𝑎
0
𝑖 ∼𝜉,𝜋𝜃𝑖

𝜌𝑖,𝑘𝑄𝑖,𝑘(𝑠0𝑖 , 𝑎
0
𝑖). (6)

The term 𝑄𝑖,𝑘(𝑠0𝑖 , 𝑎
0
𝑖) computes the accumulated return of a rollout starting from (𝑠0𝑖 , 𝑎

0
𝑖) while following policy 𝜋𝜃𝑖 . State 𝑠0𝑖denotes an initial state that is sampled uniformly from an initial distribution 𝜉 and 𝑎0𝑖 is the corresponding action based on the

latest policy 𝜋𝜃𝑖 . 𝜌𝑖,𝑘 is a weight ratio for each rollout, where a value of 1 is used in our experiments. We average 𝑚 = 40 rollouts
to calculate 𝐽𝑖,𝑘.

To combine the constraints with policy iteration and policy evaluation, we integrate the constraint phases into the MARL
process. At each optimization step, we first choose a phase 𝑘 to optimize by selecting a 𝑄 function using Eq 7:

𝑠𝑒𝑙𝑒𝑐𝑡(𝑄) =
{

𝑄𝑖,𝑘 if ∃𝑘 < 𝑛 ∶ 𝐽𝑖,𝑘(𝜃𝑖) < 𝑑𝑖,𝑘,
𝑄𝑖,𝑛 else 𝑘 = 𝑛.

(7)

To perform policy iteration, we then replace 𝑄𝜙𝑖,𝑗
in Eq 1 with the chosen value function 𝑄𝑖,𝑘. For policy evaluation, we

replace 𝑄𝜙𝑖,𝑗
in Eq 2 with the value function 𝑄𝑖,𝑘 of the chosen constrained phase, leading to the following critic update:

∇𝜙(𝜙𝑖,𝑘) = ∇𝜙
1

|𝑖|

∑

𝑖

(𝑠𝑒𝑙𝑒𝑐𝑡(𝑄) − 𝑦𝑖,𝑘)2, (8)

where 𝑦𝑖,𝑘 is the target value calculated in the same way as in Eq 3, but specifically for the 𝑖th agent at phase 𝑘. If multiple
constrained phases are not satisfied, we can choose any phase to maximize its expected return.

4.4 Algorithm
Algorithm 1 summarizes the procedure of our proposed approach C-MSAC during the training process. Lines 4-9 show the
process of collecting samples from multiple environments for both agents in order to enrich the training dataset and speed up
the training. Lines 10-17 perform the learning process in that we iteratively select a phase 𝑘 to optimize until all phases have
been saturated with their own thresholds based on Eq 4.

5 TRAINING

5.1 State and Action Representation
In our environment, the state information includes the tray, the ball, the moving target, and the two anchor points for each
agent. Let 𝑝, 𝑞, 𝑣, 𝑞𝑣 denote position, rotation, velocity, and angular velocity respectively. The state is represented as 𝑠𝑖 =
[𝑠𝐵 , 𝑠𝑇 , 𝑠𝑡, 𝑠𝐵𝑡, 𝑠𝑇𝑓], where 𝑠𝐵 = [𝑝𝐵 , 𝑞𝐵 , 𝑣𝐵 , 𝑞𝑣𝐵] represents the state of the ball, 𝑠𝑇 = [𝑝𝑇 , 𝑞𝑇 , 𝑣𝑇 , 𝑞𝑣𝑇] represents the
state of the tray, 𝑠𝑡 is the position of the moving target, 𝑠𝐵𝑡 contains the euclidean and quaternion distance between the ball and

7

Algorithm 1 Constrained Multi-agent Soft Actor Critic Algorithm (C-MSAC)
1: Initialize policy network 𝜃𝑖, value estimation networks 𝜙1,𝑖, 𝜙2,𝑖 with random weights for each agent;
2: Initialize replay buffer  as empty dictionary ;
3: for each step do
4: for each environment m do
5: Sample action 𝑎𝑡 from policy 𝜋(𝑎𝑡𝑚,𝑖||

|

𝑠𝑡𝑚,𝑖);
6: Proceed one step in the environment;
7: Observe reward 𝑟𝑡𝑚,𝑖,𝑘 and next state 𝑠𝑡+1𝑚,𝑖 from environment;
8: Concatenate all data into tuple (𝑠𝑡𝑚, 𝑎𝑡𝑚, 𝑟𝑡𝑚,𝑘, 𝑠𝑡+1𝑚) and send to the replay buffer ;
9: end for

10: if step > batch_size then
11: Sample a group 𝑠0𝑖 from 𝜉𝑖;
12: Calculate total return 𝐽𝑖,𝑘 with Eq 6 for all phases 𝑘 ;
13: Sample a batch data from  ;
14: Select a phase 𝑘 to optimize with Eq 7 ;
15: Evaluate policy with Eq 8 ;
16: Optimize policy with Eq 1
17: end if
18: end for
19: Output optimal policy 𝜃𝑖 for agent 𝑖.

the moving target that the ball needs to follow for, and 𝑠𝑇𝑓 includes the euclidean distance between the tray and a fixed target
position that is slightly higher than the tray’s initial position.

The action 𝑎𝑘𝑖 in our task is defined as the force applied at each holding point on the tray in 𝑥, 𝑦, 𝑧 direction. It is calculated by
multiplying a fixed scalar to the normalized [-1,1] control signals learned from the RL policy. We use 100 as the scaling constant.

5.2 Reward Design
The tray balance task includes two phases: lifting up the tray and reaching the target, we need to design reward functions for
each phase based on its own objective, the details are described below.

5.2.1 Lifting the Tray
In this phase, the agent’s objective is to lift up the tray to the fixed target position 𝑝0 while maintaining its balance relative to the
identity quaternion 𝑞0. To satisfy this objective, the reward function is designed as:

𝑟𝑙𝑖𝑓 𝑡 = 0.8 ∗ 𝑟𝑑𝑖𝑠𝑡 + 0.2 ∗ 𝑟𝑎𝑛𝑔 .

Here 𝑟𝑑𝑖𝑠𝑡 is the Euclidean distance between the tray and the fixed target position, to encourage the tray to move closer to the
fixed target position, and it is calculated:

𝑟𝑑𝑖𝑠𝑡 = exp[−5||𝑝𝑇 − 𝑝0||
2].

𝑟𝑎𝑛𝑔 is the quaternion orientation difference between the tray and the identity quaternion, to encourage the tray to balance itself,
it is calculated:

𝑟𝑎𝑛𝑔 = exp[−20(1 − ||𝑞𝑇 ⊖ 𝑞0||
2)].

5.2.2 Reaching the Target
In this phase, the agent’s objective is to adjust the tray position and orientation to control the ball to follow a moving target on
the tray. To encourage the ball to stay on the moving target, we use the Euclidean distance between the ball and the moving
target, as represented in the reward function:

𝑟𝑡𝑎𝑟𝑔𝑒𝑡 = exp[−25||𝑝𝐵 − 𝑠𝑡||2].

8

The target’s moving path is controlled by curve equations. We use two different curves: an ellipse (where the major and minor
axes are randomized at the beginning of each training episode) and an 𝑆-curve which is defined by a cubic equation.

The agents have to collaborate to finish both phases’ objectives, leading to a Nash equilibrium36, meaning that each agent is
taking their best policy to respond to the other agent, and its gains will be undermined if a different policy is taken. Considering
the equilibrium, the reward we use for each agent in each phase is the shared team average reward, and calculated as the average
of both agents in that phase37: 𝑟 = 1

𝑁

∑

𝑖∈𝑁 (𝑟𝑖).

5.3 Early Termination
Early termination10,38 is a common technique used in reinforcement learning, to help RL agents stop learning bad behaviors and
favor the collected samples more efficiently, thus achieving significantly faster learning. In our task, we introduced three early
termination conditions to terminate the current episode during training:

• first, when the ball touches the edge of the tray, because it can easily get stuck in the corner of the tray;
• second, when the ball or tray drops on the ground, as it will never get recovered from this state;
• third, when the height of any anchor point goes below a threshold (0.85m in our experiments), as the agent’s hands will

not be able to reach them with IK solution).

5.4 Training Details
5.4.1 Network Architecture
For each agent, we use the same network structure as SAC3, but add (𝑛−1) value networks and target value networks to represent
the constraint objectives of each phase. All networks consist of three fully connected layers with 256 hidden units in the first
two layers, and relu is used as the activation function. The last layer outputs the mean and log value of the policy. The learning
rate is 0.0003, while the gamma is 0.99.

5.4.2 Multi-Environment Training
One of the learning thresholds for an RL approach is sample efficiency. To speed up the training we implement our environment
as a multi-environment setup allowing us to collect 4 times training data per frame rate.

6 EXPERIMENTS AND RESULTS

6.1 Target Trajectories
In our environment, the 𝑥𝑜𝑧 and 𝑦 − 𝑢𝑝 coordinate system is being used. We train both models on two types of parametric
trajectories, as shown in Figure 3:

1) Randomized ellipse: described with the ellipsoid equation:
𝑓 (𝑡𝑖) = (𝑎 cos(𝜃1(𝑡𝑖)) cos(𝜃2(𝑡𝑖)), 𝑏 sin(𝜃1(𝑡𝑖)), 𝑏 cos(𝜃1(𝑡𝑖)) sin(𝜃2(𝑡𝑖)),

where 𝜃1 is the longitude angle change of meridian plane 𝑥𝑜𝑦 in radian, 𝜃2 is the latitude angle change of the equatorial plane
𝑥𝑜𝑧 in radian. 𝑎, 𝑏 are the major axis and minor axis in the range of [0.1, 0.3] for the ellipse shape randomization. The time step
term 𝑡𝑖 is the ratio of the current training step and total steps for each episode.

2) 𝑆-curve: described as a cubic Bèzier curve with control points 𝑃0, 𝑃1, 𝑃2, and 𝑃3.
𝑓 (𝑡𝑖) = (1 − 𝑡𝑖)3𝑃0 + 3(1 − 𝑡𝑖)2𝑡𝑃1 + 3(1 − 𝑡𝑖)𝑡2𝑃2 + 𝑡3𝑖 𝑃3.

In our task, we fixed points 𝑃0 and 𝑃3, and adjusted 𝑃1, 𝑃2 to get the desired 𝑆-shaped curve.
For the evaluation of unseen trajectories, we use two additional types of curves: square and triangle, as shown in Figure 4,

they are generated by connecting three(triangle) and four (square) fixed positions relative to the position of the tray.

9

Figure 3 Left and center: ellipse examples, Right: 𝑆-curve example.

Figure 4 Generalization to unseen trajectories. Left: triangle. Right: square.

6.2 Evaluation Metrics
We compare our proposed approach of multi-agent soft actor critic with constraints (C-MSAC) to MSAC approach. For MSAC
we used a linear combination of rewards from each phase to calculate the total reward for each agent:

𝑟𝑖 = 0.85𝑟𝑙𝑖𝑓 𝑡 + 0.16𝑟𝑡𝑎𝑟𝑔𝑒𝑡 + (−0.1)𝑟𝑡𝑖𝑚𝑒
where the optimization process is calculated according to Section 4.1. For C-MSAC each phase is optimized separately based
on the reward accumulated from this phase as discussed in Section 4.3.

We compare both models on three criteria:
• Mean target reward and on-target performance: where we evaluate the models on the same family of trajectories that

were used to train the models.
• Generalization ability: where we evaluate the models on unseen trajectories.
• Robustness: where we introduce extra disturbances to the environment and analyze the ability of the model to restore

balance.

6.3 Results
6.3.1 Mean Target Reward
We train both MSAC and C-MSAC for 45,000 episodes each on the randomized ellipse trajectory and the 𝑆-curve trajectory
tasks. After every 2,000 episodes of training, we run validation on 100 episodes to measure the target reward (𝑟𝑡𝑎𝑟𝑔𝑒𝑡) on the
objective phase. Figure 6 shows the mean and standard deviation of the normalized reward for MSAC and C-MSAC on the
ellipse and 𝑆-curve trajectories.

For the ellipse trajectory, the C-MSAC model starts off slightly lower than the MSAC model in terms of target reward. This
makes sense since the C-MSAC model is initially focusing on the tray lifting constraint objective. Eventually, the C-MSAC model

10

surpasses MSAC yielding a significantly higher target reward. Furthermore, C-MSAC is much more stable, exhibiting similar
performance across different evaluation trials as compared to MSAC’s performance that is characterized by large variance.

For the𝑆-curve trajectory, both models have a similar target reward in the initial stages of training. However, in the later stages,
the C-MSAC model surpasses the MSAC model yielding a policy very close to generating the maximum possible normalized
reward (1.0).

Figure 5 Normalized reward on test episodes for the target objective phase (phase 2). Left: ellipse trajectory. Right: 𝑆-curve
trajectory.

6.3.2 Phase Analysis
We also measured the target reward for the tray lifting constraint phase (phase 1) for both models on the 100 test episodes.
Figure 6 shows the mean and standard deviation of the normalized constraint reward 𝑟𝑙𝑖𝑓 𝑡 for both models on the ellipse and
𝑆-curve trajectories. The trend here is fairly similar to that for the objective phase reward. In the initial stages of training, the
constraint phase reward is almost the same for the MSAC and the C-MSAC models. As the training progresses, the constraint
phase reward for the C-MSAC model increases more rapidly and exhibits smaller variance compared to the MSAC model.
Towards the middle of the training process, as the C-MSAC model starts exceeding the threshold value for the constraint phase,
the corresponding reward starts to saturate.

Figure 6 Normalized reward on test episodes for the constraint phase (phase 1). Left: ellipse trajectory. Right:𝑆-curve trajectory.

6.3.3 On-target Performance
In addition to the target reward, we also measured the on-target performance for both the MSAC and C-MSAC models for the
ellipse and the 𝑆-curve trajectories. We define the ball to be on-target for a given step if the target reward (𝑟𝑡𝑎𝑟𝑔𝑒𝑡) is higher than
0.95, and then measure the percentage of steps for which the ball stays on target for a given episode. To quantify the distribution

11

Figure 7 Histogram of on-target steps ratio. Left: ellipse trajectory. Right: 𝑆-curve trajectory.

Figure 8 Histogram of on-target steps ratio. Left: triangle trajectory. Right: square trajectory.

of the on-target percentage, we draw a histogram of the number of episodes against the percentage of on-target steps for a given
episode. Figure 7 shows the histograms for the ellipse and the 𝑆-curve trajectories, respectively.

It is clear from the figure that the average on-target time for the C-MSAC model is much higher than that for the MSAC
model for both the ellipse and 𝑆-curve trajectories. This shows that the C-MSAC model is able to learn the fine-grained controls
necessary to keep the ball on target most of the time and follow the curve smoothly. Our supplemental video also demonstrates
this capability visually.

6.3.4 Generalization Ability
After every 2,000 steps of training, we also evaluated the MSAC and C-MSAC models (trained on randomized ellipse trajec-
tories) on two types of unseen trajectories: square and triangle. We observe that both MSAC and C-MSAC models are able
to generalize to the unseen trajectories; however, the C-MSAC model yields a better average reward (Figures 9) and on-target
performance (Figure 8) in comparison to the MSAC model. This shows that the C-MSAC model also exhibits better ability to
generalize in comparison to the MSAC model.

One interesting finding here is that the performance on the square trajectory is slightly worse than that on the triangular
trajectory for both models. Upon observation, we noted that this is likely due to the presence of an extra corner on the square
compared to the triangle. Both models handle smooth curves and straight lines relatively well, but sometimes have difficulty
handling sharp corners. The extra vertex on the square increases the chance of the ball moving far away from the target. We
suspect that the difficulty in handling sharp corners might be because of the fact that our training data only includes smooth
curves. It might be interesting to include trajectories with corners in the training data in future experiments.

6.3.5 Robustness
We have studied the robustness of the two models against unexpected disturbances. For some early exploration in this direction,
we hit the tray with additional balls at different angles and positions on the tray in order to disrupt the task. From our observations,

12

Figure 9 Normalized target reward on test episodes. Left: triangle trajectory. Right: square trajectory.

the C-MSAC model exhibited a superior capability to recover from such unexpected disturbances. The accompanying video to
this paper shows the capability of C-MSAC to recover from such disruptions.

To formalize our observations, we set up an experiment to statistically analyze and compare the robustness of the C-MSAC
and MSAC models. In this experiment, we introduce a disturbance force to the agent actions every 10 steps during the test
episodes. We sample this force from a Gaussian distribution, scale it up with a magnitude factor, and add it to the agent actions.
We evaluate both models on 100 test episodes and obtain the mean and standard deviation of the target reward for different
values of the disturbance force magnitude.

Figure 10 shows the results for the MSAC and C-MSAC models on the ellipse and𝑆-curve trajectories. As the force magnitude
increases, the target reward for both models reduces and eventually approaches zero. However, the mean reward for the C-MSAC
model is consistently higher than that for the MSAC model. The C-MSAC model reward also has a smaller standard deviation
compared to the MSAC model, indicating higher stability and consistency across different test episodes.

We note here that we did not apply any disturbance to the environment during training time. We hypothesize that the robustness
for these models arises from the entropy term used in the SAC algorithm which encourages exploration.

Figure 10 Normalized target reward for different disturbance force magnitudes. Left: ellipse trajectory. Right:𝑆-curve trajectory.

7 CONCLUSIONS

In this paper, we propose a constraint-based multi-agent reinforcement learning approach to solve multi-phase collaborative
tasks. We present a framework to simulate tray balancing and target following tasks with different trajectories. We evaluate the
proposed constraint-based (C-MSAC) model on this task and compare it against a baseline that does not employ constraints
(MSAC). Our results show that the proposed model is able to exhibit better on-target performance, better generalization ability,
and improved robustness in comparison to the baseline.

Two main limitations can be observed in our present work. While the proposed constraint-based framework is very general
and applicable to complex multi-phase tasks, in this work we have only explored a task of two phases: a tray lifting constraint

13

phase and a tray balancing target phase. Additionally, the arm movements in our environment are not controlled by an RL policy
but rather calculated by Inverse Kinematics (IK) based on the anchor points transformation. This sometimes results in some
glitchy movements, for example when the agents suddenly move the tray to avoid the ball from going out of bounds, resulting
in a sudden pose change due to the arm having to follow the anchor points.

As future work we plan to extend this work by using physically simulated humanoids with joint-level RL-based control for the
arms instead of using IK. This will also provide us the opportunity to fully leverage the power of the constraint-based framework
by introducing additional phases to the task such as an initial constraint for the arms to reach the tray anchor points. In addition,
while currently we focus on collaborative tasks, our framework can also be generalized to competitive tasks, opening interesting
avenues for future work.

References

1. Lowe R, Wu YI, Tamar A, Harb J, Pieter Abbeel O, Mordatch I. Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems 2017; 30.

2. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 2017.

3. Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In: PMLR. ; 2018: 1861–1870.

4. Brockman G, Cheung V, Pettersson L, et al. Openai gym. arXiv preprint arXiv:1606.01540 2016.
5. OpenAI . Robogym. https://github.com/openai/robogym; 2020.
6. Juliani A, Berges VP, Teng E, et al. Unity: A general platform for intelligent agents. arXiv preprint arXiv:1809.02627 2018.
7. Bellemare MG, Naddaf Y, Veness J, Bowling M. The arcade learning environment: An evaluation platform for general

agents. Journal of Artificial Intelligence Research 2013; 47: 253–279.
8. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. nature 2015; 518(7540):

529–533.
9. Andrychowicz OM, Baker B, Chociej M, et al. Learning dexterous in-hand manipulation. The International Journal of

Robotics Research 2020; 39(1): 3–20.
10. Peng XB, Abbeel P, Levine S, Panne v. dM. Deepmimic: Example-guided deep reinforcement learning of physics-based

character skills. ACM Transactions on Graphics (TOG) 2018; 37(4): 1–14.
11. Won J, Gopinath D, Hodgins J. Control strategies for physically simulated characters performing two-player competitive

sports. ACM Transactions on Graphics (TOG) 2021; 40(4): 1–11.
12. Iqbal S, Sha F. Actor-attention-critic for multi-agent reinforcement learning. In: PMLR. ; 2019: 2961–2970.
13. Yu C, Velu A, Vinitsky E, et al. The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural

Information Processing Systems 2022; 35: 24611–24624.
14. Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971

2015.
15. Nachum O, Ahn M, Ponte H, Gu S, Kumar V. Multi-agent manipulation via locomotion using hierarchical sim2real. arXiv

preprint arXiv:1908.05224 2019.
16. Florensa C, Duan Y, Abbeel P. Stochastic neural networks for hierarchical reinforcement learning. arXiv preprint

arXiv:1704.03012 2017.

https://github.com/openai/robogym

14

17. Xu T, Liang Y, Lan G. Crpo: A new approach for safe reinforcement learning with convergence guarantee. In: PMLR. ;
2021: 11480–11491.

18. Kurach K, Raichuk A, Stańczyk P, et al. Google research football: A novel reinforcement learning environment. arXiv
preprint arXiv:1907.11180 2019.

19. Baker B, Kanitscheider I, Markov T, et al. Emergent tool use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528 2019.

20. Tampuu A, Matiisen T, Kodelja D, et al. Multiagent cooperation and competition with deep reinforcement learning. PloS
one 2017; 12(4): e0172395.

21. Foerster J, Farquhar G, Afouras T, Nardelli N, Whiteson S. Counterfactual multi-agent policy gradients. In: . 32. ; 2018.
22. Yang Y, Luo R, Li M, Zhou M, Zhang W, Wang J. Mean field multi-agent reinforcement learning. In: PMLR. ; 2018:

5571–5580.
23. Lu H, Gu C, Luo F, Ding W, Zheng S, Shen Y. Optimization of task offloading strategy for mobile edge computing based

on multi-agent deep reinforcement learning. IEEE Access 2020; 8: 202573–202584.
24. Rashid T, Samvelyan M, Schroeder C, Farquhar G, Foerster J, Whiteson S. Qmix: Monotonic value function factorisation

for deep multi-agent reinforcement learning. In: PMLR. ; 2018: 4295–4304.
25. Cheng Z, Liwang M, Chen N, Huang L, Du X, Guizani M. Deep reinforcement learning-based joint task and energy

offloading in UAV-aided 6G intelligent edge networks. Computer Communications 2022; 192: 234–244.
26. Wu X, Li X, Li J, Ching P, Leung VC, Poor HV. Caching transient content for IoT sensing: Multi-agent soft actor-critic.

IEEE Transactions on Communications 2021; 69(9): 5886–5901.
27. Chen Z, Liu B. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 2018; 12(3):

1–207.
28. Hundt A, Killeen B, Greene N, et al. “Good robot!”: Efficient reinforcement learning for multi-step visual tasks with SIM

to real transfer. IEEE Robotics and Automation Letters 2020; 5(4): 6724–6731.
29. Yang HY, Wong SK. Agent-based cooperative animation for box-manipulation using reinforcement learning. Proceedings

of the ACM on Computer Graphics and Interactive Techniques 2019; 2(1): 1–18.
30. Nachum O, Gu SS, Lee H, Levine S. Data-efficient hierarchical reinforcement learning. Advances in neural information

processing systems 2018; 31.
31. Peng XB, Berseth G, Yin K, Van De Panne M. Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement

learning. ACM Transactions on Graphics (TOG) 2017; 36(4): 1–13.
32. Garcıa J, Fernández F. A comprehensive survey on safe reinforcement learning. Journal of Machine Learning Research

2015; 16(1): 1437–1480.
33. Achiam J, Held D, Tamar A, Abbeel P. Constrained policy optimization. In: PMLR. ; 2017: 22–31.
34. Kucuk S, Bingul Z. Robot kinematics: Forward and inverse kinematics. INTECH Open Access Publisher London, UK .

2006.
35. Juliani A, Berges VP, Teng E, et al. Unity: A general platform for intelligent agents. arXiv preprint arXiv:1809.02627 2020.
36. Osborne MJ, Rubinstein A. A course in game theory. MIT press . 1994.
37. Vrancx P, Verbeeck K, Nowé A. Decentralized learning in markov games. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 2008; 38(4): 976–981.
38. Babadi A, Naderi K, Hämäläinen P. Self-imitation learning of locomotion movements through termination curriculum. In:

2019 (pp. 1–7).

15

AUTHOR BIOGRAPHY

Xiumin Shang is currently a Ph.D. candidate in Electrical Engineering and Computer Science at the Uni-
versity of California Merced. She received her M.Eng. in Mechanical Engineering and B.Eng. in Computer
Engineering from Harbin Engineering University in China. Her research interests include topics of multi-
agent learning, reinforcement learning, computer animation, virtual reality, and their applications in various
fields such as car racing games, smart grid optimization, and currently focusing on employing machine
learning techniques in agent animation that can be used in virtual reality environments.
Tengyu Xu is currently a Research Scientist at Meta Platform Inc. He received his Ph.D. degree from the
Department of Electrical and Computer Engineering, The Ohio State University at August 2022. Dr. Xu’s
research interests are centered around reinforcement learning and optimization. His research works have
been published at conferences such as NeurIPS, ICML and ICLR. Particularly, his fundamental theoreti-
cal works in Q-learning and actor-critic-type algorithms have been widely followed by researchers in the
reinforcement learning theory community.
Ioannis Karamouzas is an Associate Professor in the School of Computing at Clemson University. Prior
to joining Clemson, he was a postdoctoral associate at the University of Minnesota and received his Ph.D.
from Utrecht University. His research focuses on developing motion planning algorithms for autonomous
agents in both physical and virtual worlds. His work has been integrated into commercial applications in-
cluding computer games and pedestrian simulation suites. He is a recipient of an NSF CAREER award and
is currently serving on the editorial board of IEEE Robotics and Automation Letters.
Marcelo Kallmann is currently a Principal Scientist at Amazon Robotics. Previously he was an Amazon
Scholar and a Professor, Founding Faculty, and EECS graduate chair at the University of California, Merced.
Before UC Merced he was research faculty at the University of Southern California (USC) and a research
scientist at the USC Institute for Creative Technologies (ICT). He received his Ph.D. degree from the École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He has over a hundred technical publications
in computer graphics, computer animation and robotics. His academic research has received funding from
NSF, ARO, and CITRIS, and his work on triangulations for path planning runs inside The Sims 4, often

cited as the best selling PC game of 2014 and 2015.

	Constraint-Based Multi-Agent Reinforcement Learning for Collaborative Tasks
	Abstract
	Introduction
	Related Work
	Multi-Agent Environment
	Multi-Agent Reinforcement Learning
	Multi-Objective Learning
	Reinforcement Learning with Constraints

	Overview
	Environment and Tasks
	Framework

	Approach
	Problem Formulation
	Multi-Agent Soft Actor Critic Learning (MSAC)
	MSAC with Constraints
	Algorithm

	Training
	State and Action Representation
	Reward Design
	Lifting the Tray
	Reaching the Target

	Early Termination
	Training Details
	Network Architecture
	Multi-Environment Training

	Experiments and Results
	Target Trajectories
	Evaluation Metrics
	Results
	Mean Target Reward
	Phase Analysis
	On-target Performance
	Generalization Ability
	Robustness

	Conclusions
	References
	Author Biography

