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Abstract

A new method is developed to estimate the contemporary effective population size (Ne) from linkage disequilibrium between

SNPs without information on their location, which is the usual scenario in non-model species. The general theory of linkage

disequilibrium is extended to include the contribution of full-sibs to the measure of LD, leading naturally to the estimation of

Ne in monogamous and polygamous mating systems, as well as in multiparous species, and non-random distributions of full-sib

family size due to selection or other causes. The prediction of confidence intervals for Ne estimates was solved using a small

artificial neural network trained on a dataset of over 105 simulation results. The method, implemented in a user-friendly and

fast software (currentNe) is able to estimate Ne even in problematic scenarios with large population sizes or small sample sizes,

and provides confidence intervals that are more consistent than parametric methods or resampling.
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Abstract 28 

A new method is developed to estimate the contemporary effective population size (Ne) from linkage 29 

disequilibrium between SNPs without information on their location, which is the usual scenario in 30 

non-model species. The general theory of linkage disequilibrium is extended to include the 31 

contribution of full-sibs to the measure of LD, leading naturally to the estimation of Ne in 32 

monogamous and polygamous mating systems, as well as in multiparous species, and non-random 33 

distributions of full-sib family size due to selection or other causes. The prediction of confidence 34 

intervals for Ne estimates was solved using a small artificial neural network trained on a dataset of 35 

over 105 simulation results. The method, implemented in a user-friendly and fast software (currentNe) 36 

is able to estimate Ne even in problematic scenarios with large population sizes or small sample sizes, 37 

and provides confidence intervals that are more consistent than parametric methods or resampling. 38 
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1- Introduction 41 

The development of linkage disequilibrium (LD) between neutral sites is a cumulative process 42 

contributed by drift over generations (Hill and Robertson 1968). This accumulation is short-lived 43 

between loosely linked sites and between sites located in different chromosomes because 44 

chromosomal segregation and recombination rapidly remove LD generated by past drift. In contrast, 45 

the observed LD between closely linked sites is also due to drift events that occurred long ago. Thus, 46 

the demography and the recombination landscape shape the pattern of LD across the genome. 47 

Consequently, the observed pattern of LD between markers can be used to infer the demographic 48 

history of a population in terms of effective population size (Ne) if the genetic map of the markers is 49 

available (Hayes et al. 2003; Tenesa et al. 2007; Santiago et al. 2020). Although this requirement is 50 

not met for most species of interest in conservation biology, Waples (2006) and Waples et al. (2016) 51 

showed that contemporary Ne can be estimated from a set of unmapped markers. This solution relies 52 

on empirical modifications for sampling and linkage to improve the accuracy of the Weir and Hill 53 

(1980) equations for discrete generations in panmictic populations. In addition to random mating, 54 

specific equations for Ne under lifetime monogamy were also derived by Weir and Hill (1980) and 55 

Waples and Do (2008). A widely used software for estimating contemporary Ne from LD between 56 

markers accounting for random mating and monogamy is NeEstimator (Do et al. 2014). This software 57 

provides accurate estimates of Ne under these models in most scenarios. However, for small sample 58 

sizes it often produces estimates of Ne that are indistinguishable from infinity, especially when the 59 

population size is large. In addition, the accuracy of the method depends on the exclusion of rare 60 

alleles in the analyses, because these latter may bias the estimates. 61 

Here, we present an alternative method based on a combined approach of theory and neural 62 

networks to estimate the contemporary Ne and the corresponding confidence intervals. The theory is 63 

extended to include the contribution of full-sibs to the measure of LD, thus accounting, not only for 64 

random mating and monogamy, but for more complex mating systems. We show that the number of 65 

full-sibs in a sample is the ultimate source of bias in Ne estimates in populations with complex mating 66 
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systems, as the generation of gametes is restricted to compartments of related individuals. If this effect 67 

were ignored, Ne would be underestimated in monogamous, polygamous, and multiparous species, i.e. 68 

with more than a young at a birth, with increased bias caused by the effect of selection on the variance 69 

of family size, since the incidence of full siblings increases. All these effects are synthesized into a 70 

single parameter, the expected number of full siblings, which can be estimated from the genetic 71 

information in the sample data.  A user-friendly software (currentNe) was developed to apply the 72 

method, which produces precise confidence intervals of the Ne estimates from a small artificial neural 73 

network, and is relatively accurate with small samples taken from large populations, a situation which 74 

can be common in many analyses of wild species. The software can be applied to scenarios with 75 

complex mating systems and does not require of minor allele frequency pruning to increase accuracy. 76 

Extensive simulations were performed to assess the impact of deviations from the assumptions of the 77 

theory. 78 

2- Materials and Methods 79 

In this study, we first develop a prediction equation for the Ne of the few most recent 80 

generations as a function of the observed average LD among all possible locus pairs from a 81 

genotyping analysis. This theoretical work involves new developments in the general theory of Ne, 82 

involving a change of perspective on how mating systems affect the measure of LD and hence Ne 83 

estimates. Where previously special equations for different mating systems were applicable, here we 84 

show that the whole problem can be reduced to considering the number of full siblings in the 85 

population. An artificial neural network (ANN) was designed to solve the problem of predicting the 86 

confidence interval of Ne estimates. During the training process, the ANN is told the true Ne along 87 

with other population parameters, and the difference between the squared difference between the true 88 

and observed Ne values given in the output and those observed in the simulations was used to adjust 89 

the weights of each neuron using backpropagation. 90 



   
 

  5 
 

2.1- The Theory 91 

Santiago et al. (2020) derived an equation for LD, measured as the squared correlation 92 

coefficient between markers weighted by the product of their genetic variances 𝛿! (Rogers 2014), in 93 

terms of Ne and the recombination frequency c. The equation is valid for monoecious and dioecious 94 

populations assuming random pairing, i.e. when each offspring results from a new random pairing. 95 

Weir and Hill (1980) showed that lifetime mating has an effect on the measure of LD. Here we 96 

demonstrate that this effect is entirely due to the increase in frequency of full siblings above that 97 

expected from random pairing in a population of Ne reproducers (Sections 1 to 4 in the Appendix). 98 

While recombination removes LD, it also generates a small amount of LD due to recombinant 99 

gametes derived from full siblings. This effect can be included in the equation as 100 

𝛿"! =
1 + 𝑐! + 𝑐! 𝑘4

2𝑁#(1 − (1 − 𝑐)!) + 2.2(1 − 𝑐)!
 101 

(1) 102 

where c is the recombination frequency between two sites in the genome and k is the expected number 103 

of full siblings that a randomly selected individual will have among the reproducers. The equation is 104 

derived in Sections 1 to 4 of the Appendix and the connections to the equations of Weir and Hill 105 

(1980) are shown in Section 7 of the Appendix. The third term in the numerator (c2k/4) corresponds to 106 

the contribution of full siblings to LD: two recombinant gametes from two full siblings have a 1/8 107 

probability of matching each other in allele copies at both sites (Figure SF3 in Section 4 of the 108 

Appendix). This circumstance reduces the sampling space of allelic combinations and consequently 109 

increases the drift effect on LD compared to random pairing. This peculiarity does not occur to any 110 

significant extent for any other level of relatedness in a randomly mating population with discrete 111 

generations, except for an individual with itself: two recombinant gametes from the same individual 112 

will match each other in allele copies at both sites with probability 1/2, leading to an increase in LD 113 

already considered in the second term of the numerator (the 𝑐!). Half siblings, which are common in 114 
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polygamy, share only one parent, while the other two are expected to be unrelated. Consequently, the 115 

association of alleles at the two sites in recombinant gametes coming from two half siblings will not 116 

match more often than two recombinant gametes from a random pair of unrelated individuals.  117 

The generalization is that when genomes are arranged in pairs within diploid individuals or in 118 

larger groups of full-sib families, the expectation of LD increases because recombination is restricted 119 

to fixed pairs of haplotypes, leading to a higher probability of identical combinations of alleles in 120 

recombinant gametes compared to the random haploid model. In this model, each haploid offspring is 121 

generated by meiosis from a new random mating of two haploid parents, so recombination is not 122 

restricted to paired genomes in diploid individuals, and the numerator of equation (1) equals “1” (see 123 

Appendix in Santiago et al. 2020). 124 

If there were full lifetime monogamy, i.e. lifetime monogamy for the whole population, any 125 

individual selected from a population with random distribution of family size is expected to have two 126 

full siblings (i.e., k = 2) while the expectation is of the order of 𝑁#$% if each offspring is generated by a 127 

new random mating. Although a more formal derivation for monogamy is given in Section 3 of the 128 

Appendix, there is a simple demonstration that applies to all the scenarios discussed below: If we 129 

sample a single reference offspring among Ne/2 full-sib families, each of the subsequent offspring 130 

sampled from the same population will be a full sibling of the reference offspring with probability 131 

2 𝑁#⁄ ; therefore, the expected number of full siblings that the reference offspring has in the entire 132 

population is  the product of the population size and the probability of siblings: k =  (𝑁# − 1) ∙133 

2 𝑁#⁄ ≈2. However, the expected size of his family is three full siblings (including himself), but not 134 

two, because large families are sampled more often. In the case of lifetime polygamy, the expected 135 

number of brothers is different from the number of sisters in the parental group. However, scaling the 136 

number of fathers (Nm) and mothers (Nf) to the theoretical 𝑁# = 4𝑁&𝑁'/(𝑁& +𝑁')	(Wright 1933), 137 

the applicable value of k for lifetime polygyny results 𝑘 = 4𝑁&/(𝑁& +𝑁'), since the probability of 138 

two random offspring coming from the same full-sib family is 1/𝑁' (Section 3 in the Appendix). In 139 

the theoretical condition of lifetime polyandry, 𝑁& and 𝑁' must be swapped in the above equations, 140 
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because 𝑁& > 𝑁'. The expectation k decreases proportionally with the rate of lifetime pairings. If the 141 

population is considered to be a mixture of lifetime pairings (say with a proportion of m) and random 142 

pairings, then k is reduced proportionally to m, i.e. the k values given above should be multiplied by 143 

m. Full siblings are also produced in multiparous species. A reproductive scheme with two litters per 144 

female of equal size, both sired by the same father, is equivalent to monogamy (k = 2), but if sired by 145 

different fathers k = 1. In general, k = 2 / Le where Le is the effective number of litters per female: 146 

𝐿# =
(!

∑ ("
!#

"$%
, such that ∑ 𝐿*+

*,% = 𝐿 147 

and L is the number of litters per female, s is the number of sires per female and Li is the number of 148 

litters sired by father i. For example, an average of L = 4 litters per female, most of which (say 3.2 149 

litters) are sired on average by a single male and the rest sired by another male, gives about Le=1.47. 150 

Selection also affects the frequency of full siblings, as a few families contribute the most to the next 151 

generation. A simple equation for the effect of selection on k (Section 3 in the Appendix) is 152 

𝑘 =
𝑉
𝑀
+𝑀 − 1 153 

where V and M are the variance and the mean, respectively, of the full-sib family size. With random 154 

contribution of families to the next generation (i.e. Poisson distribution of family size), V is equal to 155 

M and the equation reduces to k = M. However, under selection, V is expected to be greater than M 156 

and k may even be greater than 2, which is the expected value for constant population size and full 157 

lifetime monogamy. 158 

The parameter k can also be estimated empirically from the observed frequency of full 159 

siblings in the sample 𝑘+, regardless of the mating structure and the way in which selection increases 160 

the variance of family size (Section 3 in the Appendix): 161 

𝑘8 =
𝑁#
𝑛 − 1

𝑘+ 162 
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(2) 163 

where 𝑘+ =
∑ -"&
"$%
.

  is the particular value of k in the sample, n is the sample size and hi is the number 164 

of full siblings that individual i has in the sample. The estimation of 𝑘 requires the value of Ne, which 165 

is usually the unknown in equation (1). However, 𝑘 can be estimated recursively together with Ne in 166 

the system of equations (1) and (2), provided that 𝛿"!, i.e. the LD in the population, is known. This is 167 

likely to be the method of choice in many scenarios, as the details of the mating system and how 168 

selection operates are almost always not well known. 169 

Equation (1) shows that the effect of full siblings on LD is rather small, especially under tight 170 

linkage. However, full siblings also bias the measure of LD from samples of unphased genotypes 171 

because they become more similar in terms of allele association at both loci, since the phase of the 172 

alleles in the gametes inherited from their common parents cannot be distinguished (Section 5 in the 173 

Appendix). The result is an increase in the measure of LD. If both effects on population LD and on 174 

sampling were ignored, Ne could be severely underestimated, especially under loose linkage (Figure 175 

S1), which is the dominant condition in the derivations below.  176 

Equation (1) is valid for the whole range of recombination frequencies from 0 to 0.5 (Tables 177 

S1 and S2), and therefore a genome-wide prediction of LD can be obtained by integrating all possible 178 

site pairs. Suppose an imaginary species has v chromosomes, each of length l Morgans. Two random 179 

sites in this genome are in different chromosomes with probability (𝑣 − 1) 𝑣⁄  and for them c is 0.5. If 180 

two random sites are in the same chromosome (probability = 1 𝑣⁄ ), the density of their genetic 181 

distance follows a triangular distribution with the highest frequency corresponding to tight linkage 182 

(i.e., c = 0) and the lowest frequency corresponding to the maximum distance l in the chromosome. 183 

Assuming a random distribution of recombination events (i.e., Haldane’s map function 𝑐 =184 

(1 − 𝑒$!/) 2⁄  , where x is the genetic distance in Morgans), the expected LD between two random 185 

sites (𝛿!<<<) in the population can be calculated as the average over all pairs of sites: 186 

	187 
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𝛿!<<< =
𝑣 − 1
𝑣

∙ 𝛿0.2! +
1
𝑣
∙
1
𝑙/2

∙ > 	
𝑙 − 𝑥
𝑙

3

0
∙ 𝛿"! ∙ 𝑑𝑥	188 

(3) 189 

The first term on the right-hand side corresponds to pairs of sites in different chromosomes 190 

and the second term corresponds to pairs in the same chromosome; the former are expected to be 191 

much more common than the latter in most cases unless the number of chromosomes is very small. 192 

After including the effect of sampling, the resulting equation (S8) (Section 6 in the Appendix) 193 

predicts the LD from a sample taken from a population with a particular incidence of full siblings. 194 

The predictions are remarkably similar regardless of how the genome is distributed among the 195 

chromosomes: v chromosomes of length l Morgans each are effectively equivalent to a single 196 

chromosome of length vl Morgans, unless the chromosomes are very small. Thus, knowing the 197 

number of chromosomes (the average size is close to 1 Morgan per chromosome across species - Otto 198 

and Payseur 2019) or the genetic size of the genome of the species of interest, equation (3) can be 199 

solved for Ne from the observed	LD (𝛿!<<<) in a sample. Strictly speaking, the estimate is not for a 200 

particular generation, but it is a kind of Ne averaged over the most recent generations in the past. 201 

Figure 1 shows how past generations contribute to the current LD: Ne estimates for genomes with 202 

large genetic sizes correspond mainly to the two generations just before sampling, with the highest 203 

contribution from the most recent one, but estimates for small genomes are contributed by a long 204 

sequence of past generations. For the latter, demographic changes in the past could bias the estimate 205 

of the contemporary Ne. 206 

The prediction method based on the above theory has been implemented in the currentNe 207 

software, which receives the genotyping information in ped format (Chang et al. 2015) and the 208 

expected number of full siblings k as an optional modifier. Figure 2 illustrates how Ne estimates using 209 

this software change when different k values are considered under full monogamy. When monogamy 210 

is ignored (i.e., k is set to 0) Ne is underestimated as indicated above. This bias is eliminated by using 211 

either the k value for full lifetime monogamy (i.e., k=2) or the k value estimated from the observed 212 

incidence of full siblings in the sample using equation (2). That is, no prior information is needed 213 
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about the particular mating system of the species or about how the differences in family size are 214 

distributed in the population, since the only parameter required is k, which can be estimated from the 215 

distribution of full siblings in the sample. The exclusion of full siblings from the sample, which may 216 

seem to be an option to avoid the bias caused by a supposed excess of relatives, leads on average to an 217 

overestimation of Ne by almost a factor of two, probably due to the distortion of the randomness of the 218 

sample. Selection increases the variance of family size, ultimately leading to a reduction in Ne (Wright 219 

1938). However, selection also increases the expectation of k, leading to a further reduction in Ne 220 

estimates and complicating theoretical predictions. Nevertheless, the joint estimation of Ne and k takes 221 

into account the combined effects of both aspects (Figure 2). 222 

2.2- The Neural Network 223 

There is no consistent theory for predicting the confidence intervals of Ne estimates from LD 224 

data. Intuitively, the main factors affecting the sampling variance are the number of individuals in the 225 

sample, the number of markers, the genetic size of the genome and the effective population size to be 226 

estimated. However, the relationship between these factors appears to be complex. The raw data for 227 

LD analysis is typically a table of a number of individuals by a number of markers but the effect of 228 

increasing the number of individuals in the sample is not proportional to the effect of increasing the 229 

number of markers (Waples et al. 2022). Markers are transmitted from generation to generation in 230 

chromosomal blocks that are broken by recombination events, so markers are correlated in 231 

genealogies, especially if they are close together. Therefore, the genetic size of the genome also 232 

appears to be relevant. 233 

ANNs are machine learning computational systems loosely modelled on biological neurons 234 

and are universal function approximators. They have been used successfully in many different fields, 235 

but have not been as widely adopted in population genetics. Here we used a supervised learning 236 

algorithm, in which the network is told the expected response and the difference between this 237 

expectation and the output of the ANN is used to adjust the weights of each neuron using 238 
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backpropagation. This ANN was designed and trained to approximate the error in Ne estimates using a 239 

dataset of 128,692 combinations of population size (from 10 to 100,000), sample size (from 8 to 107), 240 

number of markers (from 1,000 to 32,000) and genome size (from 5 to 30 Morgans) using 241 

simulations. The combinations were approximately equally distributed on the logarithmic scales of the 242 

three first variables and on the linear scale of the last one. Ne was estimated for each combination of 243 

the dataset using the currentNe software based on the LD between all markers.  244 

The dataset was randomly split into two sets, an 80% for training and the remaining 20% for 245 

evaluation. A simple network architecture provided the best results and made it computationally 246 

efficient to train with minimal resources. This ANN consists of an input layer, two hidden layers and 247 

an output layer, and its architecture is shown in Figure 3. Its inputs are the genome size in Morgans 248 

and the common logarithms of the population size estimate, the sample size and the number of 249 

markers. The output layer approximates the squared difference between the logarithms of the estimate 250 

of Ne by currentNe and the true simulated Ne. None of the hidden layers have a bias component; they 251 

are the simplest form of multi-layer perceptron. During training, pruning of the connections between 252 

the input and the first hidden layer was used to improve the results while reducing the computational 253 

complexity during the training phase. It is important to note that the input parameters are normalized 254 

before training the network, which can lead to a loss of precision in the extreme cases. A set of 255 

combined ANNs specialized in different population/sample sizes may provide more accurate results, 256 

although this is left for future research.  257 

Figure 3 shows the approximation of the sampling variance by the ANN as a function of the 258 

number of individuals in the sample and the number of SNPs: doubling the number of individuals is 259 

much better than doubling the number of markers when the number of markers is not small (say > 260 

1,000) (Waples et al. 2022). The calculation of confidence intervals by ANN has also been included in 261 

the currentNe software. 262 
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2.3- Computer simulations 263 

To test and compare the accuracy of Ne predictions, computer simulations were generally 264 

performed using the software SLiM (Haller and Messer 2019). This software simulates an individual-265 

based forward Wright-Fisher model of reproduction. Random mating populations of constant 266 

population size (N = 100, 1000 and 10000 individuals) with discrete generations were run for up to 267 

10,000 generations. A scenario with 20 chromosomes of 100 Mb length each was considered where 268 

the rate of recombination between nucleotides was assumed to be 10-8, implying a total chromosome 269 

length of one Morgan. The mutation rate per nucleotide was assumed to be 10-8, 0.8 × 10-9 and 2.0 × 270 

10-10 for the three population sizes, respectively, in order to obtain a total number of SNPs for analysis 271 

between around 20,000 and 50,000. Two sample sizes were considered (n = 10 and 100 individuals). 272 

The number of simulation replicates varied between 300 and 600, depending on the population and 273 

sample size. A custom program was developed to generate the large dataset for training and testing 274 

the ANN. This program simulates discrete generations in an evolving randomly mating population. 275 

Genotypes were initially assigned according to a neutral distribution of allele frequencies. The 276 

population was then run for thousands of generations in order to achieve an approximate stable 277 

spectrum of LD across the genome prior to sampling. 278 

2.4- Requirements of the software currentNe. 279 

The currentNe program is written in C++ and has been tested on computers running Linux 280 

with the distributions Arch, Debian and Ubuntu. The minimum requirements are a 64-bit CPU and 3 281 

Gb of free RAM space, although it runs faster on multi-processor systems. Input data must follow 282 

either the vcf format (Danecek et al. 2011),  or the ped or tped PLINK formats (Chang et al. 2015). 283 

The execution of the software also requires either the approximate size of the genome in Morgans or 284 

the estimated number of chromosomes of the species. The output is a single file with concise genetic 285 

information and the estimate of Ne using Eq. (3) with the corresponding confidence interval. If the 286 

assignments of SNPs to chromosomes are also available in the input file, an additional estimate of Ne 287 
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is made based on Eq. (1), i.e. considering only pairs of SNPs located in different chromosomes. Usage 288 

information is available with the program using the -h modifier ("./currentNe -h"). 289 

3- Results 290 

Predictions with currentNe were compared with those using the method of NeEstimator.v2 291 

(Do et al. 2014), a widely used software for estimating Ne from LD data, and the correction for linked 292 

markers from Waples et al. (2016). The results of these comparisons are shown in Figure 4. 293 

NeEstimator is based on an empirical equation for linkage calculated from simulation results (Waples 294 

and Do 2008), and corrected for the linkage of SNP also from simulation results (Waples et al. 295 

2016). In comparison, currentNe performs particularly well in the scenarios where sample sizes are 296 

small, for which NeEstimator.v2 generally provides negative estimates of Ne. With some variation in 297 

specific cases, the confidence intervals provided by the ANN are more realistic than those based on 298 

parametric methods, which tend to underestimate the true intervals, or resampling which tends to 299 

provide infinite upper bounds for small sample estimates. While LD methods based on genetic maps 300 

such as GONE (Santiago et al, 2020) are prone to bias due to map errors, estimates of contemporary 301 

Ne are largely unaffected, as expected (Figure S2). However, these latter are sensitive to the highly 302 

non-uniform distribution of markers, which effectively reduces the size of the genetic map because 303 

closely linked markers are more common than would be expected if sites were randomly distributed.  304 

The effect of deviating from the assumptions of random sampling and panmixia is shown in 305 

Fig. S3. Sampling restricted to a subset of families causes a reduction in Ne estimates that is somewhat 306 

proportional to the reduction space of the sampling, i.e., the group of families that could be sampled. 307 

The theory implemented in currentNe also assumes that the spectrum of frequencies of the SNPs 308 

included in the analysis is representative of the frequencies in the population, so no MAF threshold 309 

should be applied. The use of SNP arrays with markers selected for high variability is quite equivalent 310 

to the application of a MAF threshold, leading to a significant reduction in Ne estimates at high MAF 311 

values (Figure S3). The theory also assumes a single random mating population. The consequences of 312 
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subdividing the population into different demes depend on both the migration rate and the sampling 313 

location. If only one subpopulation is sampled, the estimate will reflect the size of that subpopulation 314 

unless the migration rate m is very high. However, if the entire metapopulation is sampled, the result 315 

depends on the product Nem: if Nem >1, the estimate reflects the size of the entire metapopulation, but 316 

as Nem becomes smaller than 1, the LD measured on the entire population increases and the estimate 317 

decreases even below the size of the subpopulations. These results are in agreement with those found 318 

by Waples and England (2011) and Ryman et al. (2019). Deviations from the discrete-generation 319 

assumption lead to overestimation or underestimation of Ne, depending on sampling: When a single 320 

cohort is sampled, the estimate falls between the expected Ne and the census of reproducers, but when 321 

all cohorts are sampled proportionally to their abundance, the true Ne is underestimated, consistent 322 

with Waples et al. (2014). 323 

Figure 5 shows Ne estimates from samples taken from four real populations, that are expected 324 

to be very different in size. In addition to the Ne estimate based on all pairs of loci using Eq. (3), a 325 

second estimate based on pairs of loci on different chromosomes using Eq. (1) was performed, as for 326 

these species the assignment of markers to particular chromosomes is well known. This additional 327 

estimation is performed by currentNe if the assignments of SNPs to chromosomes is also available in 328 

the input file. This information is used by currentNe to identify pairs of SNPs located on different 329 

chromosomes, but the exact locations within the chromosomes, if available, are not used. Estimates 330 

from a domestic pig herd (Ne = 26 and 32 for whole genome and unlinked marker estimates, 331 

respectively), which was maintained at a roughly constant size for several generations prior to 332 

sampling (Saura et al. 2015), are consistent with estimates derived from observed genealogical 333 

information (Ne ≈ 24). Estimates from a salmon sample, consisting of a mixture of individuals born 334 

between 1985 and 1992 from the River Dee in Scotland, are in close agreement with the result of a 335 

previous analysis of the same sample by Santiago et al. (2020) using the GONE software (Ne ≈ 200). 336 

Both estimates for pig and salmon populations were made using the default option for the number of 337 

siblings, i.e. allowing the programme to estimate the corresponding k (0.69 for pig and 0.10 for 338 

salmon populations ) value from the sample data. The analysis showed that full sib pairs were present 339 
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in the samples from the pig and salmon populations. The analysis of the Koryak population was 340 

carried out with a relatively small sample (n = 16), which explains the large confidence intervals. 341 

However, the central estimate is around two or three thousand individuals, which is about three times 342 

lower than the current census (Minority Rights Group International, 2018), which has not changed 343 

significantly in recent times (Novo et al. 2022). Estimates for the Finnish population were made using 344 

a random subset of SNPs for 99 individuals which are available at www.internationalgenome.org 345 

(1000 Genomes Project). The Finnish population has been growing rapidly for 20 generations, 346 

especially during the last century (O’Neill 2022). The apparent discrepancy between the Ne estimates, 347 

with confidence intervals in the range of a few tens of thousands to hundreds of thousands, and the 348 

observed census sizes of over 3,000,000 for the few most recent generations deserves more attention, 349 

as past demography also affects currentNe estimates. The estimate based on unlinked locus pairs is 350 

larger than the estimate based on all locus pairs (Figure 5), which is consistent with the observed 351 

increase in Finnish population size because linkage makes the estimates to be more affected by 352 

demography in past generations (Figure 1). Also, census size, which aggregates a wide range of ages, 353 

and Ne, which is more related with reproducer census size, could be of very different magnitudes in 354 

human populations, where Ne to census ratios are in the range of 0.1 - 0.6 (Felsenstein 1971; 355 

Frankham 1995; Urnikyte et al. 2017). The Koryak and Finnish populations were assumed to be 356 

monogamous because, even if a non-trivial fraction of progeny arises from extra-pair matings, the 357 

effect of reducing the degree of monogamy within the higher range, say between 0.6 and 1, is small 358 

(Figure S1). Consequently, the expected number of full siblings of a random individual was assumed 359 

to be 2, i.e. k was set to 2 using the optional -k modifier when running currentNe. The software is 360 

rather fast. For example, the analysis of the Koryaks sample with 16 individuals and around 90,000 361 

SNPs took 1,5 minutes of computing time in a Linux x64 machine with 8 processors running in 362 

parallel. For the Finnish data, including 99 individuals and 100,000 SNPs, the computing time was 16 363 

minutes. 364 
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4- Discussion 365 

The integration of the equation for LD over the whole genome leads to a method for 366 

estimating contemporary Ne from a set of unmapped markers, which requires only the total length of 367 

the genetic map and assumes that markers are randomly distributed along the genome. Although 368 

methods to infer past demography using LD (e.g. GONE; Santiago et al. 2020) also provide estimates 369 

of the contemporary Ne, a detailed genetic map of markers is required for these methods to be applied. 370 

In contrast, map information is not available for the vast majority of the species, for which tools like 371 

NeEstimator or currentNe are the only options to estimate contemporary size. In addition, 372 

contemporary Ne estimates obtained by currentNe may be less biased than estimates by methods 373 

designed to reconstruct the whole demography (Figures S2 and S3). 374 

The estimates of Ne are more consistent than the method of Waples et al. (2016), presumably 375 

due to the increased accuracy of the integral equation. Analyzing the details of the theory leads to a 376 

better understanding of what it is actually estimated by LD methods and facilitates the identification 377 

of the ultimate factors influencing the estimates. It was made clear that what is called contemporary 378 

Ne is actually an average of the most recent generations, starting from the generation prior to the 379 

sampling generation. The smaller the genome, the more generations contribute to the estimate. For 380 

average genomes of about 20 Morgans the estimated contemporary Ne is approximately the average of 381 

the two most recent generations in the past. 382 

By following the theoretical derivation, in particular the composition of the cross products of 383 

the squared covariance between markers [see derivation of Eq. (S5) of the Appendix], it was possible 384 

to determine that full siblings were the ultimate cause of the deviation of estimates with lifetime 385 

pairing, either monogamy or polygamy, when compared with random pairing predictions. It is 386 

difficult to visualize the biological concepts by approximating eigenvectors for the transition matrix of 387 

two-locus descent measures as in Weir and Hill (1980), although this has the advantage of being a 388 

thorough method. Another advantage of our derivations is that the use of generic variables (X and Y in 389 
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the Appendix), without any assumption about their distribution, instead of allelic frequencies of 390 

binomial distributions, facilitates the abstraction and consequently the interpretation of the results. 391 

Since the general equation for Ne only requires the value of k, i.e. the expected number of full siblings 392 

that a random individual has, it immediately follows the connections with other reproductive methods, 393 

such as in multiparous species and with factors affecting the variance of family size, such as selection. 394 

An important implication of our results is that because in natural scenarios one might find full 395 

siblings in samples from populations of species with unknown mating systems, LD methods that 396 

ignore this, will tend to produce downwardly biased estimates of contemporary Ne. The solution of 397 

excluding full siblings from the sample, with the intention of compensating for this bias, introduces a 398 

further bias in the opposite direction, as already found by Waples and Anderson (2017), who 399 

considered the effect of purging siblings from samples to compensate for family overrepresentation.  400 

The correct procedure for obtaining unbiased estimates is to include the k value estimated from the 401 

sample in the analysis, provided that the sample is truly random. Estimates of contemporary Ne 402 

obtained under the assumption of no or negligible numbers of full siblings should be reconsidered, 403 

especially when analyses are performed to infer whether the effective size of the population is below 404 

or above the minimum size assumed for its persistence (Frankham et al. 2014; Pérez-Pereira et al. 405 

2022). It is important to note, however, that the presence of siblings is not expected to affect estimates 406 

of past demography based on the LD of closely linked markers. In contrast to contemporary Ne 407 

inference, which relies mainly on LD between pairs of loci on different chromosomes, inference of 408 

past demography (Tenesa et al. 2007; Santiago et al. 2020) typically uses recombination rates between 409 

markers in the lower range of c values, e.g. below c=0.1. As the effect of k on Ne estimates is scaled 410 

by c2, as shown in Eq. (1), the effective bias is expected to be negligible. 411 

Another point of interest is the use of ANN to solve the complex problem of predicting the 412 

sampling variance of the Ne estimates. Jackknife resampling has been found to be a good method for 413 

estimating confidence intervals of Ne estimates (Do et al. 2014), but it often produces infinite intervals 414 

with small samples. Although the jackknife resampling is an efficient method for estimating the 415 
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sampling variance, there are two reasons that are likely to reduce its efficiency in this particular case. 416 

First, samples are not independent individuals from a population, but the individuals are connected by 417 

genealogies that determine the measure of the correlations between markers, i.e. there is no simple 418 

variable that is measured on individuals. Second, the intervals have to be computed for a 419 

transformation of the correlation: the correlation is squared, then a correction factor for sampling is 420 

subtracted and, finally an operation similar to the inverse is performed to obtain the Ne estimate for 421 

each resampling. This leads to a high instability of the estimates, especially when the squared 422 

correlations are small, since the subtraction of the correction for sampling can lead to negative results.  423 

The quality of the ANN solution depends on the quality of the training data. Here we tried to 424 

use a wide combination of parameters with a uniform data density distribution over the training space. 425 

To simplify the complexity of the network, cross connections were also pruned. This leads to a 426 

reduction in noise, especially the turbulence of the estimates at the boundaries of the training space. 427 

The resulting network, which like any other simple network, consists of an equation with input 428 

variables and an output, predicts confidence intervals of Ne as a function of the number of individuals 429 

in the sample, the number of markers, the genetic size of the genome and the estimated effective 430 

population size. This equation, included in the code of the currentNe program, is similar in accuracy 431 

to jackknife with large samples but with the advantage of working with small samples. ANN also 432 

makes it possible to visualize the main effects and interactions between factors that affect the 433 

sampling variance of Ne estimates, as shown in Figure 3. 434 
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Figure 1. 527 

 528 

Figure 1. Contributions of past generations of populations with 1000 individuals to the average LD 529 

(𝛿!) over all site pairs for genomes with 3, 10, 20 and an infinite number of chromosomes of one 530 

Morgan length. The latter corresponds to an effective recombination rate c = 0.5 between all marker 531 

pairs. Generation 1 is the generation immediately preceding the generation of the sample. The small 532 

section is an enlargement of the tail of the figure. Contributions were calculated using the cumulative 533 

equations in the Supplementary File, Section 10 “Prediction of 𝛿! when N changes”, in Santiago et al. 534 

(2020).  535 

  536 
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Figure 2. 537 

 538 

Figure 2. Ne estimates and 95% confidence intervals with complete lifetime monogamy and unphased 539 

genotypes. A) Each point is the average of 10 estimates, each with 100 samples, from simulated 540 

populations with census sizes 10,000, 1000 or 400 individuals (in green, blue and red from top to 541 

bottom). Analyses were performed using the currentNe software with four different options. With 542 

option k0, monogamy was erroneously ignored, i.e. the number of full siblings, k ,of a random 543 

individual was set to 0 (k = 0). With option k2, the correct value k = 2, corresponding to full lifetime 544 

monogamy, was used in the analysis. With the kFS option, k values were estimated using the observed 545 

incidence of full-sibs in each sample. With the k0_no_FS option, one random sibling from each pair 546 

of full-sibs was discarded from the samples and the analyses were performed with the incorrect 547 

assumption of no monogamy, i.e.  k = 0. B) Each dot is the average of 10 estimates with 100 samples 548 

each from simulated populations with census size N = 1,000. Analyses were performed with 549 

currentNe using the k values estimated from the frequency of full siblings in the sample. Selection for 550 

a non-inherited trait was applied to families at different intensities in such a way that the variance V of 551 

family size increased above its expected value in the absence of selection (i.e. 2.0). Consequently, the 552 

predicted “variance effective number” Ne(v) (dashed lines and equation from Wright (1938) in the 553 

legend) decreases.  554 

 555 

  556 
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Figure 3. 557 

 558 

Figure 3. Sampling variance of Ne estimates on a base 10 logarithmic scale (vertical axis) generated 559 

by the ANN. This 3D plot corresponds to populations with N = 1,000 individuals and 20 560 

chromosomes of 1 Morgan length. The sampling variance is given as a function of the number of 561 

individuals in the sample (n) and the number of markers (nSNPs), both in logarithmic scale. The small 562 

graph at the side of the plot corresponds to the design of the ANN. The four nodes of the input layer 563 

are the number of individuals in the sample (log10_n_sample), the number of SNPs used in the 564 

sample data (log10_nSNPs_sample), the genome size in Morgans (ncrom_sample) and the estimate of 565 

Ne from the data (log10_Ne_obs). The output layer is the squared difference between the Ne estimate 566 

and the true Ne on a logarithmic scale. The labels on the connections refer to the activation functions 567 

used between layers. Red connections were pruned during the training period. 568 
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Figure 4. 570 

 571 

Figure 4. Distribution of estimates of contemporary Ne of simulated populations with constant sizes N 572 

= 100, 1000 or 10,000 individuals, sample size n = 10 or 100 individuals and approximately 20,000 to 573 

50,000 markers randomly distributed in genomes with 20 chromosomes of 1 Morgan length each. 574 

Distributions of estimates made using currentNe are shown in salmon colour. Those obtained with the 575 

method of Waples and Do (2008) for independent markers, assuming a minor allele frequency of 576 

0.05, and further corrected for tight linkage with the corrections given by Waples et al. (2016) 577 

accounting for the number of chromosomes, are overlapped in green colour. The estimations assumed 578 

random mating for pig and salmon samples and monogamy for human samples. Boxes show the 579 

percentage of estimates with negative Ne  estimates, infinite or “not available" results. Simulations are 580 

based on 300 to 600 replicates. The 95% confidence intervals are shown below the x axis by lines 581 

centred on the true Ne value, which equals the real census size N of the population. Intervals for 582 

currentNe estimates were calculated using the ANN (salmon coloured lines). The two intervals for 583 

Waples et al. (2016) estimates (green lines) were calculated using the NeEstimator.v2 software (Do et 584 

al. 2014), using the parametric and resampling options only on five replicates per interval. Dotted 585 

lines indicate that no intervals were generated by the method. 586 
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Figure 5. 588 

 589 

Figure 5. Ne estimates and 95% confidence intervals resulting from the analysis of four populations 590 

using the currentNe software: pig, salmon, Koryak (human_K) and Finnish (human_F). Red dots 591 

correspond to estimates based on all possible SNP pairs using Eq. (3) and blue dots correspond to 592 

estimates based only on unlinked SNP pairs using Eq. (1), i.e. between SNPs on different 593 

chromosomes. This method calculates the confidence intervals using an ANN. Analogously, estimates 594 

using the NeEstimator.v2 software (Do et al. 2014), assuming MAF = 0.05, random mating for pigs 595 

and salmon, and monogamy for human samples, are represented by squares: red squares (E3) are 596 

estimates using all locus pairs corrected for linkage with the equations of  Waples et al. (2016) 597 

accounting for number of chromosomes, and blue squares (E1) are estimates based on unlinked pairs. 598 

For the pig and salmon estimates with NeEstimator.v2  (E1, E3), missing data was excluded from the 599 

data files, as faulty estimates were obtained when they were included. The number of individuals in 600 

the sample, the number of SNPs and the approximate autosomal genome size in Morgans are given in 601 

the boxes. This method calculates confidence intervals using jackknife resampling. The labels “no 602 

interval” and “no estimate” mean that the software has generated an infinite result. 603 
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APPENDIX 
 

Estimation of the contemporary effective population size from SNP data 

while accounting for mating structure. 

Enrique Santiago 

 
 
1- Derivation of the equation of LD at equilibrium when each 
offspring is generated by a new random mating. 
 
In order to facilitate the exposition, the derivation of the expected linkage 
disequilibrium (LD) in a randomly mating population given by Santiago et al. (2020) is 
repeated here:  
 
The population consists of 2N haploid genomes randomly arranged in N diploid 
individuals. That is, each offspring is generated by a new random mating. Let c be the 
recombination rate between two polymorphic sites X and Y, t the current generation and 
	𝐷!" the squared covariance of allele states between sites in haploid genomes at this 
generation (point 1 in Figure SF1). The expected value of the squared covariance in the 
next generation 	𝐷!#$" can be approximated in a two-step derivation: first the effect of 
recombination and then the sampling process.  
 
The particular way in which the genomes are paired in parents at generation t 
determines the expectation of gametes (point 2 in figure SF1), since recombination is 
restricted to genomes within individuals. If c>0, new combinations of alleles are 
expected from recombination events within individuals and, consequently, the squared 
covariance in the infinite pool of gametes changes to 	𝐷!%" as shown in the figure. The 
expectation is given by the following equation, where 𝑥& and 𝑦& represent the allele 
values at sites X and Y respectively in genome i at generation t. 
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(S1) 

Here, 𝑥& and 𝑦& are deviations from the population mean values. Note that the 
coincidence of subscripts in both terms of a product of allele values (e.g. 𝑥&𝑦&) refers to 
the original alleles in a given haploid genome of a diploid individual from generation t 
(i.e., alleles in a non-recombinant gamete of that individual). Otherwise (e.g. 𝑥&𝑦)), the 
product refers to values of alleles in a recombinant gamete produced by that individual.  
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Figure SF1. Transition from one generation to the next one in a random mating population. The 
terms 𝑥! and 𝑦! refer to the allelic values at loci X and Y respectively in genome i. 
 
Expanding the equation, we get: 
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where the subscripts k,l correspond to alleles in a recombinant gamete of one individual 
and i,j correspond to alleles in a recombinant gamete of another individual, which may 
be the same. 
 
The first term on the right-hand side is the remaining part of the original squared 
covariance 	𝐷!" after recombination. The third term is the sum of the cross-products of 
the allelic values of the gametes of different individuals, which has a marginal value 
under random mating. Then we get the simplification: 

	𝐷!%" ≈ (1 − 𝑐)"	𝐷!" + 𝑐" &
∑ 𝑥&𝑦)"'
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(S2) 
The equation shows that 	𝐷!%" is the sum of two terms, the first one is due to 
contributions from parental gametes and the second one is due to recombinant gametes. 
The latter does not exist in haploid models with random mating. However, when 
genomes are paired within diploid individuals, i.e. when recombination is restricted to 
fixed pairs of genomes, it becomes significant. Its expansion is: 
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The expectation of 𝑥&"𝑦)" in the first term on the right-hand side is equal to the product 
VxVy of the variances at both locations, hereafter W, which is assumed to be constant 
throughout the process. The expectation of 𝑥&𝑦)𝑥)𝑦& in the second term is effectively 
	𝐷!" (only a term due to autocorrelation makes a small difference). The summands in the 
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third term cancel each other under random mating and non-overlapping generations. 
Therefore, the equation for 	𝐷!%" reduces to: 
 

	𝐷!%" ≈ (1 − 𝑐)"	𝐷!" + 𝑐"
𝑊
2𝑁 + 𝑐

" 	𝐷!
"

2𝑁 
 
	𝐷!" is several orders of magnitude smaller than 𝑊 at equilibrium and, consequently, the 
third term becomes irrelevant, especially when c is large. The equation reduces to: 
 

	𝐷!%" ≈ (1 − 𝑐)"	𝐷!" + 𝑐"
𝑊
2𝑁 

(S3) 
The expected 	𝐷!#$"  after random sampling of 2N gametes (point 3 in Figure SF1) is the 
sum of the remaining 	𝐷!%" (reduced by sampling) and the increase in covariance due to 
drift acting on standing variation (see Appendix in Santiago et al. 2020): 
 

	𝐷!#$" ≈ 𝐷!"% 41 −
2.2
2𝑁6 +𝑊

1
2𝑁 

 
This is a good approximation for systems where most of the LD at equilibrium has been 
generated in old generations, i.e. N is large and c is small. Otherwise the factor 2.2 
increases slightly but becomes irrelevant because 𝑊 ≫ 𝐷!%", especially when c is large. 
 
Substituting 	𝐷!%" by its value given in Eq. (S3): 
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The next section shows that the contribution of  mutations in one generation time to the 
standing LD is very small compared to the effects of drift and recombination. Ignoring 
for the moment the effect of mutations, 𝐷" at equilibrium is equal to the sum of the 
remaining 𝐷" after recombination and the increase in 𝐷" due to drift: 

𝐷" = (1 − 𝑐)"𝐷" 41 −
2.2
2𝑁6 +𝑊:

1
2𝑁 +

𝑐"

2𝑁; 

(S4) 
Dividing both sides of the equation by W and rearranging: 

𝛿-" =
1 + 𝑐"

2𝑁(1 − (1 − 𝑐)") + 2.2(1 − 𝑐)" 

 
where  𝛿" is a measure of population LD given by the ratio of expectations 𝐷"/𝑊. 
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2- The contribution of new mutations. 
 
Consider a population at mutation drift equilibrium where Y is a monomorphic site in a 
very large genome, such that mutation events per site occur at a very low rate 𝜇 ≪
1/2𝑁. When a new mutation occurs at site Y, the genetic variance induced at that site 
and the expected squared covariance with other polymorphic site X are: 
 

𝑉. =
1
2𝑁 ∙

2𝑁 − 1
2𝑁 ≈

1
2𝑁 

 

𝐸[𝐷/0" ] = 𝐸 &𝑝1 4
1 − 𝑝1
2𝑁 6

"

+ (1 − 𝑝1) F−
𝑝1
2𝑁G

"
0 =

𝑉1
4𝑁" =

𝑊/0

2𝑁  

 
where 𝑝1 is the frequency of the reference allele of site X , 𝑉1 is the genetic variance of 
site X and 𝑊/0 is the product of the genetic variances at both sites. 
 
As site Y mutates with probability 2𝑁𝜇 for the whole population, the expected 
increment of 𝐷" due to new mutations is: 
 

𝐸[Δ𝐷/0" ] = 2𝑁𝜇 ∙ 2 ∙
𝐸[𝑉1]
4𝑁"  

 
The factor “2” is included because the creation of a new polymorphic site in a genetic 
system with a number of previously polymorphic sites generates new covariances at 
twice that number. The increase in 𝐷" is very small compared to the product of the 
genetic variances W of pairs of sites at equilibrium: 
 

𝐸[𝑊] = 𝐸I𝑉1"J = 2𝑁𝜇 ∙ 𝐸[𝑉1] 
Therefore, 

𝐸[Δ𝐷/0" ]
𝐸[𝑊] =

1
2𝑁" 

 
Now, including the increment of the squared covariance due to mutation in Eq. (S4) at 
equilibrium: 
 

𝐷" = (1 − 𝑐)"𝐷" 41 −
2.2
2𝑁6 +𝑊

1 + 𝑐"

2𝑁 + 𝐸[Δ𝐷/0" ] 
 
That is, 𝐷" at equilibrium is equal to the sum of the fraction of 𝐷" remaining after 
recombination and the increases in 𝐷" due to drift and mutation. Divide both sides by W 
and rearrange: 
 

𝛿-" =
1 + 𝑐" + 1/𝑁

2𝑁(1 − (1 − 𝑐)") + 2.2(1 − 𝑐)" 

 
Therefore, the small factor 1/N in the numerator represents the contribution of new 
mutations to LD. This contribution will be ignored in the following. 
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3- The number of full siblings that a random individual has. 
 
With random mating and random contribution of parents, that is when each offspring is 
generated by a new random mating, each individual is expected to have 4/N full siblings 
among the set of N offspring, assuming an equal number of sexes (demonstration not 
shown). This number is too small to have a significant effect on the above predictions. 
In contrast, with lifetime monogamy, an individual sampled from a monogamous family 
is expected to have two full siblings, assuming constant population size and a random 
distribution of family size. 
 
Let m=1 be the proportion of monogamous pairings in a population with a random 
distribution of family sizes, i.e., each monogamous family is expected to contribute with 
two offspring to the next generation. If the population size is not too small, the family 
size follows a Poisson distribution and the frequency of families with z offspring is: 

𝑒2"23

𝑧!  
 
And the probability that a random individual comes from a family with z full siblings is 

𝑃(𝑧) =
𝑒2"23

𝑧! ∙
𝑧
2 

 
where the factor “2” in the denominator is the average family size. Therefore, the 
expected size (number of siblings) of the family of a random individual is 

∑ 𝑃(𝑧) ∙ 𝑧4
3(5
∑ 𝑃(𝑧)4
6

= 3 

 
In summary, the number of full siblings of a random individual is 2 when m=1. 
Therefore, for any given proportion m of monogamous matings in a population, the 
expected number of full siblings that a random individual will have is  k = 2m.  
 
An alternative demonstration for monogamy can be made in a more direct way. Given a 
population of Ne/2 full-sib families, if we choose a single reference offspring to be the 
first one for the next generation, each of the subsequent Ne-1 offspring will be a full 
sibling of the reference offspring with probability 2/Ne; hence the expected number of 
full siblings that the reference offspring (or any other individual) has in the whole 
population is the product of the population size (Ne-1≈ Ne) and the probability 2/Ne , i.e. 
k = (Ne-1)∙2⁄Ne ≈ 2. Note that this derivation assumes that each of the subsequent Ne-1 
individual samples is independent of the others. 
 
Applying the same logic to polygyny in a population with Nm males and Nf females, the 
probability of an offspring being a full sibling of the reference offspring is 1/Nf, 
regardless of the sex of the offspring, because there are Nf full-sib families. For 
populations with different numbers of males and females (Wright 1933), 
 

𝑁7 =
4𝑁8𝑁9
𝑁8 + 𝑁9
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This means that for the variance of gene frequencies and for the inbreeding, the 
population behaves as if, in each generation, Ne monoecious individuals were randomly 
selected from families to be the parents of the next generation. This does not change the 
probability of two individuals coming from the same family (1/Nf). Consequently in an 
idealized population of size Ne, which is the size referred to in Eq. (1), k is the product 
of the size Ne and the probability: 
 

𝑘 = 𝑁7 ∙
1
𝑁9

=
4𝑁8𝑁9
𝑁8 + 𝑁9

∙
1
𝑁9

=
4𝑁8

𝑁8 + 𝑁9
 

 
Following a similar but more heuristic argument, in multiparous species with several 
(but not too few) offspring per litter and L litters per female sired by different males, the 
expected number of full siblings that a random individual has among the N reproducers 
has is k = 2/L. The expected value of k increases when a single male sires more than one 
litter from the same female. Let Li be the expected number of litters sired by a given 
male such that: 
 

∑ 𝐿&:
&($ = 𝐿, where s is the number of sires per female. 

 
This sum represents the average number of litters per male. Consequently the 
probability of sampling with replacement two offspring (one after the other) of the same 
sire among all the offspring of a female is: 

R 4
𝐿&
𝐿 6

":

&($
=
1
𝐿7

 

If we call the inverse of this probability as the “effective number of litters” Le, then the 
expected number of full siblings of a random individual (among reproducers) is 𝑘 = "

;!
. 

 
Selection and other factors also affect the variance of the full-sib family size and hence 
the k-value. Let f(x) be the frequency of full-sib families of size x. The mean M and the 
variance V of this distribution are 
 

𝑀 = ∑ [𝑓(𝑥) ∙ 𝑥]4
1(5  , 			𝑉 = ∑ [𝑓(𝑥) ∙ 𝑥"] − 𝑀"4

1(5 	
	
The	probability	that	a	random	individual	comes	from	a	family	of	size	x	full-sibs	is	
	

𝑓(𝑥) ∙ 𝑥
𝑀 	

And	the	average	number	of	full	siblings	that	a	random	individual	has	is	
	

𝑘 =
∑ [𝑓(𝑥) ∙ 𝑥 ∙ (𝑥 − 1)]4
5
∑ [𝑓(𝑥) ∙ 𝑥]4
5

=
∑ [𝑓(𝑥) ∙ 𝑥"]4
5
∑ [𝑓(𝑥) ∙ 𝑥]4
5

− 1 =
𝑉 +𝑀"

𝑀 − 1 =
𝑉
𝑀 +𝑀 − 1	

	
With	random	contribution	of	families	to	the	next	generation	(i.e.	Poisson	
distribution	of	full-sib	family	size),	V	is	equal	to	M	and	the	equation	reduces	to	
k=M.	Under	selection,	however,	V	rises	above	M	and	the	value	of	k	could	even	be	
greater	than	2,	which	is	the	expected	value	under	full	lifetime	monogamy. 
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4- Considering the effect of full siblings on LD. 
 
The key difference between a lifetime mating model and a random mating model (each 
offspring from a new random mating) is that in the former some individuals 
(represented in point 1 of figure SF2) can be full siblings and the expectations of some 
sums of products, which are neglected in random mating, become significant.  

 
Figure SF2. Transition from one generation to the next one in a population with full siblings. 
The terms 𝑥! and 𝑦! refer to the allelic values at loci X and Y respectively in genome i. 
 
The expansion of Eq. (S2) is: 
	

	𝐷!%" = (1 − 𝑐)"	𝐷!" + 𝑐"
∑ 𝑥&"𝑦)""'
&($

4𝑁" + 𝑐"
∑ 𝑥&𝑦&𝑥)𝑦)"'
&,)

4𝑁" + 𝑐"
∑ ∑ 𝑥&𝑦)𝑥+𝑦*"'

&,),+,*
"'
&,)

4𝑁"  
 
The second term is 𝑐" <

"'
 and the third term is the irrelevant contribution 𝑐" 	>"

#

"'
 as 

explained above, therefore: 

	𝐷!%" = (1 − 𝑐)"	𝐷!" + 𝑐"
𝑊
2𝑁 + 𝑐

"
∑ ∑ 𝑥&𝑦)𝑥+𝑦*"'

+,*
"'
&,)

4𝑁"  
 
The last term was assumed to be 0 for random mating because alleles from different 
individuals are uncorrelated (the subscripts i,j vs. k,l, refer to alleles in recombinant 
gametes from different individuals). However, this double sum has a small but 
significant contribution in lifetime pairings because some pairs of individuals are full 
sibs and could produce recombinant gametes with the same allele combinations in the 
two sites X and Y. The expectation of 𝑥&𝑦)𝑥+𝑦* is equal to 𝑥&"𝑦)", that is W, when i and k 
in site X , and j and l in site Y come from the same allele copies in the parents of the 
siblings (Figure SF3). However, there is no possibility of coincidence of allele copies 
for recombinant gametes coming from half siblings because these share only one parent, 
the other two parents being unrelated.  
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Figure SF3. With reference to the identities in parents, eight different types of recombinant 
gametes are expected from individuals. The expectation of each type is c/8.  
 
Since there are eight different types of recombinant gametes, the total probability that 
any two recombinant gametes from two full siblings will be of the same type is 1/8. In 
other words, two recombinant gametes from two full siblings have 1/8 probability of 
matching each other in allele copies. This double sum is the sum of all the non-diagonal 
elements of a square matrix of order 2N. Each of the N individuals is represented twice 
in each of the two marginals (row and column) of the matrix, once for each of its two 
possible gametes, and also has k full siblings, who are also represented twice, once for 
each of their two gametes. Therefore, the double sum of the recombinants 
∑ ∑ 𝑥&𝑦)𝑥+𝑦*"'

+,*
"'
&,)  has (2𝑘 ∙ 2𝑁	/	8) summands with the same type (i.e., 

EI𝑥&𝑦)𝑥+𝑦*J = EI𝑥&𝑦)𝑥&𝑦)J = 𝐸I𝑥&"𝑦)"J = 𝑊 for each of these summands). Therefore, 
the expectation of the double sum is (𝑊𝑘𝑁	/	2) and the equation reduces to 
 

	𝐷!%" = (1 − 𝑐)"	𝐷!" + 𝑐"
𝑊
2𝑁 + 𝑐

" 𝑊
2𝑁

𝑘
4 

(S5) 
Now, similar to the derivation of Eq. (S4), 2N gametes are sampled to produce the next 
generation: 
 

	𝐷"#$% = 𝐷"&% &1 −
2.2
2𝑁,

+𝑊
1
2𝑁

≈ (1 − 𝑐)%	𝐷"% &1 −
2.2
2𝑁,

+ 𝑐%
𝑊
2𝑁

+ 𝑐%
𝑊
2𝑁

𝑘
4
+𝑊

1
2𝑁

 

 
 
Dividing both sides of the equation by W and rearranging: 

𝛿-" =
1 + 𝑐" + 𝑐" 𝑘4

2𝑁(1 − (1 − 𝑐)") + 2.2(1 − 𝑐)" 
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5- Correction for sampling of diploids when the phase is 
unknown. 
 
If the phase is unknown, we use the covariance of the bivariate distribution of the mean 
of the two values at each locus X and Y in each of the n diploids of the sample. That is, 
for each individual: 

𝜒&,) =
𝑥& + 𝑥)
2 				and					𝜓&,) =

𝑦& + 𝑦)
2  

 (S6) 
 

where the subscripts i and j represents the two homologous chromosomes (see figure 
SF4). In the case of random union of gametes, the covariance between c and y can be 
expressed as: 

𝑐𝑜𝑣@,A =
1
2𝐷 

 
where 𝐷 is the covariance between the values x and y in haploid genomes. Burrows’ D 
composite measure of LD for pairs of diallelic loci in a sample (Cockerham and Weir, 
1977) is given by:  

∆= 2	𝑃BBCC + 𝑃BBCD + 𝑃BECC +
𝑃BECD
2 − 2	𝑝B	𝑝C 

where capital P refers to the frequencies of the genotypes in the sample and small p 
refers to the allele frequencies at two loci with alleles A/a and B/b respectively. It can 
be shown that D is twice 𝑐𝑜𝑣@,A (with values 1 vs. 0 for presence vs. absence of the 
reference allele), that is twice the component of covariance between individuals in the 
sample (𝐷:$!"%). In this case, Eq. (A10) of the Appendix in Santiago et al. (2020) for 
sampling of diploids results: 

𝐸[∆%] = 4 ∙ 𝐸:𝐷''()*
% ; ≈ 4 ∙ 𝐷()"*&% ∙

(𝑛 − 1)+ + 45 (𝑛 − 1)
% + (𝑛 − 1)

𝑛+
+ 4 ∙ 𝑊()"*

& 𝑛 − 1
𝑛%

 

where 𝐷D7!F%  is the covariance component between zygotes in the group from which the 
sample is taken and 𝑊()"*

& = 𝑊/4. Looking in detail at the offspring of the first pair of 
parents in point 3 of figure SF4, 
 

𝐷!"#$%& = ./𝜒',)𝜓',) + 𝜒',*𝜓',* + 𝜒&,)𝜓&,) + 𝜒&,*𝜓&,*3
(1 − 𝑐)& 4⁄

𝑁 2⁄

+ /𝜒',)𝜓',* + 𝜒',*𝜓',) + 𝜒&,)𝜓',* + 𝜒&,*𝜓',) + 𝜒',)𝜓&,) + 𝜒&,)𝜓',) + 𝜒',*𝜓&,* + 𝜒&,*𝜓',*3
𝑐 (1 − 𝑐) 4⁄

𝑁 2⁄

+ /𝜒',)𝜓&,* + 𝜒',*𝜓&,) + 𝜒&,)𝜓',* + 𝜒&,*𝜓',)3
𝑐& 4⁄
𝑁 2⁄ + ⋯ (𝑡𝑒𝑟𝑚𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑜𝑡ℎ𝑒𝑟	𝑝𝑎𝑖𝑟𝑠	𝑜𝑓	𝑝𝑎𝑟𝑒𝑛𝑡𝑠)	K

&

 

 
After replacing of 𝜒&,) and 𝜓&,) by their values in Eq. (S6), expanding the equation and 
rearranging the terms into two classes, those that are affected by the recombination rate 
c and those that are independent of c, the equation simplifies to: 
 

𝐷!"#$%&

= L
𝑥'𝑦'(1 − 𝑐)/2 + 𝑥&𝑦&(1 − 𝑐)/2 + 𝑥'𝑦&𝑐/2 + 𝑥&𝑦'𝑐/2 + ⋯ (𝑡𝑒𝑟𝑚𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑜𝑡ℎ𝑒𝑟	𝑝𝑎𝑖𝑟𝑠	𝑜𝑓	𝑝𝑎𝑟𝑒𝑛𝑡𝑠)

2𝑁

+
𝑥'𝑦) + 𝑥'𝑦* + 𝑥&𝑦) + 𝑥&𝑦* + 𝑥)𝑦' + 𝑥*𝑦' + 𝑥)𝑦& + 𝑥*𝑦& +⋯(𝑡𝑒𝑟𝑚𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑜𝑡ℎ𝑒𝑟	𝑝𝑎𝑖𝑟𝑠	𝑜𝑓	𝑝𝑎𝑟𝑒𝑛𝑡𝑠)

8𝑁 	Q
&
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The expectation of the product of the two terms in brackets is zero, as the factors are 
uncorrelated. So the equation can be simplified to a sum of two squared terms: 
 

𝐷!"#$%&

= L
𝑥'𝑦'(1 − 𝑐)/2 + 𝑥&𝑦&(1 − 𝑐)/2 + 𝑥'𝑦&𝑐/2 + 𝑥&𝑦'𝑐/2 + ⋯ (𝑡𝑒𝑟𝑚𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑜𝑡ℎ𝑒𝑟	𝑝𝑎𝑖𝑟𝑠	𝑜𝑓	𝑝𝑎𝑟𝑒𝑛𝑡𝑠)

2𝑁
Q
&

+ L
𝑥'𝑦) + 𝑥'𝑦* + 𝑥&𝑦) + 𝑥&𝑦* + 𝑥)𝑦' + 𝑥*𝑦' + 𝑥)𝑦& + 𝑥*𝑦& +⋯(𝑡𝑒𝑟𝑚𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑜𝑡ℎ𝑒𝑟	𝑝𝑎𝑖𝑟𝑠	𝑜𝑓	𝑝𝑎𝑟𝑒𝑛𝑡𝑠)

8𝑁
Q
&

 

 
Where the first term is equal to	𝐷!%" given in Eq. (S1). The second term is the sum of the 
products of the values of the alleles at different loci and at different parents of the same 
couple and, since the cross products cancel each other, is simplified as: 
 
(𝑥'𝑦))& + (𝑥'𝑦*)& + (𝑥&𝑦))& + (𝑥&𝑦*)& + (𝑥)𝑦')& + (𝑥*𝑦')& + (𝑥)𝑦&)& + (𝑥*𝑦&)& +⋯(𝑡𝑒𝑟𝑚𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑜𝑡ℎ𝑒𝑟	𝑝𝑎𝑖𝑟𝑠	𝑜𝑓	𝑝𝑎𝑟𝑒𝑛𝑡𝑠)

(8𝑁)& 			

=
8𝑁/2 ∙ 𝑊
(8𝑁)& =

𝑊
16𝑁 

 
Note that this term only exists if two conditions are met: there are lifetime pairings and 
the genotypes are unphased. It is independent of the recombination rate. As the 
derivation assumed full lifetime monogamy (i.e., monogamy rate m = k/2 = 1), the term 
must be multiplied by the appropriate k/2 value in other circumstances. Finally,  
 

𝐷D7!F%" =
𝐷%"

4 +
𝑊
16𝑁

𝑘
2 

 
Replacing the first term by its value (S5) gives the general equation: 
 

𝐷D7!F%" =
(1 − 𝑐)"	𝐷!" + 𝑐"

𝑊
2𝑁 + 𝑐

" 𝑊
2𝑁

𝑘
4

4 +
𝑊
16𝑁

𝑘
2

= (1 − 𝑐)"
	𝐷!"

4 +
𝑊
16𝑁 82𝑐

" + 2𝑐"
𝑘
4 +

𝑘
29 

 
The expectation of ∆% after sampling is: 
 
 

𝐸[∆%] = 4 ∙ 𝐷()"*&% ∙
(𝑛 − 1)+ + 45 (𝑛 − 1)

% + (𝑛 − 1)

𝑛+
+𝑊& 𝑛 − 1

𝑛%
 

 
 
Eq. (A8) in the Appendix of Santiago et al (2020) allows the prediction of the 
expectation 𝐸[𝑊:] in the sample: 
 

𝐸[𝑊:] ≈ 𝑊′ (2𝑛 − 1)
G + (2𝑛 − 1)"

8𝑛G  
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Figure SF4. Diagram of the process of sampling unphased genotypes with monogamy.  
 
 
The expectation of 𝑑:(-)"  in the sample for a particular recombination rate c is: 

𝑑:(-)" =
𝐸[∆2]
𝐸[𝑊:]

≈ �𝛿-"(1 − 𝑐)"𝑍 +
𝑘
2 + 2𝑐

" + 2𝑐" 𝑘4
4𝑁 𝑍 +

4𝑛 − 4
(2𝑛 − 1)"� 

(S7) 
where  

𝑍 =
(2𝑛 − 2)G + 85 (2𝑛 − 2)

" + 4(2𝑛 − 2)
(2𝑛 − 1)G + (2𝑛 − 1)"  

 
Therefore, the estimation for 𝛿-" in the population is: 

𝛿-"� ≈
𝑑" − 4𝑛 − 4

(2𝑛 − 1)" −
𝑘
2 + 2𝑐

" + 2𝑐" 𝑘4
4𝑁 𝑍

𝑍(1 − 𝑐)"  

 
 
6- The integral for LD over the genome including sampling. 
 
The prediction of the genome-wide average LD can be obtained by integrating all 
possible site pairs. If the species has v chromosomes, each of length l Morgans, then 
two random sites in this genome are in different chromosomes with probability 
(𝑣 − 1) 𝑣⁄  and for them c is 0.5. If two random sites are in the same chromosome 
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(probability = 1 𝑣⁄ ), the density of their genetic distance follows a triangular 
distribution with the highest frequency corresponding to full linkage and the lowest 
frequency corresponding to the maximum distance l in the chromosome. Assuming a 
random distribution of recombination events (i.e., Haldane’s map function 𝑐 =
(1 − 𝑒2"1) 2⁄  , where x is the genetic distance in Morgans), the expected LD in a finite 
sample 𝑑:" can be calculated as the average of the 𝛿-" values in the population over all 
site pairs with Eq. (S7), summing the contributions of pairs in different chromosomes 
(first term on the right) and pairs in the same chromosome (second term): 
 
 

𝑑+# =
𝑣 − 1
𝑣 $

𝛿,..# 𝑍
4 +

𝑘 + 1 + 𝑘4
8𝑁 𝑍 +

4𝑛 − 4
(2𝑛 − 1)#0 +

2
𝑣𝑙: 	

𝑙 − 𝑥
𝑙

/

,
$𝛿0#(1 − 𝑐)#𝑍 +

𝑘
2 + 2𝑐

# + 2𝑐# 𝑘4
4𝑁 𝑍 +

4𝑛 − 4
(2𝑛 − 1)#0 𝑑𝑥 

(S8) 

where, 

𝑐 = (1 − 𝑒2"1)/2,    	𝑍 =
("J2")&#'(("J2")

##K("J2")

("J2$)&#("J2$)#
 , 		𝛿-" =

$#-##-#)*
"'!($2($2-)#)#"."($2-)#

    

Eq. (S8) can be solved numerically for Ne, given the observed 𝑑:" in the sample. 

 

7- The relation to the equations of Weir and Hill (1980). 
 
Numerical predictions of  LD using Weir and Hill’s (1980) equations under random 
pairing (each progeny from a new random pairing) and lifetime mating are compared 
with predictions using our equations in Table S1 in Santiago et al. (2020) and in 
Supplementary Tables S1 and S2 of this paper. Here, an algebraic comparison is 
performed to show the differences between the two theories. 

After rearranging Eq. (3) for random pairing in Weir and Hill (1980), we get: 

𝐸[𝐷%]
𝐸[𝑊]

=
𝑐% + (1 − 𝑐)%

2𝑁)𝑐(2 − 𝑐)
=

1 + 𝑐%

2𝑁)(1 − (1 − 𝑐)%)
−

1
2𝑁)

 

The term −1 2𝑁)⁄  is a consequence of the particular derivation method used to obtain 
“the variance of disequilibria for the infinite progeny array from a set of parents” (Weir 
and Hill, 1980). To obtain the prediction for a finite diploid population of size Ne, the 
sampling term 1 2𝑁)⁄  must be added to the equation: 

𝛿VW
% =

1 + 𝑐%

2𝑁)(1 − (1 − 𝑐)%)
 

The corresponding equation for random pairing in Santiago et al. (2020) is: 
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𝛿" =
1 + 𝑐"

2𝑁7(1 − (1 − 𝑐)") + 2.2(1 − 𝑐)"
 

with the additional term, 2.2(1 − 𝑐)" in the denominator, representing the reduction by 
sampling of the original squared covariance from the previous generation (see 
derivation of Eq. S4). Covariances, like variances, are reduced by sampling in a fraction 
proportional to the inverse of the sample size (here, 1 2𝑁7⁄  per generation), in addition 
to the reduction of the covariance by recombination by a fraction c. This reduction by 
sampling is ignored in the Weir and Hill’s equation, probably because their original 
derivation is for an infinite progeny. This leads to deviations in the predictions of 𝛿", 
especially when the product 𝑁7𝑐 is small. 

Eq. (5) in Weir and Hill (1980) for lifetime pairing can be rearranged in a similar way, 

𝐸[𝐷%]
𝐸[𝑊] =

(1 − 𝑐)% + 2𝑐% + 𝑓[(1 − 𝑐)% + 𝑐%]
2𝑁)𝑐(2 − 𝑐)(𝑓 + 1)

=
1 + 𝑐% + 𝑐%

1 + 𝑓
2𝑁)(1 − (1 − 𝑐)%)

−
1
2𝑁)

 

Here, f is the number of females per male under lifetime polygyny (with lifetime monogamy, f = 
1). As before, the prediction for a finite population with Ne diploid individuals is, 

𝛿VW
% =

1 + 𝑐% + 𝑐%
1 + 𝑓

2𝑁)(1 − (1 − 𝑐)%)
 

while our equation derived in Section 4 is: 

𝛿" =
1 + 𝑐2 + 𝑐2 𝑘4

2𝑁𝑒(1 − (1 − 𝑐)2) + 2.2(1 − 𝑐)2
 

For lifetime pairing, 𝑘 = K'+
'+#',

,	where		𝑁8	is the number of males and 𝑁9 is the number of 

females (Section 3 of the Appendix), assuming 𝑁9 ≥ 𝑁8. Expressed in terms of the 
number f of females per male, k reduces to 𝑘 = K

$#9
, and both equations show to be 

identical for lifetime pairing except for the term 2.2(1 − 𝑐)%, which represents the 
reduction by sampling of the original covariance coming from the previous generation, 
as indicated above. 
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Table S1. Simulated (observed) and predicted LD values !!"#
!$

![&]
" of phased genotypes 

in fully monogamous populations (i.e. k = 2m, where m = 1 is the proportion of 

monogamous mating) of constant size N individuals. Under the conditions of these 

simulations, the census size N and the expected effective size Ne are equal. Observed 

values were calculated by averaging the true values in the population (i.e. those for the 

whole population with phased genotypes) for 108 consecutive generations in a two-locus 

system for each combination of N and recombination rate c, with reintroduction of 

mutations after fixation or loss of alleles at either locus.  

Predictions were obtained by: 

- eq.1: 𝛿!" =
#$%!&
#[(] =

*+!!+!!"#
",$(*.(*.!)!)+"."(*.!)!

	,	Eq. (1) in the main text with	full	lifetime	
monogamy	(i.e.,	k		=	2). 
 

- W&H: !
"#!$
![&]

= (1−𝑐)2+2𝑐2+𝑓"(1−𝑐)2+𝑐2$
2𝑁𝑒𝑐(2−𝑐)(𝑓+1)

+ 1
2𝑁𝑒

 , Eq. (5) for phased genotypes in Weir & 
Hill (1980) with a ratio females/males f  = 1 and substituting sample size by Ne. 
 

     
   

Predicted !"#
!$

![&]
 

Rec. rate N diploids observed !"#
!$

![&]
 eq.1 W&H 

c = 0.5 10 0.08488 0.08842 0.09167 
 100 0.00909 0.00913 0.00917 

 1000 0.00092 0.00092 0.00092 

 10000 0.00009 0.00009 0.00009 
c = 0.1 10 0.18814 0.18183 0.26710 
 100 0.02527 0.02551 0.02671 

 1000 0.00265 0.00266 0.00267 

 10000 0.00027 0.00027 0.00027 
c = 0.001 10 0.48850 0.44731 25.01254 
 100 0.38127 0.38530 2.50125 
 1000 0.15504 0.16146 0.25012 

 10000 0.02353 0.02371 0.02501 
c = 0 10 0.49712 0.45454 

Indeterminable 
 

 

 100 0.45570 0.45454 

 1000 0.45410 0.45454 

 10000 0.45408 0.45454 



 
Table S2. Simulated (observed) and predicted LD values !!"∆

!$
![&]

" of unphased genotypes 

in fully monogamous populations (i.e. k  = 2m where m = 1 is the proportion of 

monogamous mating) of constant size N individuals. Under the conditions of these 

simulations, the census size N and the expected effective size Ne are equal. Observed 

values were calculated by averaging the true values (i.e. those for the whole population 

with phased genotypes) for 108 consecutive generations in a two-locus system for each 

combination of N and recombination rate c, with reintroduction of mutations after 

fixation or loss of alleles at either locus.  
 

Predictions were obtained by: 

- eq.1: 𝛿!" =
𝐸8𝐷29
𝐸[𝑊] =

*+!!+!!"#
",$(*.(*.!)!)+"."(*.!)!

	,	Eq. (1) in the main text with	full	
monogamy	(i.e.,	k		=	2)	and,	then,	substituting	the	result	into	the	Eq.	(S7)	for	
sampling	(Appendix)	to	obtain	the	prediction	of	!

"∆!$
![&]

. 
 

- W&H: !
"∆!$
![&]

= 1+2𝑐2+𝑓"(1−𝑐)2+𝑐2$
2𝑁𝑒𝑐(2−𝑐)(𝑓+1)

+ 1
𝑁𝑒

 , Eq. (5) in Weir & Hill (1980) for unphased 
genotypes with a ratio females/males f  = 1 and substituting sample size by Ne. 
 

 
     
   

Predicted !"∆
!$

![&]
 

Rec. rate N diploids observed !"∆
!$

![&]
 eq.1 W&H 

c = 0.5 10 0.13182 0.15830 0.16667 
 100 0.01629 0.01658 0.01667 

 1000 0.00166 0.00167 0.00167 

 10000 0.00017 0.00017 0.00017 
c = 0.1 10 0.22326 0.25364 0.34211 
 100 0.03228 0.03296 0.03421 

 1000 0.00340 0.00341 0.00342 
 10000 0.00034 0.00034 0.00034 
c = 0.001 10 0.48720 0.51906 25.08754 
 100 0.38384 0.39242 2.50875 
 1000 0.15560 0.16219 0.25087 

 10000 0.02361 0.02379 0.02509 
c = 0 10 0.49479 0.52629 

Indeterminable 
 

 

 100 0.45736 0.46160 

 1000 0.45429 0.45525 

 10000 0.44147 0.45462 
 
  



 
 
Figure S1. Effects of varying the recombination rate c with full monogamy (A) and 

varying the monogamy rate with c = 0.5 (B) on Ne estimates. Two-locus systems with 

1000 diploid individuals were simulated for each c and k value during 108 consecutive 

generations with reintroduction of mutations when an allele was fixed or lost at either 

locus. Genotypes were unphased. Estimates were made solving Eq. (S7) (Appendix) for 

𝛿./ and substituting this value in Eq. (1) in the main text to estimate Ne. Red circles are 

estimates of Ne using the true value of k.	Blue triangles are estimates Ne ignoring 

monogamy (k = 0), i.e. with the incorrect assumption that each offspring was generated 

with a new random mating. 

 

 
 
 
  



Figure S2. Effects of different map alterations on the contemporary Ne estimates (red 

dots with 95% confidence intervals in blue). Forty simulations were performed for each 

of the genetic maps: ordering errors within chromosomes (each chromosome map was 

split into four segments that were randomly rearranged within chromosomes to 

reconstruct a false map), ordering errors between chromosomes (the four segments were 

randomly changed between chromosomes), splitting the chromosome maps into 

scaffolds (four scaffolds per chromosome) and uneven distribution of markers on the 

true genetic map. For the latter, 90% of the markers were evenly distributed in the first 

half of each chromosome and the remaining 10% in the other half. In all simulations, 

the population size was kept constant with 1000 individuals per generation and the 

analyses were performed on samples with n = 100 individuals and 10,000 markers 

randomly distributed across 20 chromosomes of one Morgan length. Two different 

estimates of Ne were made for each sample: the estimate for the most recent generation 

using the GONE software (G), which requires a genetic map, and the estimate using the 

currentNe software based on Eq. (3) in the main text (cNe). 

 
 
  



Figure S3. Effects on contemporary Ne estimates (red dots with 95% confidence 

intervals in blue) of deviations from assumptions of the model about sampling and 

population structure. From left to right in the abscissa: the analysis of a panmictic 

population of 1000 individuals using DNA arrays excluding SNPs with MAF below 

0.2; the analysis of metapopulations composed of two subpopulations of 1000 

individuals each (sampling only one subpopulation or both subpopulations and 

considering two migration rates: 0.02 and 0.002); the analysis of populations with 

overlapping generations (three cohorts of 888, 222, and 222 individuals, resulting in 

Ne=1000), with sampling of either one cohort or all cohorts; finally, sampling limited to 

the offspring of a random subset of families (50% and 20%) in populations of 1000 

individuals. Forty replicates were simulated in each scenario, and each analysis was 

performed on a sample of 100 individuals and approximately 10,000 SNPs. The genome 

consisted of 20 chromosomes of one Morgan length each. Two different estimates of Ne 

were made for each sample: the estimate for the most recent generation using the 

GONE software (G), which requires a genetic map, and the estimate using the 

currentNe software based on Eq. (3) in the main text (cNe). 

 


