
P
os
te
d
on

12
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
38
96
55
.5
17
89
47
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Reinforcement Learning for the Traveling Salesman Problem:

Performance Comparison of Three Algorithms

Jiaying Wang1, Chenglong Xiao1, Shanshan Wang1, and Yaqi Ruan1

1Shantou University

May 12, 2023

Abstract

TSP is one of the most famous problems in graph theory, as well as one of the typical NP-hard problems in combinatorial

optimization. Its applications range from how to plan the most reasonable and efficient road traffic to how to better set

up nodes in the Internet environment to facilitate information flow, among others. Reinforcement learning has been widely

regarded as an effective tool for solving combinatorial optimization problems. This paper attempts to solve the TSP problem

using different reinforcement learning algorithms and evaluated the performance of three RL algorithms (Q-learning, Sarsa,

and Double Q-Learning) under different reward functions, ε-greedy decay strategies, and running times. The results show that

the Double Q-Learning algorithm is the best algorithm, as it could produce results closest to the optimal solutions, and by

analyzing the results, better reward strategies and epsilon-greedy decay strategies are obtained.

1



1

Reinforcement Learning for the Traveling Salesman
Problem: Performance Comparison of Three

Algorithms
Jiaying Wang, Chenglong Xiao, Shanshan Wang, and Yaqi Ruan

Abstract—TSP is one of the most famous problems in graph
theory, as well as one of the typical NP-hard problems in
combinatorial optimization. Its applications range from how to
plan the most reasonable and efficient road traffic to how to
better set up nodes in the Internet environment to facilitate
information flow, among others. Reinforcement learning has been
widely regarded as an effective tool for solving combinatorial
optimization problems. This paper attempts to solve the TSP
problem using different reinforcement learning algorithms and
evaluated the performance of three RL algorithms (Q-learning,
Sarsa, and Double Q-Learning) under different reward functions,
ε-greedy decay strategies, and running times. The results show
that the Double Q-Learning algorithm is the best algorithm, as
it could produce results closest to the optimal solutions, and by
analyzing the results, better reward strategies and epsilon-greedy
decay strategies are obtained.

Index Terms—Travelling Salesman Problem, Reinforcement
Learning, Q-learning algorithm, Sarsa algorithm, Double Q-
Learning algorithm, the reward function.

I. INTRODUCTION

COmbinatorial optimization is a fundamental problem in
computer science that aims to find the best combina-

tion of variables [1], [11]. The Travelling Salesman Problem
(TSP) is a classic example of a combinatorial optimization
problem that holds great importance in operations research
and theoretical computer science. TSP is of practical impor-
tance, having originated in transportation applications such as
aircraft routing, mail delivery, courier services, and designing
school bus routes. Today, TSP and its variants have wide-
ranging applications in various fields such as mathematics,
computer science, operations research, genetics, engineering,
and electronics. For instance, it is used for machine scheduling
problems [2], robot path planning [10], [14], vehicle routing
[8], production planning [7], service time optimization [9],
hardware device design, and computer networks.

Several methods exist for solving the traveling salesman
problem. Some of the most commonly used ones include
Simulated Annealing (SA) [12], Tabu Search (TS) [3], Genetic
Algorithm (GA) [4], and Ant Colony Optimization (ACO) [5].
In recent years, reinforcement learning has also emerged as a
promising approach for tackling TSP problems.

Reinforcement learning is a machine learning paradigm
that relies on trial-and-error learning based on the Markov
decision-making process. It is used to teach agents how to
optimize their behavior and achieve specific goals while inter-
acting with their environment [6]. This paper investigates how
different reward functions and ε-greed decay strategies impact

the performance of reinforcement learning algorithms. And it
also compares the performance of three popular reinforcement
learning algorithms, namely q-learning, Double Q-Learning,
and Sarsa, in solving the traveling salesman problem (TSP).
The main objective of the experiment is to investigate the
effects of these factors on algorithm performance, rather than
to find the optimal solution to the TSP.

The rest of this paper is organized as follows: Section II
describes related work on the application of reinforcement
learning to the TSP problem. Section III then presents an
overview of three reinforcement learning algorithms for TSP.
Section IV compares the experimental results and provides
analysis of the results. Section V gives the conclusion and a
future outlook.

II. RELATED WORKS

When initially tackling combinatorial optimization prob-
lems, researchers apply various heuristic algorithms to solve
them. In 2019, Hanif Halim summarized the performance of
various heuristic algorithms on TSP problems [12].Six heuris-
tic algorithms are included: Tabu Search, Genetic Algorithm,
Simulated Annealing, Nearest Neighbor, Tree Physiology Op-
timization and Ant Colony Optimization. The computational
time, accuracy and convergence of these algorithms are com-
pared.

Recently, with the development and application of new
algorithms in the field of RL, researchers have begun to study
the ability of RL to solve combinatorial optimization problems.
One popular approach is Q-learning, which has been used in
several TSP studies, such as [15] and [16] . Q-learning is
a model-free RL algorithm that learns the optimal Q-value
function through trial and error. It has been shown to achieve
good results in TSP with small-scale problems, but its per-
formance can degrade as the problem size increases.Another
common RL algorithm for TSP is the Sarsa algorithm, which
is proposed in [13]. The Sarsa algorithm is also a model-free
algorithm that updates Q-values based on the current state-
action-reward-next state transition. Sarsa has been shown to be
effective in small-scale TSP problems, but it can suffer from
slow convergence and poor performance on larger problems
[30].

Afterwards, reinforcement learning is used in combination
with other methods to solve tsp problems, and Bello et al. from
Google Brain’s team proposed to use neural networks and RL
to solve combinatorial optimization problems, using TSP as



2

an example [17].Experiments have shown that neural combi-
natorial optimisation achieves near-optimal results. Zheng et
al. [34] combined Q-learning, Sarsa and Monte Carlo with
LKH and proposed a new algorithm called Variable Strategy
Reinforced Lin–Kernighan–Helsgaun (VSR-LKH) algorithm.

In the study of reinforcement learning, one of the most
critical issues remains parameter estimation. In research on
this issue, André L. C. Ottoni et al. have carried out a lot
of work on the effect of hyperparameters on reinforcement
learning algorithms. Although RL is stochastic and TSP is
combinatorial, they are unlikely at first glance to determine
any relationship between parameters and results. However,
Ottoni’s experiments show that response surface models are
usually able to determine such relationships. The response
surface method is first used to reflect the influence of the
learning rate α and the discount coefficient gamma on the
reinforcement learning algorithm [18]. They then conducted
experiments using response surface models to estimate better
hyperparameters [19].

Despite the fact that several reinforcement learning algo-
rithms have been used to solve the TSP problem, there are
no comparisons between these popular reinforcement learning
methods in the available literature. As a result, the major goal
of this work is to adapt the Q-learning, SARSA, and Double Q-
Learning algorithms to solve the TSP problem and evaluate the
three methods with different learning specifications in terms
of runtime and result quality.

III. THREE REINFORCEMENT LEARNING ALGORITHMS
FOR TSP PROBLEM

A. Problem Definition

The traveling salesman problem (TSP) is a fundamental
problem in computer science that aims to find the shortest
possible path that visits every city (C1,C2, · · · ,Cn) exactly
once and returns to the starting city [20]. This problem can be
modeled using an undirected weighted graph where the cities
are represented as vertices and the roads as edges, with the
distance of each road being the weight of the corresponding
edge. The objective is to minimize the total weight of the
edges in the path while ensuring that each vertex is visited
exactly once.

TSP problems can be classified into two types: symmetric
TSP problems and asymmetric TSP problems [21].

In the case of the symmetric TSP problem, the distance
between each pair of cities is equal, resulting in an undirected
graph. The goal of the problem is to find a Hamiltonian cycle
with the minimum weight in a complete weighted undirected
graph.

On the other hand, in the asymmetric TSP problem, the
distances between pairs of cities are not equal or there are
one-way paths. Thus, the undirected graph transforms into a
directed graph. Due to its asymmetry, ATSP is more chal-
lenging to solve. In reality, the majority of TSP problems
are asymmetric, and therefore, ATSP problems have more
practical applications.

Algorithm 1: Q-learning Algorithm
1 Set the parameters: α, γ and ε
2 Initialize the matrix Q(s, a)
3 Observe the state s
4 repeat
5 Take action a using the ε-greedy method
6 Receive immediate reward r(s, a),Observe the new state

s′

7 Update Q(s, a) with Eq. (1)
8 s = s′

9 until the stopping criterion is satisfied;

B. Reinforcement Learning

When applying the reinforcement learning algorithm to the
TSP problem, the agent represents the traveler, the environ-
ment represents the cities to visit, the state represents the
cities that have been visited, the action represents the next
city to visit, and the reward represents the distance between
the two cities. The ε-greedy strategy is commonly used for
action selection [23].

Next, it will briefly introduce the three reinforcement learn-
ing algorithms adapted to TSP problems.

1) Q-Learning: The Q-Learning algorithm is first proposed
by Watkins in [24]. It updates the Q matrix using the following
formula:

Qt+1 = Qt(s, a) + α[r(s, a) + γmaxa′Q(s′, a′)−Qt(s, a)]
(1)

The algorithm stores action values Q(s, a) by creating a
table based on the reward r earned by the agent for taking an
action in a particular state [25]. This table is known as the
Q-table. Each cell in the table corresponds to a state S and
an action taken at time step t. Initially, all values in the table
are set to 0. Each time the agent accesses a state and takes
an action, the Q table is updated using the Bellman equation
described in Equation (1). Algorithm 1 shows the Q-learning
process.

2) Sarsa: The Sarsa algorithm is similar to the Q-Learning
algorithm, but the main difference is the way the Q value is
updated [29]. The Sarasa matrix is updated as follows (2):

Qt+1 = Qt(s, a) + α[r(s, a) + γQ(s′, a′)−Qt(s, a)] (2)

The difference between Equation (1) and Equation (2) is that
the former uses the maximum value of the next state-action,
while the latter uses the current state-action. In other words,
the Q value is updated using the Q value of the next state-
action for Q-Learning, while for Sarsa, the Q value is updated
using the Q value of the current state-action [26]. The pseudo
code of Sarsa algorithm is presented in Algorithm 2.

3) Double Q-Learning: The Double Q-Learning algorithm
is an improvement over the Q-Learning algorithm. Q-Learning
sometimes has the problem of overestimation, and the Double
Q-Learning algorithm can solve this problem [27], [32]. Equa-
tion (3)(4) is an update function of the Double Q-Learning
algorithm:



3

Algorithm 2: Sarsa
1 Set the parameters: α, γ and ε
2 Initialize the matrix Q(s, a)
3 Observe the state s
4 Chooses the action a using the ε-greedy method
5 repeat
6 Take the action a
7 Receive immediate reward r(s, a),Observe the new state

s′

8 Choose the new action a using ε-greedy method
9 Update Q(s, a) with Eq. (2)

10 s = s′, a = a′

11 until the stopping criterion is satisfied;

Algorithm 3: Double Q-Learning
1 Set the parameters: α, γ and ε
2 Initialize the matrix QA(s, a) = 0, QB(s, a) = 0
3 Observe the state s
4 repeat
5 Take action a(e.g.ε-greedy) based on QA, QB

6 Receive immediate reward r(s, a),Observe the new state
s′

7 Choose (e.g.random)either UPDATE(A) or UPDATE(B)
8 if UPDATE(A) then
9 Update QA with Eq. (3)

10 if UPDATE(B) then
11 Update QB with Eq. (4)

12 s = s′

13 until end;

QA
t+1 = QA

t (s, a)+α[r(s, a)+γmaxa′QB(s′, a′)−QA
t (s, a)]

(3)

QB
t+1 = QB

t (s, a)+α[r(s, a)+γmaxa′QA(s′, a′)−QB
t (s, a)]

(4)
There are two functions in Double Q-Learning, QAand QB

(Double Q-Learning), and each function updates the next state
with the value of the other Q function. When selecting an
action, it is determined based on the average of QAand QB .
The pseudo code of Double Q-Learning algorithm is presented
in Algorihtm 3.

4) ε-greedy: During the process of reinforcement learning,
it is important to balance between exploitation and exploration.
This means that the algorithm cannot rely solely on the values
in the Q table and must continue to explore new actions, rather
than solely relying on past experience. The ε-greedy strategy
is used to determine when to exploit the Q table and when to
explore randomly [28].

The ε-greedy strategy selects the action with the highest
Q value with a probability of 1-ε, and a random action with
a probability of ε. The value of ε is initially set to a high
value to encourage exploration, but it is gradually decreased
as the learning progresses to encourage exploitation of the Q
table. The value of ε can be adjusted depending on the specific
problem being solved.

This strategy is represented mathematically in Equation (5):

{
maxaQ(s, a), 1− ε

randomly, ε
(5)

As the number of cycles increases, the value of ε gradually
decreases. Initially, route selection is completely random, but
as reinforcement learning progresses, the value of ε decreases,
and the selection becomes less random and more biased
towards selecting the maximum value. Finally, reinforcement
learning relies entirely on the maximum value to choose the
next route.

C. Reinforcement Learning

When applying reinforcement learning to TSP problems, it
is necessary to define a model that includes states, actions,
and rewards. In this paper, The model is defined as follows:

• State: The state of the agent is defined as the current city
the agent is visiting. In other words, the state of the agent
is the city that has been visited by the agent so far.

• Action: The action of the agent is defined as the next city
to visit [18]. In other words, the agent chooses an action
by selecting the next city to visit from the set of unvisited
cities.

• Reward: In TSP, the reward is related to the distance
traveled between cities. The goal of the agent is to mini-
mize the total distance traveled, so the reward function is
defined as the negative distance between the current city
and the next city to visit. The negative distance is used to
align the goal of the agent with the reward signal, which
is to maximize the reward.Three reward function used in
this paper are as follows:

R1 = 1/dij (6)

R2 = −dij (7)

R3 = −(dij)
2 (8)

dij is the length between two city nodes. Equation(6) takes
the reciprocal of the distance [23], [30], Equation(7) takes the
negative number of the distance [30], and Equation(8) takes
the negative number of the square of the distance [30].

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup

All the algorithms were implemented in Python. The exper-
iments were conducted on an Intel Core i7 2.0GHz CPU with
16 Gbytes main memory.

1) Experimental Data: TSPLIB [22] is a database of in-
stances of TSP and related problems from various sources
and of various types, such as TSP and ATSP. The library
provides many instances of different complexities and gives
their optimal solutions. The TSP instances selected for this
experiment are all from TSPLIB, including five TSP problems
and three ATSP problems.



4

TABLE I
TSP INSTANCES

Type Instance n Optimal Solution
eil51 51 426

berlin52 52 7542
TSP st70 70 675

kroA100 100 21282
tsp225 225 3919
br17 17 39

ATSP ftv64 64 1839
ftv170 170 2755

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0 epsilon1
epsilon2
epsilon3
epsilon4

Fig. 1. The corresponding curves of four ε-greedy strategies

The selected TSP instances are shown in Table I. The
instances range from smaller ones, such as br17, to larger ones,
such as ftv170 and tsp225, which contain a greater number of
cities.

2) Algorithm Specifications: The following is a comparison
and analysis of the performance of reinforcement learning
algorithms under three different conditions:

• Different algorithms: Q-Learning, Sarsa, and Double Q-
Learning are three widely used reinforcement learning
algorithms. Q-Learning and Double Q-Learning are both
off-policy algorithms, while Sarsa is an on-policy algo-
rithm;

• Different reward functions: The reward function plays
an important role in guiding the agent towards finding
an optimal solution. R1, R2, and R3 are three different
reward functions used in this experiment;

• Different ε-greedy: The ε-greedy strategy is a popular
exploration-exploitation method used in reinforcement
learning. In this experiment, four different dynamic decay
methods are used to adjust the value of ε during the
learning process:

1) ε = 1− i/N . Decrease the ε linearly;
2) ε = 0.999i. ε is a concave function [28];
3) ε = −(i/N)6 + 1. ε is a convex function;
4) The ε is initially 1 and decreases by 0.1 after every

thousand pieces of training.

The current number of training is denoted by i, and N
represents the total number of training sessions. The advantage
of using dynamic decay to set the value of ε is that it increases
the likelihood of exploration at the beginning of the run, while

gradually favoring the maximum value selection as the number
of runs increases and the Q table becomes more refined.

The experiment consisted of 36 combinations (3∗3∗4), with
different combinations of reinforcement learning algorithms,
reward functions, and ε-greedy decay methods. The learning
rate (α) is set to 0.01, and the discount coefficient (γ) is varied
based on the problem instance: (0.01, 0.15, 0.3, 0.45, 0.6, 0.75,
0.9, 0.99) [18] for eil51, berlin52 TSP instances, and br17,
ftv64 ATSP instances, and (0.01, 0.15, 0.3, 0.45) for st70,
kroA100, tsp225 TSP instances, and ftv170 ATSP instance.

The number of simulations varied based on the number of
cities in the problem instance. For instances with a small num-
ber of cities, each combination is simulated 10 times, while for
larger instances, each combination is simulated 5 times. The
number of training sessions per simulation is set to 10,000,
and the result of each simulation is the distance traveled by the
agent completing a lap back to the starting point. The number
of simulations is reduced for larger instances to reduce the
time cost.

The optimal values, averages, and running times of all
simulation results were compared to determine the best combi-
nation of reinforcement learning algorithms, reward functions,
and ε-greedy decay methods for each problem instance.

B. Results and Analysis

In this section, the experimental results are compared and
analyzed in terms of the following indicators:

1) Optimal operating results;
2) Average operating results;
3) Running time.
1) Comparison of the best results: Table II shows the

shortest distances obtained by the three algorithms for each
problem instance. Table III shows the combination of the
optimal reward function and ε-greedy when the result is
achieved. The data in the table indicates that in most cases
(berlin52, st70, kroA100, tsp225), the Double Q-Learning and
Q-Learning algorithms outperform Sarsa, particularly when
the number of cities is larger. Furthermore, in most instances,
the optimal value is obtained with (R1), with the br17 instance
showing the most significant difference in results. For this
instance, all three algorithms achieve the optimal solution
(R1), while the optimal solution cannot be obtained using the
other two reward functions, even with the Q-learning algorithm
using any ε-greedy decay strategy.

Figure 2 shows the range of best values achieved by the
three algorithms for different TSP problems with 12 differ-
ent reward functions and ε-greedy combinations. As can be
seen from the figures, Double Q-Learning is a very unstable
algorithm, which can achieve a better solution while at the
same time may fetch a very poor solution. In contrast, the Q-
Learning and Sarsa algorithms are relatively much more stable,
with the difference between the optimal and worst solutions
being relatively small.

2) Comparison of the average results: Table IV is the
average result of the three algorithms in 12 different com-
binations.Table V is the combination of reward function and
decay strategy for optimal value.For the analysis of the average



5

Fig. 2. (a)-(h) The range of best values achieved by the three algorithms for different TSP problems with 12 different reward functions and ε-greedy
combinations

TABLE II
THE OPTIMAL RESULT OF THE ALGORITHM

Algorithm eil51 berlin52 st70 kroA100 tsp225 br17 ftv64 ftv170
Double Q-Learning 476 8141 771 24547 4519 39 2098 3512

Q-Learning 470 8215 768 24187 4634 39 2251 3553
Sarsa 472 8470 779 24715 4760 39 2237 3552

TABLE III
THE COMBINATION OF REWARD FUNCTION AND DECAY STRATEGY WHEN THE OPTIMAL VALUE IS OBTAINED

Algorithm eil51 berlin52 st70 kroA100 tsp225 br17 ftv64 ftv170
Double Q-Learning R1/ε1 R3/ε2 R1/ε4 R1/ε1 R1/ε4 R1/ε2 R1/ε4 R1/ε3

Q-Learning R1/ε1 R1/ε2 R2/ε2 R1/ε1 R3/ε4 R1/all R1/ε2 R1/ε1
Sarsa R3/ε1, ε3 R1/ε2 R3/ε3 R1/ε3 R3/ε2 R1/ε2 R1/ε1 R1/ε3

results, it is necessary to divide them according to the TSP and
ATSP problems.

Firstly, for the TSP problem, Table IV shows that although
the optimal value can be obtained using (R1) for the first
two algorithms, the optimal average result is usually achieved
when using (R3). By observing Table V,preliminary analy-
sis suggests that although R1 can yield better results, it is
not stable and requires adjustments to the learning rate and
discount coefficient to find the optimal value. On the other
hand, R3 is more stable and can produce similar results for
different learning rates and discount coefficients. For the Sarsa
algorithm, it is apparent that the best results are obtained when
using ε1 in combination with ε3. Therefore, for the Sarsa
algorithm, R1 is the optimal reward function.

Secondly, for the ATSP problem, the results for the instance
with a small number of cities are similar to those for the
TSP problem, where better averages can be obtained with
R3. However, as the number of cities increases, the optimal
average value can be obtained in the ftv170 problem under the
same conditions of R1 and ε3. Therefore, it can be concluded
that for the ATSP problems with a large number of cities, the
optimal reward function for the three algorithms is R1.

3) Comparison of running time: The average running time
of the three algorithms on kroA100 and ATSP’s ftv64 is
shown in Figure 3 and Figure 4 respectively.The running time
results show that the Q-Learning algorithm has the shortest
running time among the three algorithms, while Sarsa had the

Fig. 3. The average running time of the three algorithms on instance kroA100

longest running time. When comparing the running time of
different reward functions and ε-greedy strategies for the same
algorithm, it can observe that there is no significant difference
between changing only the reward function. However, the
second ε-greedy strategy required the least running time, while
the third ε-greedy took the most running time, with the other
two in between. The running times of different combinations
on the benchmarks kroA100 and ATSP’s ftv64 are shown in
the table VI and table VII respectively.

Sarsa algorithm may require longer running time in some
cases because it needs to perform policy evaluation at every



6

TABLE IV
OPTIMAL AVERAGE RESULTS

Algorithm eil51 berlin52 st70 kroA100 tsp225 br17 ftv64 ftv170
Double Q-Learning 512 8981 823 26858 5494 92 2609 4065

Q-Learning 506 8956 806 27137 5049 92 2540 4116
Sarsa 533 9932 849 28633 5270 107 2687 3908

TABLE V
THE COMBINATION OF REWARD FUNCTION AND EPSILON-GREEDY STRATEGY WHEN THE OPTIMAL AVERAGE VALUE IS OBTAINED

Algorithm eil51 berlin52 st70 kroA100 tsp225 br17 ftv64 ftv170
Double Q-Learning R3/ε1 R3/ε2 R3/ε2 R3/ε1 R1/ε3 R2, R3/all R3/ε2 R1/ε3

Q-Learning R1/ε1 R3/ε3 R3/ε1, ε2, ε4 R3/ε3 R3/ε4 R2, R3/all R3/ε2 R1/ε3
Sarsa R1/ε3 R1/ε3 R1/ε3 R1/ε3 R1/ε3 R2/ε4 R1/ε3 R1/ε3

Fig. 4. The average running time of the three algorithms on instance ftv64

step, and it is an online algorithm that requires interaction
with the environment at every step. On the other hand, Q-
learning algorithm relies more on offline policy evaluation
and policy improvement, so it may require fewer interaction
steps in some cases. However, this also depends on the
specific implementation and parameters used in the algorithm,
so in practical applications, different algorithms need to be
compared and evaluated based on the specific circumstances.

After conducting the above analyses, it can be concluded
that both the Double Q-Learning algorithm and the Q-Learning
algorithm outperform the Sarsa algorithm on the Traveling
Salesman Problem, both in terms of quality of results and run-
ning time.For the first two algorithms, the Double Q-Learning
algorithm is easier to obtain better solutions. Regarding the
reward functions and decay strategies, it is clear that R1

provides a greater chance of finding a better solution for any
decay strategy, but only by a small margin. While the different
decay strategies have very little difference in results, with ε1,
we can achieve a slightly better results. However, different
decay strategies can result in significant different running time.
Overall, ε2 leads to the shortest running time.

V. CONCLUSION

This paper investigates the application of reinforcement
learning to the Traveling Salesman Problem (TSP) and com-
pares the performance of three algorithms under various learn-
ing specifications through statistical experiments. The study

TABLE VI
RUNNING TIME OF DIFFERENT COMBINATIONS ON THE BENCHMARK

KROA100(IN MIN)

Algo. R ε Time
R1 ε1 134.4

ε2 55.3
ε3 211.8
ε4 132.9

R2 ε1 141.4
Q-learning ε2 51.5

ε3 209.8
ε4 130.2

R3 ε1 144.4
ε2 55.1
ε3 198.5
ε4 125.0

R1 ε1 272.3
ε2 98.8
ε3 379.0
ε4 252.2

R2 ε1 274.7
Sarsa ε2 98.1

ε3 378.6
ε4 234.0

R3 ε1 273.7
ε2 99.6
ε3 413.1
ε4 239.9

R1 ε1 151.0
ε2 63.0
ε3 200.0
ε4 130.4

R2 ε1 143.1
Double Q-Learning ε2 67.4

ε3 200.0
ε4 130.0

R3 ε1 141.1
ε2 64.5
ε3 200.5
ε4 132.7

analyzes the algorithms’ performance and identifies the most
suitable algorithm and its parameters for TSP.

The findings indicate that reinforcement learning algorithms
perform better when using a reward function of R1 = 1/dij
. However, there is no significant difference in performance
when using different ε-greedy decay strategies, as long as
the value of ε decreases gradually. The Sarsa algorithm’s
performance on TSP is inferior to the other two reinforcement
learning algorithms, and the other two algorithms’ perfor-
mance is not significantly different. While finding relatively
better results, the running time is not significantly different.

Future studies could explore the reasons for the lack of
significant differences among ε-greedy decay strategies. In



7

TABLE VII
RUNNING TIME OF DIFFERENT COMBINATIONS ON THE BENCHMARK

FTV64

Algo. R ε Time
R1 ε1 86.4

ε2 40.8
ε3 124.5
ε4 78.6

R2 ε1 86.6
Q-learning ε2 41.0

ε3 130.3
ε4 84.9

R3 ε1 91.4
ε2 40.5
ε3 133.4
ε4 84.5

R1 ε1 149.6
ε2 61.9
ε3 255.1
ε4 158.3

R2 ε1 158.5
Sarsa ε2 65.1

ε3 229.1
ε4 143.7

R3 ε1 166.7
ε2 65.3
ε3 228.3
ε4 144.7

R1 ε1 91.8
ε2 50.3
ε3 139.0
ε4 97.7

R2 ε1 95.2
Double Q-Learning ε2 47.0

ε3 130.3
ε4 83.2

R3 ε1 92.3
ε2 46.0
ε3 130.4
ε4 88.5

addition, current algorithms still have some limitations in
solving large-scale problems, so more efficient algorithms can
be explored, such as combining reinforcement learning with
neural networks and deep learning.

REFERENCES

[1] Luke, Sean. Essentials of metaheuristics. Vol. 2. Raleigh: Lulu, 2013.
[2] Cunha, Bruno, et al. ”Deep reinforcement learning as a job shop

scheduling solver: A literature review.” Hybrid Intelligent Systems: 18th
International Conference on Hybrid Intelligent Systems (HIS 2018) Held
in Porto, Portugal, December 13-15, 2018 18. Springer International
Publishing, 2020.

[3] Osaba, Eneko, et al. ”Hybrid quantum computing-tabu search algorithm
for partitioning problems: preliminary study on the traveling salesman
problem.” 2021 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2021.

[4] Gharib, Abdelhakim, Jamal Benhra, and Mohsine Chaouqi. ”A perfor-
mance comparison of PSO and GA applied to TSP.” International Journal
of Computer Applications 130.15 (2015): 34-39.

[5] Haroun, Sabry Ahmed, and Benhra Jamal. ”A performance comparison
of GA and ACO applied to TSP.” International Journal of Computer
Applications 117.20 (2015).

[6] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[7] Crama, Yves, Joris Van De Klundert, and Frits CR Spieksma. ”Production
planning problems in printed circuit board assembly.” Discrete Applied
Mathematics 123.1-3 (2002): 339-361.

[8] Bertsimas, Dimitris J., and David Simchi-Levi. ”A new generation
of vehicle routing research: robust algorithms, addressing uncertainty.”
Operations research 44.2 (1996): 286-304.

[9] Chang, Tsung-Sheng, Yat-wah Wan, and Wei Tsang Ooi. ”A stochastic
dynamic traveling salesman problem with hard time windows.” European
Journal of Operational Research 198.3 (2009): 748-759.

[10] Sheng, Weihua, et al. ”Robot path planning for dimensional measure-
ment in automotive manufacturing.” J. Manuf. Sci. Eng. 127.2 (2005):
420-428.

[11] Davendra, Donald, ed. Traveling salesman problem: Theory and appli-
cations. BoD–Books on Demand, 2010.

[12] Halim, A. Hanif, and IJAoCMiE Ismail. ”Combinatorial optimization:
comparison of heuristic algorithms in travelling salesman problem.”
Archives of Computational Methods in Engineering 26 (2019): 367-380.

[13] Fedorov, Eugene, and Olga Nechyporenko. ”Methods for Solving the
Traveling Salesman Problem Based on Reinforcement Learning and
Metaheuristics.” (2022).

[14] Le, Anh Vu, et al. ”Coverage path planning using reinforcement
learning-based TSP for hTetran—a polyabolo-inspired self-reconfigurable
tiling robot.” Sensors 21.8 (2021): 2577.

[15] Gambardella, Luca M., and Marco Dorigo. ”Ant-Q: A reinforcement
learning approach to the traveling salesman problem.” Machine learning
proceedings 1995. Morgan Kaufmann, 1995. 252-260.

[16] Liu, Fei, and Guangzhou Zeng. ”Study of genetic algorithm with rein-
forcement learning to solve the TSP.” Expert Systems with Applications
36.3 (2009): 6995-7001.

[17] Bello, Irwan, et al. ”Neural combinatorial optimization with reinforce-
ment learning.” arXiv preprint arXiv:1611.09940 (2016).

[18] Ottoni, André Luiz Carvalho, et al. ”Análise da influência da taxa de
aprendizado e do fator de desconto sobre o desempenho dos algoritmos
Q-learning e SARSA: aplicação do aprendizado por reforço na navegação
autônoma.” Revista Brasileira de Computação Aplicada 8.2 (2016): 44-
59.

[19] Ottoni, André LC, Erivelton G. Nepomuceno, and Marcos S. de Oliveira.
”A response surface model approach to parameter estimation of reinforce-
ment learning for the travelling salesman problem.” Journal of Control,
Automation and Electrical Systems 29 (2018): 350-359.

[20] Dorigo, Marco, and Luca Maria Gambardella. ”Ant colony system: a
cooperative learning approach to the traveling salesman problem.” IEEE
Transactions on evolutionary computation 1.1 (1997): 53-66.

[21] Matai, Rajesh, Surya Prakash Singh, and Murari Lal Mittal. ”Traveling
salesman problem: an overview of applications, formulations, and solution
approaches.” Traveling salesman problem, theory and applications 1
(2010).

[22] Reinelt, Gerhard. ”TSPLIB—A traveling salesman problem library.”
ORSA journal on computing 3.4 (1991): 376-384.

[23] Bianchi, Reinaldo AC, Carlos HC Ribeiro, and Anna HR Costa. ”On
the relation between ant colony optimization and heuristically accelerated
reinforcement learning.” 1st international workshop on hybrid control of
autonomous system. Palo Alto, CA: AAAI, 2009.

[24] Watkins, Christopher John Cornish Hellaby. ”Learning from delayed
rewards.” (1989).

[25] WATKINS, CJCH. ”Q-Learning, in Reinforcement Learning.” Technical
Note (1993): 55-68.

[26] Ma, Jia, et al. ”Neurodynamic programming: a case study of the traveling
salesman problem.” Neural Computing and Applications 17 (2008): 347-
355.

[27] Hasselt, Hado. ”Double Q-Learning.” Advances in neural information
processing systems 23 (2010).

[28] Benford, Samuel Levente. Solving the Binary Knapsack Problem Using
Tabular and Deep Reinforcement Learning Algorithms. Diss. Northeast-
ern University, 2021.

[29] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[30] Ottoni, André LC, et al. ”Tuning of reinforcement learning parameters
applied to sop using the scott–knott method.” Soft Computing 24.6
(2020): 4441-4453.

[31] Matai, Rajesh, Surya Prakash Singh, and Murari Lal Mittal. ”Traveling
salesman problem: an overview of applications, formulations, and solution
approaches.” Traveling salesman problem, theory and applications 1
(2010).

[32] Van Hasselt, Hado, Arthur Guez, and David Silver. ”Deep reinforcement
learning with Double Q-Learning.” Proceedings of the AAAI conference
on artificial intelligence. Vol. 30. No. 1. 2016.

[33] Li, Yuxi. ”Deep reinforcement learning: An overview.” arXiv preprint
arXiv:1701.07274 (2017).

[34] Zheng, Jiongzhi, et al. ”Reinforced Lin–Kernighan–Helsgaun algorithms
for the traveling salesman problems.” Knowledge-Based Systems 260
(2023): 110144.


