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Abstract

In this paper, we investigate the application of Hybrid Representation in Wide-Angle Synthetic Aperture Radar (WASAR)

imaging, addressing the challenges of achieving sparse representation in the presence of complex electromagnetic scattering

characteristics and highly anisotropic targets. We utilize a Convolutional Neural Network (CNN) to represent two-dimensional

data within the same subaperture, while employing dictionary learning for sparse representation across different subapertures.

Convolutional Neural Networks (CNNs) excel at learning spatial hierarchies and local dependencies in two-dimensional data, but

require a large amount of training data. Isotropic targets within subapertures can be used for training with conventional SAR

data, whereas anisotropic targets present challenges in obtaining training samples. To address this, a dictionary for different

subapertures is generated from measurements using dictionary learning, eliminating the need for additional training data. By

integrating these methods, we propose a novel approach, Hybrid-WASAR, which incorporates two regularization terms into

WASAR imaging and employs the Alternating Direction Method of Multipliers (ADMM) to iteratively solve the imaging model.

Compared to traditional WASAR imaging techniques, Hybrid-WASAR not only enhances the accuracy of the reconstructed

target backscatter coefficients, but also effectively reduces sidelobes and noise, resulting in a significant improvement in overall

imaging quality.
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In this paper, we investigate the application of Hybrid Represen-
tation in Wide-Angle Synthetic Aperture Radar (WASAR) imaging,
addressing the challenges of achieving sparse representation in the pres-
ence of complex electromagnetic scattering characteristics and highly
anisotropic targets. We utilize a Convolutional Neural Network (CNN)
to represent two-dimensional data within the same subaperture, while
employing dictionary learning for sparse representation across different
subapertures. Convolutional Neural Networks (CNNs) excel at learn-
ing spatial hierarchies and local dependencies in two-dimensional data,
but require a large amount of training data. Isotropic targets within sub-
apertures can be used for training with conventional SAR data, whereas
anisotropic targets present challenges in obtaining training samples.
To address this, a dictionary for different subapertures is generated
from measurements using dictionary learning, eliminating the need for
additional training data. By integrating these methods, we propose a
novel approach, Hybrid-WASAR, which incorporates two regulariza-
tion terms into WASAR imaging and employs the Alternating Direction
Method of Multipliers (ADMM) to iteratively solve the imaging model.
Compared to traditional WASAR imaging techniques, Hybrid-WASAR
not only enhances the accuracy of the reconstructed target backscatter
coefficients, but also effectively reduces sidelobes and noise, resulting
in a significant improvement in overall imaging quality.

Introduction: Wide-Angle Synthetic Aperture Radar (WASAR)
acquires echo signals from targets over an extensive azimuth angle,
resulting in higher azimuth resolution compared to conventional
SAR [1]. WASAR images facilitate the extraction of backscattering
anisotropy characteristics of targets, which possess significant appli-
cation value in target identification and classification domains [2].
By integrating sparse signal processing with WASAR, researchers
have made substantial progress in addressing the underdetermined
inverse problem associated with anisotropic targets [3]. Sparse signal
processing relies on the assumption that targets are sparse or can be
sparsely represented within a specific dictionary [4]. However, typical
radar observation scenes are not sparse, and achieving effective sparse
characterization of targets remains a challenge. This issue becomes
more complex when dealing with anisotropic targets.

There are two strategies for sparsely representing anisotropic targets:
within a single subaperture or across multiple subapertures. For sparse
representation within a single subaperture, several approaches can be
employed. These include utilizing fixed dictionaries, such as wavelet
transform [5] and curvelet transform [6]; applying sparse dictionary
learning [7]; or leveraging deep learning [8] to obtain target represen-
tations. For sparse representation across multiple subapertures, various
dictionary construction methods are available. These include methods
based on parametric models, such as scattering theory model approaches
[9] and typical shape feature models [10]. Additionally, dictionaries can
be constructed using fixed dictionaries, exemplified by orthogonal dic-
tionaries [11], rectangular, or Gaussian functions [12]. While predefined
sparse representations have limitations and depend on human design,
deep learning methods can potentially provide more effective represen-
tations. However, they come with their own set of challenges, such as

the need for large amounts of data and computational resources.
In this letter, we present a WASAR imaging method based on a

hybrid sparse representation of anisotropic targets. The sparse repre-
sentation involves representing 3D data as a 2D image sparse represen-
tation within each subaperture, while the representation across differ-
ent subapertures constitutes the third dimension. Convolutional Neural
Networks (CNNs) [13] are employed for representation within a sin-
gle subaperture, while dictionary learning [14] is utilized for represen-
tation across multiple subapertures. CNNs excel at uncovering spatial
feature hierarchies and recognizing local dependencies in data, making
them particularly suitable for representing two-dimensional data within
a single subaperture. The CNN representation methods remain appli-
cable, as targets exhibit isotropic properties within an individual sub-
aperture. Owing to the complexity of electromagnetic scattering from
anisotropic targets, their representation across different subapertures is
achieved using dictionary learning. Fixed dictionaries often fall short
in producing satisfactory results, and deep learning methods that rely
on large datasets of anisotropic targets frequently lack sufficient train-
ing data. The dictionary learning in this method relies on measurement
data and does not require external training data. This allows the WASAR
imaging algorithm to strike a balance between reconstruction perfor-
mance and training sample requirements. It is important to emphasize
that, in this letter, dictionary learning and target sparse coefficient recon-
struction are performed simultaneously.

To achieve accurate reconstruction, this paper establishes a regular-
ized optimization model incorporating two regularization constraints:
one to constrain the sparse representation based on CNNs within
the same subaperture, and the other to sparsely represent anisotropic
objectives across different subapertures using the dictionary learning
approach. We employ the Alternating Direction Method of Multipliers
(ADMM) to solve the model, breaking down the optimization problem
into manageable subproblems, updating each parameter sequentially,
and ultimately obtaining the WASAR imaging results..

Signal Model: For wide-angle SAR, the backscattering coefficient is
related not only to the spatial position of the target, but also to the radar
azimuth angle, denoted as 𝑥 (𝑝𝑟 , 𝑞𝑟 , \ ) = 𝑥 (𝑟 , \ ) where 𝑝𝑟 and 𝑞𝑟
denote the fast time and slow time positions of the target 𝑟 , \ is azimuth
incident angle. The scattering function of WASAR in matrix representa-
tion can be expressed as follows,

X𝐿×𝐾 =

©«
𝑥 (𝑟1, \1 ) 𝑥 (𝑟1, \2 ) · · · 𝑥 (𝑟1, \𝐾 )
𝑥 (𝑟2, \1 ) 𝑥 (𝑟2, \2 ) · · · 𝑥 (𝑟2, \𝐾 )

.

.

.
.
.
.

. . .
.
.
.

𝑥 (𝑟𝐿 , \1 ) 𝑥 (𝑟𝐿 , \2 ) · · · 𝑥 (𝑟𝐿 , \𝐾 )

ª®®®®¬
(1)

where 𝐿 is the number of pixels in the image and 𝐾 is the number of
subapertures in WASAR. Each row of the matrix represents the imaging
of the target across all subapertures, while each column of the matrix
represents the individual imaging results of a subaperture in WASAR.

The baseband form of echo signal 𝑦 can be expressed as,

𝑦 = R(X) + 𝑧, (2)

where R denotes the measurement operator for WASAR imaging and 𝑧
is the noise.

Convolutional Neural Networks (CNNs) are a type of deep learn-
ing architecture specifically designed for image processing and analysis.
They excel at approximating and representing image data by learning
spatial hierarchies and local patterns. In image reconstruction tasks, a
learned CNN, denoted as D𝑤 , is used to approximate the image 𝑥 after
removing alias artifacts and noise. A separate learned CNN estimator of
noise and alias patterns, denoted as N𝑤, depends on the learned param-
eters 𝑤. We can express N𝑤 as the difference between the input image
𝑥 and the image reconstructed by D𝑤 :

N𝑤 (X) = (I − D𝑤 ) (X) = X − D𝑤 (X) . (3)

The CNN-based prior, which is given by |N𝑤 (X) |2, assigns high values
when the image is contaminated with noise and alias patterns.

Represent X𝐿×𝐾 as the product of a sparse coefficient matrix U𝐿×𝑇
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and a dictionary matrix V𝑇×𝐾 , composed of temporal basis functions,

©«
𝑥 (𝑟1, \1 ) 𝑥 (𝑟1, \2 ) · · · 𝑥 (𝑟1, \𝐾 )
𝑥 (𝑟2, \1 ) 𝑥 (𝑟2, \2 ) · · · 𝑥 (𝑟2, \𝐾 )

.

.

.
.
.
.

. . .
.
.
.

𝑥 (𝑟𝐿 , \1 ) 𝑥 (𝑟𝐿 , \2 ) · · · 𝑥 (𝑟𝐿 , \𝐾 )

ª®®®®¬︸                                                        ︷︷                                                        ︸
X𝐿×𝐾

=

©«
𝑢1 (𝑟1 ) · · · 𝑢𝑇 (𝑟1 )
𝑢1 (𝑟2 ) · · · 𝑢𝑇 (𝑟2 )
.
.
.

. . .
.
.
.

𝑢1 (𝑟𝐿 ) · · · 𝑢𝑇 (𝑟𝐿 )

ª®®®®¬︸                             ︷︷                             ︸
𝑈𝐿× 𝑇

·
©«
𝑣1 (\1 ) · · · 𝑣1 (\𝐾 )
𝑣2 (\1 ) · · · 𝑣2 (\𝐾 )
.
.
.

. . .
.
.
.

𝑣𝑇 (\1 ) · · · 𝑣𝑇 (\𝐾 )

ª®®®®¬
.

︸                                  ︷︷                                  ︸
𝑉𝑇×𝐾

(4)

where 𝑇 denotes the total number of basis functions present in the dic-
tionary. The sparse representation of (4) can also be expressed as

𝑥 (𝑟 , \ ) =
𝑇∑︁
𝑡=1
𝑢𝑡 (𝑟 )𝑣𝑡 (\ ) (5)

where 𝑢𝑡 (𝑟 ) represents the 𝑡-th column of𝑈, which corresponds to the
𝑡-th spatial weight, 𝑣𝑡 (\ ) represents the 𝑡-th row of 𝑉 , corresponding to
the 𝑡-th temporal basis function. Sparsity constraints are imposed on the
rows of U. As a result, the number of non-zero entries is greatly reduced,
indicating that only a small subset of the temporal basis functions is
needed to model the temporal profile at each voxel. Our over-complete
dictionary of basis functions is estimated directly from the data and may
not necessarily be orthogonal. Figure 1 shows the diagram of the hybrid
representation of anisotropic targets in WASAR.

Fig 1 Hybrid representation of anisotropic targets in WASAR.

WASAR imaging method: In the context of the BCS model specified by
(3) and (4), our focus is on recovering the scattering function X. To
accomplish this, we adopt two regularization terms: one for the CNN
representation within the subaperture and one for the dictionary repre-
sentation across subapertures. Specifically, we cast the joint estimation
of𝑈 and 𝑉 from the measurements as a constrained optimization prob-
lem. The CNN used in our approach is a pre-trained network.

X∗ =𝑈∗𝑉∗ = arg min
𝑈,𝑉

∥R (𝑈𝑉 ) − 𝑦 ∥2
𝐹 + _1 ∥𝑈 ∥1

+_2 ∥N𝑤 ( |𝑈𝑉 | ) ∥2𝑠.𝑡 . ∥𝑉 ∥2
𝐹 ≤ 1

(6)

where ∥R (𝑈𝑉 ) − 𝑦 ∥2
𝐹 ensures data consistency. ∥𝑈 ∥𝑙1 is 𝑙1 norm of

𝑈 to characterize 𝑈’s sparsity. This penalty term can impose a sparse
prior constraint to WASAR images across different subaperture. A unit
Frobenius norm ∥𝑉 ∥2

𝐹 is then imposed on 𝑉 , which serves to mak-
ing the recovery problem well posed. ∥N𝑤 ( |𝑈𝑉 | ) ∥2 can be thought
of as a pre-trained CNN denoiser, used to represent the isotropic tar-
gets in the same subaperture image. _1 and _2 denotes the regularization
parameter of the WASAR imaging model. By leveraging the Augmented
Lagrangian (AL) framework, we can convert the optimization problem
in (6) into the following form,

ℓ (𝑈, 𝑉, 𝐿, 𝑄, X) = ∥R (X) − 𝑦 ∥2
𝐹 + 𝛽X

2
∥X −𝑈𝑉 ∥2

𝐹

+ΛX (X −𝑈𝑉 ) + _1𝛽𝑈
2

∥𝑈 − 𝐿 ∥2
𝐹 + 𝛽𝑉

2
∥𝑉 − 𝑄∥2

𝐹

+Λ𝑉 (𝑉 − 𝑄) + _1 ∥𝐿 ∥1 + _2 ∥N𝑤 (X) ∥2 𝑠.𝑡 . ∥𝑄∥2
𝐹 < 1

(7)

where𝑄 , 𝐿 is the auxiliary variable, Λ𝑉 , ΛX is the Lagrange multiplier,
and 𝛽𝑉 , 𝛽𝑈 , 𝛽X is the penalty parameter.

We use the ADMM algorithm for solving (7) , which can be opti-
mized by alternating the five variables𝑈 , 𝑉 , 𝐿 , 𝑄 , X for updating.

arg min
𝐿

_𝛽𝑈

2
∥𝑈 − 𝐿 ∥2

𝐹 + _∥𝐿 ∥𝑙𝑝 (8)

arg min
𝑈

𝛽X
2

∥Γ −𝑈𝑉 ∥2
𝐹 + ΛX (X −𝑈𝑉 ) + _𝛽𝑈

2
∥𝑈 − 𝐿 ∥2

𝐹 (9)

arg min
𝑄

𝛽𝑉

2
∥𝑉 − 𝑄∥2

𝐹 + ΛX (X −𝑈𝑉 )𝑠.𝑡 . ∥𝑄∥2
𝐹 < 1 (10)

arg min
𝑉

𝛽X
2

∥X −𝑈𝑉 ∥2
𝐹 + ΛX (X −𝑈𝑉 ) + 𝛽𝑉

2
∥𝑉 − 𝑄∥2

𝐹

+ Λ𝑉 (𝑉 − 𝑄)
(11)

arg min
X

∥RX − 𝑦 ∥2
𝐹 + 𝛽X

2
∥X −𝑈𝑉 ∥2

𝐹 + ΛX (X −𝑈𝑉 )

+ _2 ∥N𝑤 ( |X | ) ∥2
(12)

At each iteration, we use a steepest ascent method to update all the
Lagrange multipliers, as follows,

Λ𝑉(𝑛+1) = Λ𝑉𝑛 + 𝛽𝑉 (𝑉𝑛+1 − 𝑄𝑛+1 ) (13)

ΛX(𝑛+1) = ΛX𝑛 + 𝛽X (X𝑛+1 −𝑈𝑛+1𝑉𝑛+1 ) . (14)

The similar solution of these five subprobles can be obtained in [15].
The solution for Eq. (8), Eq. (11) and Eq. (12) can be obtained by shrink-
age rule. Eq. (9) and Eq. (10) is a quadratic subproblem, which yields
closed form solution.

Experiments and analysis of results: To demonstrate the effectiveness
of the proposed algorithm in reconstructing the backscattering coeffi-
cients of anisotropic targets, we conducted simulations and experiments.
In both instances, we divided each subaperture into 1 degree increments,
selecting a total of 20 subapertures. In the simulation designed to eval-
uate the proposed method, we employed the sinc function to charac-
terize the aspect dependence of anisotropic objects. In the experiments,
we utilized data from the Gotcha dataset [16], which features a target
scenario of a parking lot filled with numerous cars. The Convolutional
Neural Network (CNN) used in Hybrid-WASAR is pre-trained in a man-
ner similar to the approach described in [8]. We set the number of basis
functions in dictionary learning to 40. We compared the performance of
Hybrid-WASAR with the backward projection (BP) algorithm [17] and
the CS algorithm [18] to evaluate its effectiveness.

Figure 2 presents the subaperture reconstruction simulation results
for anisotropic targets using the BP, CS, and Hybrid-WASAR algo-
rithms. All three methods demonstrate accurate reconstruction capabili-
ties. However, Hybrid-WASAR outperforms the BP and CS algorithms
in reconstructing the subaperture corresponding to the target’s maximum
response amplitude, where the latter two exhibit minor deviations. As the
scattering amplitude gradually decreases, the BP and CS algorithms pro-
duce larger deviations, while Hybrid-WASAR continues to deliver supe-
rior reconstruction results. This closely aligns with the true sinc function
curve, ultimately generating a more accurate image.

Figure 3 shows the subaperture and full-aperture reconstruction
results of the Gotcha dataset using the BP, CS, and Hybrid-WASAR
algorithms. In the subaperture results, the BP algorithm yields the poor-
est performance, exhibiting numerous sidelobes and noise, which hin-
der effective target distinction. In contrast, both the CS and Hybrid-
WASAR algorithms display substantially fewer sidelobes. The target
edges are more clearly and sharply depicted with Hybrid-WASAR, espe-
cially in the lower left section of the image, where the proposed method
demonstrates enhanced distinguishability. Subsequently, we generate
full-aperture images from the subaperture images. The Hybrid-WASAR
algorithm noticeably reduces the sidelobes of the strong point target

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el



compared to BP and CS. Moreover, the car within the red box in the
figure is better imaged by the proposed method. Figures 3(d), 3(e), and
3(f) highlight two rows of cars framed in red, while Figure 4 provides a
magnified view of these vehicles. Table 1 presents the target background
ratio (TBR) and entropy of the WASAR imaging results, revealing that
the proposed algorithm outperforms the other methods in both TBR and
entropy. This demonstrates the superior reconstruction capabilities of the
proposed method.

Conclusion: In this paper, we introduced the application of Hybrid Rep-
resentation to WASAR, resulting in the novel Hybrid-WASAR imag-
ing method. The proposed method employs CNN representation for
subaperture images, taking advantage of the training sample set for
isotropic targets within subapertures. Simultaneously, dictionary learn-
ing for anisotropic targets across different subapertures eliminates the
need for additional training data. This approach achieves an optimal
balance between training sample requirements and reconstruction per-
formance. By utilizing the ADMM method, Hybrid-WASAR decom-
poses the optimization problem into individual sub-problems and iter-
atively solves each one to obtain optimal results. When compared to
the BP and CS algorithms, Hybrid-WASAR delivers superior imaging
quality for anisotropic targets. Both simulation and real-data experiment
results demonstrate that Hybrid-WASAR provides enhanced reconstruc-
tion accuracy, as well as improved sidelobe suppression and noise reduc-
tion capabilities.
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Table 1. The TBR and entropy of the Gotcha dataset

BP CS Hybrid-WASAR

TBR(dB) 25.84 32.25 36.19

Entropy 5.52 5.36 5.27

Fig 2 Reconstruction result of anisotropic target over all the subapertures.
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