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Abstract

The identification of multiple-input multiple-output (MIMO) systems is an important part of designing complex control systems.
This paper studies an auxiliary model least squares iterative (AM-LSI) algorithm for MIMO systems. With the expansion of
the system scale and limitations of the computer resources, there is an urgent need for an identification algorithm that provides
higher computational efficiency. To address this issue, this paper further derives a hierarchical identification model and proposes
a new auxiliary model hierarchical least squares iterative (AM-HLSI) algorithm for MIMO systems by applying the hierarchical
identification principle. Through the analysis of the computational efficiency, the AM-HLSI algorithm has higher computational
efficiency than the AM-LSI algorithm. Additionally, the feasibility of the AM-LSI and AM-HLSI algorithms is validated by a

simulation example.
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SUMMARY

The identification of multiple-input multiple-output (MIMO) systems is an important part of designing
complex control systems. This paper studies an auxiliary model least squares iterative (AM-LSI) algorithm
for MIMO systems. With the expansion of the system scale and limitations of the computer resources, there
is an urgent need for an identification algorithm that provides higher computational efficiency. To address
this issue, this paper further derives a hierarchical identification model and proposes a new auxiliary model
hierarchical least squares iterative (AM-HLSI) algorithm for MIMO systems by applying the hierarchical
identification principle. Through the analysis of the computational efficiency, the AM-HLSI algorithm has
higher computational efficiency than the AM-LSI algorithm. Additionally, the feasibility of the AM-LSI and
AM-HLSI algorithms is validated by a simulation example.
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1. INTRODUCTION

Mathematical models are crucial in designing actual control systems [1,2]. The analytical method
[3-5] and the experimental method (i.e., system identification) [6—8] are used to establish the
mathematical model of control systems. The analytical method relies on the physical or chemical
laws to analyze the internal mechanism of the system and establish the mathematical model.
However, it is often challenging to obtain the internal structures of actual control systems. Therefore,
system identification is more generally used to establish the mathematical models of control
systems. System identification methods have been developed to solve the identification problems
of the linear or nonlinear scalar systems [9, 10]. For switched linear systems, Louis et al. proposed
a new identification algorithm based on the statistical learning theory and illustrated the accuracy
of the proposed method [11]. Alex et al. quantified the input and output of finite-impulse response
systems into the binary values, estimated the joint probabilities of the unquantized signals from the
binary signals, and inferred the system parameters [12].

In recent years, the scale of control systems has become larger and larger, and multiple-input
multiple-output (MIMO) systems have gradually replaced scalar systems [13, 14]. Compared with
scalar systems, MIMO systems have higher orders and more parameters, which brings more
challenges to establish the mathematical model of MIMO systems. For the identification of
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MIMO systems, many scholars have studied the relevant identification algorithms [15-17]. For
output-error linear MIMO models, Formentin et al. developed a novel theoretical framework for
the control-oriented identification based on a Bayesian perspective on modeling and derived a
Bayesian robust control design approach [18]. Cerone et al. studied the structured discrete-time
nonlinear systems and proposed a single-stage set-membership identification algorithm to solve the
problem in the context of the set-membership errors-in-variables identification [19]. For multivariate
control systems with colored noise, Ma et al. proposed a filtering-based recursive generalized
extended least squares algorithm and used the multi-innovation identification theory to improve the
parameter estimation accuracy [20]. For multivariable equation-error systems, Xia et al. presented a
maximum likelihood least squares-based iterative identification approach by combining the iterative
identification technique with the maximum likelihood principle [21]. The algorithms mentioned
above can effectively solve the identification problems of MIMO systems. However, there are
still some issues in identifying MIMO systems, such as the heavy calculation burden and the low
identification accuracy.

In order to reduce the calculation burden and improve the identification accuracy, this paper
applies the hierarchical identification principle to identify MIMO systems [22,23]. The hierarchical
identification principle is a significant method to simplify the system structure and improve the
identification calculation efficiency [24]. The operation of the hierarchical identification principle
is to decompose the complex system into several subsystems and establish an identification model
for each subsystem. There are frequently some associate items between these subsystems, so the
coordination of these associate items needs to be considered during the identification process.
For bilinear state-space systems with colored noise, Shahriari et al. studied a four-stage recursive
least squares algorithm and a four-stage stochastic gradient algorithm by using the hierarchical
identification principle [25]. Chaudhary et al. gave a fractional hierarchical gradient descent
method by combining the hierarchical identification principle with the gradient descent method,
which solved a nonlinear system identification problem [26]. Liu et al. considered the parameter
estimation problems of two-input single-output Hammerstein output-error moving average systems,
decomposed the system into two subsystems based on the hierarchical identification principle, and
presented a hierarchical least squares algorithm [27].

The auxiliary model identification idea has been widely applied in system identification. Despite
the fact that MIMO systems contain a large amount of measurement information, there are still some
unmeasurable variables within the system. Therefore, it is necessary to establish auxiliary models
to obtain estimated values for these unmeasurable variables. For dual-rate Hammerstein-Volterra
systems, Zong et al. solved the problem of the incomplete identification data caused by the dual-
rate sampling through using the auxiliary model method and proposed an auxiliary model-based
hybrid particle swarm-gradient algorithm [28]. Chaudhary et al. studied an auxiliary model-based
normalized variable initial value fractional least mean square algorithm for input nonlinear output-
error system by using the auxiliary model identification idea [29].

This paper aims to propose a new highly computational efficiency algorithm for MIMO systems.
The main contributions of this paper lie in the following aspects.

e Through using the auxiliary model for estimating the unknown fictitious output, we give
an auxiliary model least squares iterative (AM-LSI) algorithm for identifying the MIMO
systems.

e To improve the computational efficiency and the identification accuracy, an auxiliary model
hierarchical least squares iterative (AM-HLSI) algorithm is further proposed by using the
hierarchical identification principle.

e Moreover, the computational efficiency of the AM-LSI and AM-HLSI algorithms is analyzed
in detail. The performance of the AM-LSI and AM-HLSI algorithms is tested in the numerical
simulation example.

The organization of this paper is as follows. Section 2 defines some symbols and derives an
identification model of the MIMO systems. In Section 3, the AM-LSI algorithm is presented by
applying the auxiliary model identification idea. Section 4 transforms the identification model in
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Section 2 into a hierarchical identification model and further proposes a highly computational
efficiency AM-HLSI algorithm. For comparison, Section 5 analyzes the computational efficiency
of the AM-LSI and AM-HLSI algorithms. Moreover, the simulation example of these algorithms is
given in Section 6. Finally, Section 7 gives some concluding remarks.

2. SYSTEM DESCRIPTION AND IDENTIFICATION MODELS

Let us introduce some notations first. ‘X =: Y or ‘Y := X’ represents ‘Y is defined as X’; the
norm of a matrix X is defined by || X || := 1/tr[X X T]; the symbol I,, denotes an identity matrix
of size n x n; the symbol 1,, denotes a n-dimensional column vector whose elements are 1; the
superscript T denotes the vector or matrix transpose; the symbol z~! represents the unit backward
shift operator: 2~ 1y(t) := y(t — 1).

Consider the MIMO system described by the following output-error model,

' Bii(z) Bi2(2) Bi,(2) 7]

y1(1) A Al T A u(t) v ()
Boi(z)  Baa(z) Bar(2)
w® || 20 Ame T Ao “2@ . ”2@ | O
m(t Bmi(2) Bma2(z) . Bimr(2) u(T U (T
y ( ) L Arni(z) Amz(z) Awm‘(z) J ( ) ”( )
where the dimensions m and r are known, y;(¢), i = 1,2,--- ,m, is the ith output of the system,
u;j(t),j =1,2,---,r,is the jth input of the system, v; (¢) is the white noise with zero mean, A;;(z) is

the denominator of the transfer function from the jth input to the ith output, B;;(z) is the numerator
of the transfer function from the jth input to the ith output. The polynomials A;;(z) and B;;(z) are
defined as

Aij (Z) = ]. =+ aij(1)271 —+ (1@(2)272 + -4 aij (nj)Zinj, (2)
Bij(z) = bij(l)z_l + bij(Q)z_Q 4+ 4 bij(nj)z_nj- (3)
Assume that the order n; is known. a;;(1),a;(2),--- ,a;j(n;),bi;(1),0:5(2),--- ,bij(n;) are the

unknown parameters to be estimated from the available input-output data {u, (¢), y;(¢)}. It is difficult
to directly identify this MIMO system. One effective method is to decompose the MIMO system
into m multiple-input single-output subsystems,

yi(t) == 218“1“) izzgug(t)+m+Air(2)

ur(t) + vi(t)

_ N Bl .
- LR
j=1
Introduce the fictitious output:
.. Biilz)
xi;(t) == Aij(z)u](t). (5)

Substituting (2)—(3) into (5), we have

i (1) = —[ai;(1)z 7" +aij(2)27% + - + agg(ny) 27 e (1)
Hlig ()27 +b35(2) 272 4 - 4 bij(ny) 2" uy(t)

= —aij(Dai;(t — 1) — ai(2)wi;(t = 2) — -+ — agi(ny)i; (t — ny)
+bi;(1)uj(t — 1) + b3 (2)u;(t — 2) + - - - + bij(nj)u;(t — nyj)
= <P1Tj (1), (6)
where the sub-parameter vector v;; and the sub-information vector ¢;;(t) are defined as
Vi = [aij(1), ai;(2), -+ aij(ng), by (1), b5 (2), -+, bij(ny)]" € R*™, @)
Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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@ij(t) ==[—wi(t = 1), , =z (t — ng),uj(t — 1), ui(t —ny)]" € R*™. 8)

Thus, Equation (4) can be expressed as

me +'Uz

= %1( 1001 + @ ()02 + - - - + @1 (£)F4 + vi(t)

= ! (£)9; + vi(t), 9)

where the parameter vector ¥; and the information vector ;(¢) are defined as
9= [00,95, - 9T eR®™ ni=n; +ny+---+n,, (10
@ilt) = lpir (), @iz (t), -, i (D] € R*™. (11)

Equation (9) is the identification model of the MIMO system in (1). The proposed AM-LSI
algorithm in the next section is based on this identification model. This identification model involves
all the unknown parameters a;;(1),a;;(2), - ,ai;(n;),bi;(1),0i;(2),- - ,bij(n;) of the MIMO
system in (1).

3. THE AM-LSI ALGORITHM
In this section, we propose an AM-LSI algorithm based on the identification model in (9).

Consider the data from ¢ = 1 to t = L and define the stacked information matrix =;(L) and the
stacked output vector Y;(L) as

EZ(L) = [901(1)7‘101(2)a a‘Pz( )] GRszna (12)
Yi(L) = [yi(1),4i(2), -, wi(L)]T € RE. (13)
According to the identification model in (9), define the cost function:
1 &
o Y A 12
J1 (’191) = 5 ;[yi(l) %(Uﬁz]
1
= SlIVi(L) = E:(L)9i (14)

Letting 1%7 & be the kth estimate of the parameter vector 1J; and minimizing the cost function J; (9;),
we have

Vi = [E] (D) Ein(L) B (D)Yi(L). (15)

It is noteworthy that the information matrix =; ;(L) in (15) is formed by the information vector
;(t) with the unknown fictitious output z;;(¢). Therefore, Equation (15) cannot be implemented
directly. The approach is to establish an auxiliary model

Tijn(t) := Sa;'rj,]g(t)'lgij,k eR (16)

for each unknown fictitious output by using the auxiliary model identification idea. Then, form the
estimates ;; x(t) of ¢;;(t), @i k(t) of ;(t) and Z; (L) of Z;(L) as

Gije(t) = [yt — 1), -+, =2y (t — ny),uj(t — 1), ,u;(t —ny)]" € R, (17)
@ik(t) =[5 (1), Pia(t), -+, i (t)]" € R*™, (18)
Ei (L) :=[@i(1),@i(2), -, @i(L)]" € REX2™, (19)

Replacing the information matrix =;(L) in (15) with its estimate Z; (L), we can obtain the AM-
LSI algorithm for estimating 4, in (9):

Vip =2 (L) Ei k(L) EL(L)Yi(LD), (20)

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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Yi(L) = [yi(1), 4:(2), -, ()], @1
Ei(L) = [@i(1), ¢i(2), -, @i(L)]T, (22)
@i(t) = [@i (1), Pia(t), -, @i (D], (23)
@ij(t) = [=2ij(t = 1), -+, =25 (t — n),ui(t = 1), uy(t —ny)]", (24)
Bija(t) = 5 (D)Dis ks (25)
Dijok = [aijr (1), aijk(2), -+, Gije(ng), bije (1), bie (2), -, bijr(n)] (26)
Vi = [ﬁfl,ka ’%Tma o 719;‘[;-,k]T' 27

The steps for implementing the AM-LSI algorithm in (20)—(27) are listed in the following.

1. Initialize: Set data length L and the maximum iteration ky.. Let k =1, 191',0 = 12, /po,
#ij,0(t —s) = random number, t=1,2,---,L, i=1,2,---,m, j=1,2,---,r, s=
172,"' , g, Po = 106

2. Collect the input data {u;(t), t =1,2,---, L} and the output data {y;(¢), t =1,2,---,L},
construct the stacked output vector Y;(L) using (21).

3. Form the sub-information vector ¢;; (t) by (24), the information vector ¢; ;(t) by (23) and

the information matrix Z; 1, (L) by (22).

Update the parameter estimate 191-7 x through (20).

Compute Z;; 1 (t) by (25).

If i <m,leti:= i+ 1and go to Step 3; otherwise, let i = 1 and go to Step 7.

If £ < kmax, let k := k 4+ 1 and go to Step 3; otherwise, terminate the procedure and obtain

the parameter estimate ﬁi, k

Nk

‘max *

The computational efficiency is an important property of an algorithm. For large-scale systems, such
as the MIMO system in (1), its dimensions m and r and order n; are generally large numbers. The
proposed AM-LSI algorithm based on the traditional methods is difficult to satisfy the requirements
of high identification efficiency in practical applications. Therefore, this paper aims to further
propose a new identification algorithm with high computational efficiency to address this issue.

4. THE AM-HLSI ALGORITHM

The hierarchical identification principle is an effective method to simplify the system structure and
improve the computational efficiency. In this section, we derive further a hierarchical identification
model for the MIMO system in (1) by using the hierarchical identification principle. Based on the
hierarchical identification model, we further propose a highly computational efficiency AM-HLSI
algorithm to estimate the unknown parameters of the MIMO system in (1).

According to the hierarchical identification principle, we can decompose the fictitious output in
(6) as

i (t) = o ()0 + ) (1)Bij, (28)

where the sub-parameter vectors o;;; and 3;; and the sub-information vectors ¢;;(t) and 1) (t) are
defined as

[a”(l) az]( )RR vaij(nj) Te R™, (29)

ﬁm [b3 (1), b3 (2), -+ bij(ny)]" € R™, (30)
bij(t) = [—wi(t = 1), —wij(t = 2), -+, —wi;(t — ny)]T € R, (31)
(1) = [uy(t — 1), u;(t — 2),- -, u;(t —ny)]" € R™. (32)

Substituting (28) into (4), we have
Z 735 (1) + vilt

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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=¢h (D + it + -+ + ér (),
+4b1 (1) Bir + s (1) Bia + - - - + i (1) Bir + vi(t)
= ¢ (t)ou; + T (1) Bi + vi(t), (33)

where the parameter vectors «; and (3; and the information vectors ¢;(¢) and 1) (¢) are defined as

[0%1705127 . ,aiT,.]TE]R", (34)
=811, Bl -+ By, €RY, (35)
() (i (1), Pis(t), -+, &5, (1)]" € R, (36)
P(t) =[] (1), 3 (), -+, (1)]" € R™. (37)

Equation (33) is the hierarchical identification model of the MIMO system in
(1). The hierarchical identification model contains all the unknown parameters
aij(l), Clij(Q), cee Qg (nj), bij(l), bij(2), s ,bij (nj) of the MIMO system. According to the
hierarchical identification model, define two identification submodels:

S1: Yauilt) := ) () +v(t), (38)
Sg . ’-}/bﬂ:(t) = ’l,bT(t)ﬁZ =+ ’lh(t) (39)

Define the stacked information matrices #;(L) and ¥ (L), and the stacked output vectors I5, ;(L)
and I, ;(L) as

®;(L) :=[¢i(1), $:(2),--- , pi(L)]" € RF*T, (40)
(L) :=[(1),9(2), -, (L) € R**", (41)
(L) :[’Yaﬂ(l)v'ya Z( ) 5y Ya, Z(L)}T
=Y,(L) - ¥(L)B; € RE, (42)
Fb,i(L) -—[ 5,0 (1),75.4(2), - Wwa (L))"
Y;(L) — ®;(L)a; € R (43)

According to the identification Submodels S; and S,, define two cost functions:

Do) = 53 esll) — ST (D
=1
= SITi(D) - Bi(De ], (44
L
T5(B) = 5 S ualh) — w08

N
I
—

= SID(L) ~ BB 45)

Letting ¢&;  and Bi,k be the kth iteration estimates of the parameter vectors «; and 3; and
minimizing the cost functions J2(a;) and J3(3;), we have

G =P (L)®;(L) ' @] (L)T,.i(L), (46)
Bix = @ (L)W (L))" W (LI} 4(L). (47)
The stacked output vectors I, ;(L) and Iy, ;(L) in (46) and (47) contain the unknown variables a;

and ;. One may replace the unknown variables «; and 3; by their (k — 1)th iteration estimates
& ;—1 and B; 1. Thus, we have

&g = [@] (L)Pi(L)] @] (L)[Yi(L) — ¥ (L)Bi 1], (48)
Bisw =T (L)T(L))OT(L)[Y(L) — Bi(L)&ip—1]. (49)
Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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Similarly, the information vector ®;(L) in (48) and (49) is formed by the information vector
¢;(L) with the unknown fictitious output x;;(t). Therefore, Equations (48) and (49) cannot be
implemented directly. Use the same method to establish an auxiliary model

i () == P ()6 (1) + 9] (1) Biu(t) € R (50)

for each unknown fictitious output. Then, form the estimates ¢3ij, k(t) of ¢4 (t), @i x(t) of ¢;(t) and
@, (L) of ®;(L) as

Bijo(t) = [~Fij et — 1), —Ziju(t — 2), -+, =20t — ny)]" € R, (51)
Gii(t) =[] £, ¢2T2 (), aﬁ%«k( Nt eR™, (52)
B k(L) =i n(1), Gin(2),- -, in(L)]" € REX™. (53)

Replacing the information vector &;(L) in (48) and (49) with its estimate &; ;,(L), we can obtain
the AM-HLSI algorithm for estimating «; and 3; in (33):

G = (@] (L)Bi k(L)) 8 (D)[Yi(L) — ¥(L)Bi 1), (54)
Bix =W (L)W (L)' O (L)[Yi(L) — & k(L) i 1], (55)
Yi(L) =[yi(1),5:(2), - ,wi(L)]", (56)
®; (L) = [p1.1(1), Pik(2), - Pin(L)]", (57)
P(L)=[(1),%(2), ,¢( IR (58)
G (t) = [dh1 (1), o i (£), -+, by (D], (59)
Y(t) =1 (1), (t), - 4, ()] (60)
B (1) = [=iju(t = 1), =i (t = 2),- -, =iyt = )], (61)
%(t):[uj(t*l) wj(t =2),- - ui(t —ny)l", (62)
Bijn(t) = @iy () Gij e + ) (8)Bijins (63)
Qijk = [aij k(1) @ik (2), - @i p(ny)]", (64)
Bijk = [bij(1),bijk(2), -, bije(n)]", (65)
Q= [Ale,/c A;’r27k> o OA%'TT W (66)
Bi,k—[BzT1 3o Big 7/32rk] . (67)

The steps for implementing the AM-HLSI algorithm in (54)—(67) are listed in the following.

1. Initialize: Set data length L and the maximum iteration km.. Let k=1, é&;0=
1,/po, ﬁfiyo =1,/po, &ij,0(t —s) = random number, t =1,2,--- ,L, i=1,2,--- ,m, j=
1,2,---,r,s=1,2,--- ,nj,po = 108.

2. Collect the input data {u;(t), t =1,2,---,L} and the output data {y;(t), t =1,2,--- ,L},
construct the stacked output vector Y;(L) using (56). Form the sub-information vector ;(t)
by (62), the information vector 1)(¢) by (60) and the information matrix ¥(L) by (58). Let
1=1.

3. Form the sub-information vector ¢ij7k(t) by (61), the information vector ¢; x (t) by (59) and

the information matrix @, (L) by (57).

Update the parameter estimates ¢&; j through (54) and ﬁzk through (55).

Compute ;1 (t) by (63).

Ifi < m,leti:=1d+ 1and go to Step 3; otherwise, let i = 1 and go to Step 7.

If £ < kmax, let k := k 4+ 1 and go to Step 3; otherwise, terminate the procedure and obtain

the parameter estimates ¢&; .. and ﬁl Fomax -

Nk

This section proposes a highly computational efficiency AM-HLSI algorithm. In order to show
the advantages of the AM-HLSI algorithm, we compare the computational efficiency of the AM-
LSI and AM-HLSI algorithms in detail in the next section. The hierarchical identification principle

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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plays an important role not only in finding the solutions for identifying MIMO systems, but also
in deriving the parameter estimation algorithms for other linear [30-32] and nonlinear systems
[33-35].

5. THE ANALYSIS OF THE COMPUTATIONAL EFFICIENCY

In this section, we analyze the computational efficiency of the AM-LSI and AM-HLSI algorithms.
The computational efficiency is measured by the number of multiplications (division is treated as
multiplication) and the number of additions (subtraction is treated as addition). An addition or
multiplication operation is called one floating point operation, i.e., one flop. The computational
efficiency of the AM-LSI and AM-HLSI algorithms at each iteration is listed in Table I-II.

Table I. The computational efficiency of the AM-LSI algorithm

Expressions Multiplications Additions

Dk =0, (L)ET(L)Yi(L) €R" 4Lmn2 + 2Lmn 4Lmn2 — 2mn

O, k(L) = é’jk(L)EA'Zk(L) € R(Zn)x(2n) 4Lmn? 4Lmn? — 4mn?
Q;Yk(L) = @;,i (L) e R(2n)x(2n) 8mn3 8mn3 — 4mn?
Zijk(t) = @}-j k(t)ﬁuk eR 4Lmn 2Lmn — Lmr
Subtotal flops 8Lmn? + 8mn> + 6Lmn 8Lmn? + 8mn> 4+ 2Lmn

—Lmr — 8mn? — 2mn

Total flops S1 = 16Lmn? + 16mn> + 8Lmn — Lmr — 8mn? — 2mn

Table II. The computational efficiency of the AM-HLSI algorithm

Expressions Multiplications Additions

i = Ay ()BT, (L)$2:(L) € R Lmn? + Lmn Lmn2 —mn

A; (L) == i’fk(L)‘f'z,k(L) € Rnxm Lmn? Lmn? — mn?

2,(L) :=Y;(L) =W (L)Bip_1 € RE Lmn Lmn

A (L) = AL (L) € RPX™ mn3 mn3 — mn?

éi,k =A (L)si;rk(L)Tl(L) e R"™ Lmn? + Lmn Lmn? — mn

A(L) := WT(L)¥(L) € RP¥" Ln2 Ln? —n?

T;(L) :=Yi(L) — ®; 1 (L)&; 1 € RE Lmn Lmn

A'(L) := A-1(L) e Rnxn n3 n3 —n?

25 1(t) = (ﬁzj,k(t)dij,k + cpy(t)ﬁAij,k eR 2Lmn 2Lmn — Lmr

Subtotal flops 3Lmn? + mn3 3Lmn? + mn® + 4Lmn

+6Lmn + Ln? +n3 —Lmr + Ln? — 2mn?

+n3 — 2mn — 2n?

Total flops So = 6Lmn?® + 2mn> 4+ 10Lmn — Lmr + 2Ln?

—2mn? + 2n3 — 2mn — 2n?

According to Table I-II, the number of operations of the AM-LSI and AM-HLSI algorithms is

Sy :=16Lmn?> + 16mn> 4+ 8Lmn — Lmr — 8mn* — 2mn,
Sy :=6Lmn> + 2mn> + 10Lmn — Lmr + 2Ln? — 2mn? + 2n® — 2mn — 2n>.

Then, compare the number of operations between the AM-LSI algorithm and AM-HLSI algorithm,

Sy — Sy = (16Lmn® + 16mn® + 8Lmn — Lmr — 8mn? — 2mn)
—(6Lmn® + 2mn® + 10Lmn — Lmr + 2Ln* — 2mn* 4+ 2n® — 2mn — 2n?)
=10Lmn? + 14mn3 — 2Lmn — 2Ln* — 6mn® — 2n> + 2n>.
The accuracy of the identification algorithm depends on the data length L, so the data length L
should be large enough, i.e., L > m and L > n. Therefore, we have S; — So > 0. Compared with

the AM-LSI algorithm, the AM-HLSI algorithm effectively improves the computational efficiency
by using the hierarchical identification principle. For example, letting L = 2000, m = 1000, n =

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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5000 and r = 1000, we have

Sp—So=(4x 10" +2x10° +8x 10" —2 x 10 —2 x 10" — 1 x 107)
—(1.5 x 10" +2.5 x 10" + 1 x 10" — 2 x 10°
+1 x 10" =5 x 1019 + 2.5 x 10™ — 6 x 107)
=4.00199987799 x 10'® — 1.50025037994 x 10'®
= 2.50174949805 x 10'® flops.

In order to visually show the difference of the number of operations between the AM-LSI and AM-
HLSI algorithms, we fix » = 500 and the data length L = 1000, and draw the number of operations
versus m and n in Figure 1.

x
~ o,
a3

o

AM-HLSI
w

o

500
2500

Figure 1. The AM-LSI and AM-HLSI flop numbers versus m and n

6. EXAMPLE

In this section, the simulation example is provided to illustrate the efficiency of the AM-LSI and
AM-HLSI algorithms. Consider the following two-input two-output system,

Bii(z) Bus(z)
l (t)] ThG) A [Ul(f)] . lvl(t)l
O] | &g =g | le0] [eo]

An(z)=1+0. 46z—1 +0.23272, App(2) =14+0.43271 +0.28272,
Ag1(2) =14 054271 —0.22272, Agp(2) =14 0.66271 +0.37272,
B11(2)=0.582"1 4+ 1.37272, Bia(z) = 027271 +0.32272,
1321(z) 0.68271 +0.29272, Bago(z) = 0.7127 1 +0.57272,
=[a11(1),a11(2), a12(1), a12(2)]" = [0.46,0.23,0.43,0.28],
[b11(1),b11(2),b12(1), b12(2)]" = [0.58,0.37,0.27,0.32]",
[a21(1), a1(2), asa(1), asa(2)]T = [0.54, —0.22,0.66,0.37]T,
[b21(1), D21 (2), baa(1), baa (2)]T = [0.68,0.29,0.71,0.57]T,
[a11(1),a11(2), b11 (1), b11(2), a12(1), a12(2), b1a(1), b12(2)]"
[
[
[

0.46,0.23,0.58,0.37,0.43,0.28, 0.27,0.32] ",

a21(1), a21(2), b21 (1), b21(2), a22(1), a2(2), ba2(1), ba2(2)]"
0.54,—0.22,0.68,0.29,0.66,0.37,0.71 057]

In simulation, the inputs w;(¢) and wus(t) are taken as uncorrelated persistent excitation signal
sequences with zero mean and unit variance. The noises vy (¢) and vo(t) are taken as uncorrelated
white noise sequences with zero mean. When the noise variance o2 = 1.002, the 1st output channel

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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noise-to-signal ratio of the system is d,s = 208.57% and the 2st output channel noise-to-signal ratio
of the system is d,; = 147.86%. Define the parameter estimation error:

8= &y, B — laf, BT/ || [ef, BTl x 100%
i=1

= > 19k — sll/I19:]| x 100%.
=1

To test the performance of the AM-LSI algorithm in (20)—(27) and the AM-HLSI algorithm in
(54)—(67). Take the noise variance o> = 0.10% and the data length L = 1000, and apply the AM-LSI
and AM-HLSI algorithms to identify this MIMO system. The AM-LSI and AM-HLSI parameter
estimates versus k are listed in Table III and the AM-LSI and AM-HLSI parameter estimation errors
versus k are shown in Figure 2.

Table III. The AM-LSI and AM-HLSI parameter estimates versus k (02 = 0.10%)

Algorithms k 5 10 20 50 100 True values
AM-LSI a11(1) 0.45958 0.46170 0.46224 0.46226 0.46226 0.46000
a11(2) 0.22972 0.23149 0.23148 0.23148 0.23148 0.23000
a12(1) 0.42369 0.42563 0.42548 0.42547 0.42547 0.43000
a12(2) 0.28903 0.28890 0.28884 0.28884 0.28884 0.28000
a21(1) 0.53567 0.54714 0.54059 0.54420 0.54674 0.54000
a21(2) -0.22754 -0.21903 -0.22249 -0.21991 -0.21824 -0.22000
az2(1) 0.66600 0.66045 0.65990 0.65433 0.65077 0.66000
a22(2) 0.36351 0.36728 0.36763 0.36364 0.36093 0.37000
b11(1) 0.58808 0.58676 0.58684 0.58684 0.58684 0.58000
b11(2) 0.37370 0.37439 0.37474 0.37475 0.37475 0.37000
bi2(1) 0.27443 0.27416 0.27414 0.27415 0.27415 0.27000
b12(2) 0.31578 0.31634 0.31630 0.31630 0.31630 0.32000
ba1(1) 0.68912 0.68334 0.68513 0.68261 0.68134 0.68000
b21(2) 0.29466 0.30126 0.29765 0.29884 0.29985 0.29000
b22(1) 0.70446 0.71155 0.70842 0.71001 0.71022 0.71000
b22(2) 0.57749 0.57346 0.57249 0.56914 0.56651 0.57000
5(%) 1.29774 1.08921 0.94850 1.05014 1.24065

AM-HLSI a11(l) 0.12934 0.28466 0.42484 0.46209 0.46226 0.46000
a11(2) 0.25647 0.24154 0.23253 0.23148 0.23148 0.23000
a12(1) 0.37873 0.42204 0.42441 0.42546 0.42547 0.43000
a12(2) 0.27357 0.28872 0.28889 0.28884 0.28884 0.28000
a21(1) 0.11140 0.28929 0.47681 0.54140 0.54157 0.54000
a21(2) -0.31551 -0.28351 -0.24193 -0.22185 -0.22209 -0.22000
a22(1) 0.27620 0.58454 0.66686 0.66288 0.65882 0.66000
a22(2) 0.33655 0.34892 0.37177 0.37122 0.36928 0.37000
bi1(1) 0.58813 0.58815 0.58733 0.58685 0.58684 0.58000
b11(2) 0.17927 0.27108 0.35299 0.37465 0.37475 0.37000
b12(1) 0.27309 0.27333 0.27395 0.27415 0.27415 0.27000
b12(2) 0.30062 0.31422 0.31579 0.31630 0.31630 0.32000
ba1(1) 0.68042 0.68322 0.68353 0.68344 0.68374 0.68000
b21(2) 0.00373 0.12761 0.25430 0.29755 0.29775 0.29000
b22(1) 0.70598 0.70717 0.71085 0.71261 0.71402 0.71000
b22(2) 0.30289 0.52089 0.57983 0.57634 0.57372 0.57000

5(%) 43.11816 20.29852 4.69544 0.98435 0.95935

In order to study the influence of the different noise variances on the AM-LSI and AM-HLSI
algorithms, we set the noise variances between o2 = 0.202 to 02 = 1.20% and the data length
L =1000, and use the AM-LSI and AM-HLSI algorithms to identify this system. Figure 3 and
Figure 4 show the AM-LSI and AM-HLSI parameter estimation errors versus k under the different
noise variances.

To compare the influence of the different data lengths on the AM-LSI and AM-HLSI algorithms.
First, we fix L =400, L = 800 and L = 1200, and apply the AM-LSI algorithm to estimate this
MIMO system. The AM-LSI parameter estimation errors versus k are presented in Figure 5. Then,
we take L = 400, L = 600, L = 800, L = 1000 and L = 1200, and adopt the AM-HLSI algorithm
to estimate this MIMO system. The AM-HLSI parameter estimates versus k are listed in Table IV
and the AM-HLSI parameter estimation errors versus & are presented in Figure 6.

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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Figure 2. The AM-LSI and AM-HLSI parameter estimation errors & versus k (o2 = 0.10?)

Figure 3. The AM-LSI parameter estimation errors & versus k under different ¢

From Table III-IV and Figures 2—-6, we can draw the following conclusions.

e The AM-LSI and AM-HLSI parameter estimation errors become smaller as the iteration k
increases. Thus, the proposed algorithms are effective for the MIMO systems.

e The AM-HLSI algorithm has higher parameter estimation accuracy than the AM-LSI
algorithm under the same noise variance and data length.

e A lower noise variance leads to higher parameter estimation accuracy given by the AM-LSI
and AM-HLSI algorithms under the same data length.

e As the data length increases, the parameter estimation errors for both AM-LSI and AM-HLSI
become smaller under the same noise variance. However, these errors cannot be reduced
infinitely. When the data length reaches 1000, the AM-HLSI estimation error stabilizes at
approximately 1%. Therefore, it is important to select an appropriate data length for practical
applications.

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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Kk 100 g2 ,

Figure 4. The AM-HLSI parameter estimation errors § versus k under different o2
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Figure 5. The AM-LSI parameter estimation errors § versus k under different L (62 = 0.102)

7. CONCLUSIONS

In this paper, we study the parameter identification of the MIMO systems described by the output-
error model and give an AM-LSI algorithm by using the auxiliary model idea. In order to improve
the computational efficiency, a highly computational efficiency AM-HLSI based on the hierarchical
identification principle is further proposed in this paper. Through the analysis of the AM-LSI and
AM-HLSI algorithms, the AM-HLSI algorithm has higher computational efficiency than the AM-
HLS algorithm. The proposed AM-HLSI algorithm can effectively reduce the computational burden
and improve the computational efficiency. The simulation example demonstrates that the AM-LSI
and AM-HLSI algorithms are effective to identify the MIMO systems. Compared with the AM-
LSI algorithm, the AM-HLSI algorithm has higher parameter estimation accuracy under the same
conditions. The proposed AM-HLSI algorithm has excellent performance in identifying MIMO
systems.
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Table IV. The AM-HLSI parameter estimates versus & under different L (0% =0.10%)

L k 5 10 20 50 100 True values
400 a11(1) 0.14903 0.28911 0.40092 0.42830 0.42843 0.46000
a11(2) 0.26238 0.24740 0.23802 0.23643 0.23642 0.23000
ai2(1) 0.36334 0.40313 0.40949 0.41082 0.41082 0.43000
a12(2) 0.28621 0.28953 0.28765 0.28715 0.28715 0.28000
az1(1) 0.17967 0.38857 0.51405 0.55297 0.55338 0.54000
a21(2) -0.32668 -0.26434 -0.22251 -0.20847 -0.20932 -0.22000
a22(1) 0.35965 0.63988 0.66602 0.66320 0.65824 0.66000
a22(2) 0.32711 0.35205 0.36782 0.36799 0.36446 0.37000
b11(1) 0.58343 0.58606 0.58634 0.58620 0.58620 0.58000
b11(2) 0.19585 0.27723 0.34173 0.35742 0.35749 0.37000
b12(1) 0.28081 0.27707 0.27474 0.27404 0.27404 0.27000
b12(2) 0.29309 0.30061 0.30103 0.30112 0.30112 0.32000
b21(1) 0.65832 0.67697 0.68308 0.68254 0.68167 0.68000
b21(2) 0.05949 0.19118 0.27313 0.29807 0.29815 0.29000
baa (1) 0.73455 0.72015 0.71752 0.71705 0.71658 0.71000
b22(2) 0.36481 0.55926 0.57592 0.57409 0.57055 0.57000
(%) 36.55720 14.71396 4.28540 2.67973 2.66678
800 a11(1) 0.14934 0.29245 0.41904 0.45403 0.45422 0.46000
a11(2) 0.25375 0.24092 0.23332 0.23239 0.23238 0.23000
a12(1) 0.41917 0.43469 0.43351 0.43256 0.43255 0.43000
a12(2) 0.26010 0.27719 0.27800 0.27798 0.27798 0.28000
az1(1) 0.13717 0.30591 0.47912 0.53446 0.53436 0.54000
a21(2) -0.29689 -0.27888 -0.24141 -0.22420 -0.22461 -0.22000
az2(1) 0.27085 0.56436 0.66229 0.66813 0.66510 0.66000
a22(2) 0.34112 0.35251 0.37318 0.37347 0.37129 0.37000
b11(1) 0.58322 0.58474 0.58477 0.58456 0.58455 0.58000
b11(2) 0.19336 0.27726 0.35124 0.37160 0.37171 0.37000
b12(1) 0.25599 0.25787 0.25981 0.26045 0.26045 0.27000
b12(2) 0.31463 0.31863 0.31728 0.31665 0.31664 0.32000
b21(1) 0.66773 0.67171 0.67394 0.67433 0.67513 0.68000
b21(2) 0.02705 0.13717 0.24929 0.28578 0.28616 0.29000
baa(1) 0.71137 0.71039 0.71089 0.71000 0.70895 0.71000
b22(2) 0.28330 0.49708 0.57290 0.57836 0.57585 0.57000
(%) 41.64961 19.62713 4.82775 1.10666 0.97641
1200 a11(1) 0.13418 0.28962 0.42958 0.46724 0.46742 0.46000
a11(2) 0.25755 0.24288 0.23485 0.23410 0.23410 0.23000
a12(1) 0.39774 0.42845 0.42745 0.42769 0.42769 0.43000
a12(2) 0.26524 0.28103 0.28284 0.28340 0.28340 0.28000
az1(1) 0.13765 0.32243 0.48886 0.53597 0.53615 0.54000
a21(2) -0.32085 -0.28922 -0.24546 -0.22967 -0.22977 -0.22000
az2(1) 0.29563 0.58642 0.65986 0.65904 0.65636 0.66000
a22(2) 0.34035 0.35405 0.37352 0.37349 0.37200 0.37000
b11(1) 0.58540 0.58519 0.58462 0.58431 0.58431 0.58000
b11(2) 0.18130 0.27193 0.35333 0.37518 0.37528 0.37000
b12(1) 0.26942 0.26828 0.26749 0.26727 0.26727 0.27000
b12(2) 0.30481 0.31479 0.31576 0.31619 0.31620 0.32000
b21(1) 0.67417 0.67573 0.67748 0.67796 0.67823 0.68000
b21(2) 0.02140 0.14459 0.25627 0.28789 0.28810 0.29000
ba2(1) 0.70925 0.70854 0.70904 0.70884 0.70896 0.71000
b22(2) 0.30947 0.51547 0.56860 0.56780 0.56585 0.57000

5(%) 41.26079 18.67385 4.05958 0.91669 0.94542
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