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1. Introduction

In this work, we study some properties of the p-th mean (u,r)-pseudo almost automorphic
process using the measure theory and we use those results to study the following stochastic
evolution equations in a Hilbert space H,

dx(t) = [Ax(t) + L(xy) + f(t)]dt + g(t)dW (), for t € R (1.1)
where A : D(A) C H is the infinitesimal generator of a Cyp-semigroup (7'(t))¢>0 on H such that
|T(t)|| < Me™“*, for t >0,

for some M,w >0, f: R — LP(Q,H) and g : R — LP(§2, H) are appropriate functions specified
later, and W (t) is a two-sided standard Brownian motion with values in H.

C = C([-r,0],LP(Q2, H)) denotes the space of continuous functions from [—r,0] to LP(Q2, H)
endowed with the uniform topology norm. For every ¢t > 0, x; denotes the history function of C
defined by z4(0) = z(t +6) for —r <0 <0.

We assume (H, ||, ||) is a real separable Hilbert space and LP(2, H) is the space of all H-valued
random variables x such that

||| = / |zlPdP < oo.
Q

The concept of almost automorphiy is a generalization of the clasical periodicity. It was indro-
duced in literrature by Bochner This work is an extension of [11] whose authors had studied
equation (1.1) in the deterministic case. Some recent contributions concerning p-th mean pseudo
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almost automorphic for abstract differential equations similar to equation (1.1) have been made.
For example [12, 25] the authors studied equation (1.1) without operator L. They showed that
equation has unique p-th mean p-pseudo almost periodic and p-pseudo almost automorphic
solutions on R when f ¢ are p-th mean pseudo almost periodic or p-th mean pseudo almost
automophic functions.

This work is organized as follows, in section 2, we give the spectral decomposition of the phase
space, in section 3, we study p-th mean (u, v)-ergodic process of class r, in section 4, we study p-
th mean (u, v)-pseudo almost automorphic process and we discuss the existence and uniqueness
of p-th mean (u, v)-pseudo almost automorphic solution of class r, the last section is devoted to
application.

2. Spectral decomposition

To equation (1.1), associate the following initial value problem

duy = [Aug + Lug + f(t)]dt + g(t)dW (t) for t > 0
(2.1)
uy = € C=C([-r0],LP(Q, H)),

where f: RT — LP(Q, H) and g : Rt — LP(2, H) are two stochastic processes continuous.

Definition 2.1. We say that a continuous function u : [—r,+oo[— LP(Q), H) is an integral
solution of equation, if the following conditions hold :

(1)/ s)ds € D(A) fort >0,

(2) u +A/ ds+/ (L(us) +f(s))ds+/0 g(s)dW (s) fort >0,
(3) uo =

If D(A) = LP(Q, H), the integral solution coincide with the know mild solutions. One can se
that if u(t) is an 1ntegral solution of equation (2.1), then u(t) € D(A) for all t > 0, in particular
©(0) € D(A). Let us introduce the part Ay of the operator A which defined by

D(Ap) = {z € D(A) : Az € D(A)}
Apx = Az for x € D(Ay).

We make the following assumption.
Hj A satisfies the Hille-Yosida condition.

Proposition 2.2. Ay generates a strongly continuous semigroup (To(t))e>0 on D(A). The phase
Co of equation (2.1) is defined by
Co={p € C:¢(0) € D(A)}.
For each ¢t > 0, we define the linear operator U(t) on Cy by
Z/{(t) = 'Ut(-, @)7
where v(., ¢) is the solution of the following homogeneous equation
d

%v(t) = Av(t) + L(vy)for t > 0

v=¢p€Cl
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Proposition 2.3. (U(t)):>0 is strongly continuous semigroup of linear operators on Cy. Moreo-
ver (U(U))e>0 satisfies for t > 0 and § € [—r,0] the following translation property

(U(t+ 0)p)(0) fort+6 > 0.
(U(t)>0 =
o(t+0) fort+6 <0.

Proposition 2.4. [23] Let Ay defined on Cy by
D(Ay) = {p € C*([-7,0; X),(0) € (D(A),»(0) € D(A) and (0)' = Ap(0) + L(y)}

Aup = ¢' € D(Au)

Then A, is the infinitesimal generator of the semigroup (U(t)); > 0 on Cj.
Let <X0> be the space defined by

(Xo)={Xoc:ce X},
where the function Xyc is defined by
0if 6 € [—r,0]
(Xoc)(0) =
cif§ =0.
The space Cy ® <X0> equipped with the norm |¢ + Xocle = |@|c + |c| for (¢, ¢) € Cp x X is a
Banach space. Consider the extension 4y, defined on C,, ® <X0> by

D(Ay) = { € C'(|=,0}, X) : 9(0) € D(A) and 4(0) € D(A)}

Ay = Xo(Ap(0) + L) — 0(0)).

Lemma 2.5. [24] Assume that (Hy) holds. Then, Ay satisfies the Hile-Yosida condition on
Co @® (Xo) there exist M >0, @ € R such that |, +oo[C p(Ay) and

|()\I—.21vu)_”|§ — forn € Nand A > w.

M
(A —w)
Moreover, the part offTu on D(ﬂz,{) = Cy 1is exactly the operator /Tu
Definition 2.6. We say a semigroup, (U(t))i>0 is hyperbolic if
o(Ay) NiR = @.

For the sequel, we make the following assumption :
(Hy) (T'(t))>0 is compact on D(A) for ¢ > 0.

Proposition 2.7. Assume that (Hy) and (Hy) hold. Then the semigroup (U(t))t>0 is compact
fort>r.

We get the following result on the spectral decomposition of the phase space Cj.

Proposition 2.8. Assume that (Hp) and (Hy) hold. If the semigroup U(t)s>o is hyperbolic,then
the space Cy is decomposed as a direct sum

Co=5SaU

of two U(t) invariant closed subspaces S and U such that the restriction of (U(t))i>0 on U is a
group and there exist positive constants M and w such that

Ut)p| < Me“p| fort >0 and ¢ € S,



U ()| < Me “ | for t <0 and ¢ € U,

where S and U are called respectively the stable and unstable space, 11° and II* denote respectively
the projection operator on S and U.

3. (u,v)-ergodic process in p-th mean sense of class r

Let N the Lebesgue o-field of R and by M the set of all positive measures p on N satisfying
#(R) = 400 and p([a,b]) < oo for all a,b € R (a < b). Let p > 2. LP(Q, H) is a Hilbert space

with the following norm
1
lellir = ( [ lallPap)”
Q

Definition 3.1. [20] Let  : R — LP(Q2, H) be a stochastic process.
(1) x said to be stochastically bounded in p-th mean sense, if there exists M > 0 such that
E|lz(t)||P < M for allt € R.
(2) x said to be stochastically continuous in p-th mean sense if

%imEHx(t) —xz(s)|[[P < M for all t,s € R.
—5

Let BC(R, LP(2, H)) denote the space of all the stochastically bounded continuous processes.
Remark 3.2. [20] (BC(R, LP(Q2, H)), ||.|lcc) s a Banach space, where

J2lloc = sup(E(||(t)|[7))¥
teR

Definition 3.3. Let u,v € M. A stochastic process f is said to be (u,v)-ergodic in p-th (p > 2)
mean sense, if f € BC(R, LP(Q2, H)) and satisfies
. 1 T
tim o [ B0 Pdutt) =0,
.

T—>+00 1/([—7‘, 7‘])
We denote by &,(R, LP(Q2, H), i1, v), the space of all such process.

Proposition 3.4. Let u,v € M. Then &,(R, LP(Q, H), 1, v) is a Banach space with the supre-
mum norm ||.||ec-

Definition 3.5. Let p,v € M. A stochastic process f is said to be p-th mean (p,v)-ergodic of
class r if f € BC(R,LP(Q, H)) and satisfies

. 1 /T
lim —— sup E|f(@)|Pdu(t) = 0.
(s WAL AP

We denote by &,(R, LP(Q2, H), i, v, ), the space of all such process.
For p € M and a € R, we denote p, the positive measure on (R, N') defined by

a(A) =p(la+b:be A]) for Ae N (3.1)
From pu, v € M, we formulate the following hypotheses.

(H3) Let p,v € M be such that
lim sup uwll=r7)
r—+o0 V([=7,7])
(H3) For all a, b and ¢ € R such that 0 < a < b < ¢, there exist dy and ag > 0 such that
10| > 0o = p(a+0,b40) > apu(d, ¢+ 9).
(Hy4) For all 7 € R there exist 5 > 0 and a bounded interval I such that

=0 < 0.



,u({a +7:a€ A}) < Bu(A) when A € N and satisfies ANT = @.

Proposition 3.6. Assume that (Hz) holds. Then &,(R, LP(Q2, H), i, v,7) is a Banach space with
the norm ||.||oo

Proof. We can see that &,(R, LP(Q2, H), p,v,7) is a vector subspace of BC(R, LP(Q2, H)). To
complete the proof is enough to prove that (Hz) holds. Then &,(R, LP(Q2, H), 1, v,7) is closed
in BO(R, LP(S?, H)). Let (f)n be a sequence in &,(R, LP(2, H), i, v, ) such that E:I_l fon=1f
uniformly in BC(R, LP(2, H)). From v(R) = +o0, it follows that v([—7,7]) > 0 for 7 sufficiently
large. Let ng € N such taht for all n > ng, || fn — flloo < . Let n > ng, then we have

A\

[ (s Bl < s [ s B0 - S0

[t—r,t] oc(t—r,t

v([=7,7])

2p—1 +7
_— u El fn Pld
+V([_T7TD ~/_T (Be?t—pr,t] £ ) Hit)
p—1 +T
< i [ (sl — s ) dute)
2p—1 +T
_— sup Elf.@®)|?)d
u([fwn/,f (, 00 Bl )dutt
p—1 _ FP p([=7,7]) 2! A su P
SR == e I T LT ETC

We deduce that

1 T
limsup([_TT])/ ( sup E||f(t)”p)du(t) < 27 15¢ for any e > 0.

T—=4o00 V —7  NOE[t—t

|
Next result is a characterisation of p-th mean (u,v)-ergodic processes of class r.

Theorem 3.7. Asume that (Hz) holds and let ji,v € M and I be a bounded interval (eventually
I =@). Assume that f € BC(R,LP(Q, H)). The following assertions are equivalent

Z) f € gp(Ra LP(Q7H)7/~L7V7T)

1
1) lim ——————— E| f()]|P)du(t) = 0.
i) [ (s BLAOP)an)

e v([=r, 7\ D)

oelt—r,t]
~ n(fte=n TN EIfO) > <))
iit) For any e > 0, TEEI}OO ACr AN D =0

Proof. The proof uses the same arguments of the proof of Theorem 2.22 in [28].
i) < i1). Denote By A = p(I) and B = / ( sup IEHf(G)Hp)d,u(t).
I MOeft—r,]
Since the interval I is bounded and the process f is stochastically bounded continuous. Then
A, B and C are finite.
For 7 > 0, such that I C [—7,7] and v([—7, 7] \ I) > 0, we have



TRV s ol POV 80 = G [ [ (g )i 5]

v([=7,7]) 1 /
sup E|f(0)||P)du(t
s i i S LU CLPRID
)
v([=7,7])
From above equalities and the fact v(R) = 400, we deduce i7) is equivalent to

m /W]( sup E|[fO)]P)dyut) = 0,

ToFoo V([flrv T]) oelt—r,t]

that ). 4ii) = 4i) Denote by AS and B: the following sets

A = {t el-r7]\I: sup E|f(O)|P > 5} and B = {t el-r,7]\I: sup E|f(O)|P < g}.
oelt—r,t] Oelt—r,t]

Assume that i) holds, that is

=0. (3.2)

From the equality

/[_W (O;ituf;ﬂEHf(ﬁ)H”)du@) = /A i <ae??‘1,t] LFON)dpu(t) + /B ; (ges[tu%Eufw)up)du(t)

we deduce that for 7 sufficient large

plAs) (B

1 p
/[_W( swp EIFO)IP)dnt) < ke xSy e

v([=r, 7]\ 1) ocft—rt]

Since u(R) = v(R) = oo and by using (Hz) then for all € > 0 we have

TN oo (o FOI) ) < 0

Consequently i) holds.
i) = i)

/[_Tﬁ]\l (ees[ia’t]EHf(H)Hp)du(t) > /Ai <ees[;1—€,t]E‘f(0)Hp>du<t)

p(A3)
v([-7, 7]\ )

1(A2)
v([=7, 7]\ 1)’

o) o (yom B0 a2

v, (o Bl 2

ev([=7, 7]\ I) felt—rt]

for 7 sufficiently large, we obtain equation (3.2), that is i7i). B
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Definition 3.8. Let u,v € M. A function f : R x LP(Q, H) — LP(Q2, H) is said to be (u,v)-
ergodic in p-th mean sense in t € R uniformly with the respect to v € K, if f € BC(R x
LP(Q, H),LP(Q2, H)) and satisfies

1 T
lim ———— E| f(t Pdu(t) =
Jim s [ Bl a)Pdute) = 0
where KK C LP(Q, H) is compact.

We denote &,(R x LP(Q2, H), LP(, H), pi, ) the set of all such functions.

Definition 3.9. Let p,v € M. A function f : R x LP(Q,H) — LP(Q, H) is said to be p-th
mean (p,v)-ergodic of class v in t € R wuniformly with the respect to x € K, if f € BC(R x
LP(Q,H),LP(2, H)) and satisfies

1 T
lim / sup E||f(0,x)|[Pdu(t) = 0,
A ) S F O I
where I C LP(Q2, H) is compact.

We denote &,(R x LP(Q, H), LP(Q, H), 1, v, 1) the set of all such functions.

Definition 3.10. Let pq, pg € M. We say that py is equivalent to pa , denoting this as p ~ g
if there exist constants o and B > 0 and a bounded interval I (eventually I = &) such that
ap(A) < p2(A) < Bur(A), when A € N satisfies ANT = .

Remark 3.11. The relation ~ is an equivalence relation on M.

Theorem 3.12. Let pu1,vi, po,va € M. If i ~ po and vy ~ vy, then &,(R, LP(Y, H), pi,v1,1) =
éap(Rv Lp(Q7H)>,u27V27T)'

Proof. Since p; ~ po and v; ~ 1o, there exists some constants aq, ag, 51, f2 > 0 and a bounded
interval I (eventually I = &) such that ajpui(A4) < p2(A) < Bip2(A) and asvi(A) < 1p(A) <
Bivi(A) for each A € N satisfies ANT =@, i.e

1 1 1
< <
Bgl/l(A) - Z/Q(A) - 0521/1(14)
Since g1 ~ puo and N is the Lebesgue o-field for 7 sufficiently large,

i ({tel=nrI\T: swp EIfOIF >e})  pm{te-nr\I: swp E|fO)F ><})
oelt—rt] < oc(t—r,t]
Bopia =7, 71\ 1) 8 w7\ D)
Bun({t € [-nrl\ Iz sw BIFOI > <D
= a7\ D)

By using Theorem 3.7, we deduce that &,(R, LP(Q2, H), p1,v1,7) = E(R, LP(Q, H), pa, va, ).
Let pu,v € M, we denote by
cl(p,v) = {@1,@ € My~ pg, vy~ V2}

Lemma 3.13. [14] Let p € M satisfy (Hy). Then the measures ju and pir are equivalent for all
T €R.
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Lemma 3.14. [14] (Hy) implies

or all o >0 lim su ([ ’ ]) < 0.
f ) p
»+00 V([ ’ ])

Theorem 3.15. Assume that (Hy) holds. Then &,(R, LP(Q2, H), i, v, r) is invariant by transla-
tion.

Proof. The proof is inspired by Theorem 3.5 in [13].
Let f € &,(R,LP(Q, H), p,v,7) and a € R. Since ¥(R) = +oo, there exists ag > 0 such that
v([—7 — |a|, 7 + |a|]) > 0 for |a| > ag. Denote

1

M,(1) = vl 7)) /_: (0:[;133t]E”f(e)”p)dua(w V7 >0anda € R,

where v, is the positive measure define by equation (3.1) By using Lemma (3.13), it fol-
lows that v and v, are equivalent, p and p, are equivalent and by Theorem (3.12), we have
Ep(R,LP(Q, H), g, Va, 1) = E(R, LP(Q, H), i, v, 1), therefore f € &,(R, LP(Q, H), fiq, Va,r) that
is lim M,(7) =0 for all a € R.

t——+o0
For all A € N, we denote x4 the characteristic function of A. By using definition of the s, we
obtain that

/[_Tﬂ xa(t)dpa(t) = /[_m] xa(t)dpa(t 4+ a) = /[_m?m] xa(t)dpa(t).

Since t — sup [E| f(6)||” is the pointwise limit of an increasing sequence of function see([19,
oclt—r,t]
Theorem 1.17, p.15]), we deduce that

/ sup  E|[£(8)|Pdpa(t) = / sup  E||£(0)Pdp(t).
[—7,7] [-7+a,7+a]

oelt—r,t] 0c[t—a—rt—al
We denote by a™ = max(a,0) and ¢~ = max(—a,0). Then we have |a| +a = 2a™, |a] —a = 2a~
and [-7 +a — |a|,7 + a+ |a|]] = [-7 — 2a™, 7 + 2a™]. Therefore we obtain

1
M, = E| f(0)||Pdu(t 3.3
(T - ‘a’) V([_T —2a7,7+ 2a+]) /[TQa_,TJrQaﬂ 9€[tfstl{pr,t7a} Hf( )H Iu( ) ( )

From (3.3) and the following inequality

1 / 1
—_ sup E|f(8)|Pd tﬁ/ sup E|| f(@)|Pdu(t),
V([_T> T]) [—7,7] O€[t—a—r,t—a] ” ( )H ’U( ) V([_Ta T]) [-7—2a—,7+2at] O€t—a—r,t—q] H ( )| IU( )
we obtain
1 / v([-7—2a",7+2a™))
_ sup E|f(0)]|Pdu(t) < X My (T + |al).
V([_Tv T]) [—7,7] O€[t—a—r,t—a] H ( )H M( ) I/([—T, T]) ( | |)

This implies

1 " pr o vl — 2lal, 7+ 2lal)
V([_T’ T]) /[T,‘r} GE[tfafv)",tfa]EHf(e)H dﬂ(t) = I/([—T, T])

From equation (3.3) and equation (3.4) and using Lemma3.14, we deduce that

1
/ sup  E||f(B)|Pdp(t) = 0,
[—7,7] O€]

V([_Tv T]) t—a—r,t—al

X My (T + |a]). (3.4)



which equivalent to

1
%'] sup E|f(6— a)|Pdu(t) =0,

v([-7,7]) oe(t—mrt]

that is f, € &,(R,LP(Q, H), p,v, 7). We have proved that f € &,(R,LP(Q, H), p,v,7) then
f-a € &R, LP(Q, H), p,v,r) for all a € R, that is &,(R, LP(Q, H), i, v, r) invariant by transla-
tion. W

Proposition 3.16. The space PAA(R, LP(Q2, H), u, v, r) is invariant by translation, that is for
alla € R and f € PAAR, LP(Q2, H), p,v, 1), fo € PAAR,LP(Q, H), u,v,7).
4. p-th mean (u,v)-pseudo almost automorphic processes
In this section, we define p-th mean (u, ) -pseudo almost automorphic and their properties.

Definition 4.1. [4] A continuous function stochastic process f : R — LP(Q), H) is said to be
almost automorphic process in the p-th mean sense if for every sequence of real numbers (Sm )men,
there exists a subsequence (Sp)nen and a stochastic process g : R — LP(Q, H) such that

Tim E[£(t+ 5,) — g(0)]l” =0
1s well defined for each t € R and

Tim Ellg(t — s,) — F0)[7 =0
for each t € R.

We denote the space of all such stochastic processes by AA(R, LP(Q, H))

Lemma 4.2. [4] The space AA(R,LP(Q, H)) of p-th mean almost automorphic stochastic pro-
cesses equipped with the norm ||.||eo is a Banach space.

Definition 4.3. [4] A continuous function stochastic process f : R x LP(Q, H) — LP(Q, H),
(t,z) — f(t,x) is said to be almost automorphic process in the p-th mean sense in t € R
uniformly with respect to x € K, if for every sequence of real numbers (smy)men, there exists a
subsequence (sp)nen and a stochastic process g : R x LP(Q, H) — LP(Q, H) such that

lim E[|f(t + sn,z) — g(t,2)[[" =0
is well defined for each t € R and
lim Ellg(t — sn,7) — f(t,2)|[" = 0

for each t € R, where K C LP(Q), H) is compact.

We denote the space of all such stochastic processes by AA(R x LP(Q, H), LP(Q, H)).

Lemma 4.4. [4] If z and y are two automorphic processes in p-th mean sense, then
(1) = +y is almost automorphic in p-th mean sense;
(2) for every scalar \, A\x is almost automorphic in p-th mean sense ;
(8) there exists a constant M > 0 such that
sup E|z(t)[|” < M,
teR

that is, x is bounded in LP(Q, H).

We now introduce some new spaces used in the sequel.
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Definition 4.5. Let u, v € M. A bounded continuous stochastic process f : R — LP(), H) is
said to be (u,v)-pseudo almost automorphic in p-th mean sense, if it can decomposed as follows

f=g9+0,
where g € AA(R, LP(Q, H)) and ¢ € (R, LP(Q2, H), i, v).

We denote the space of all such stochastic processes by PAA(R x LP(Q2, H), LP(Q, H), u,v).

Definition 4.6. Let u, v € M. A bounded continuous stochastic process f : R x LP(Q, H) —
LP(Q, H) is said to be (p,v)-pseudo almost automorphic in p-th mean sense, if it can decomposed
as follows

f=9+¢,
where g € AA(R x LP(Q, H), LP(Q, H)) and ¢ € &,(R x LP(Q, H), LP(, H), p,v).

Proposition 4.7. [28] Assume that (Hs) holds. Then the decomposition of (u,v)-pseudo almost
automorphic function in the form f = g+ ¢, where g € AA(R, X) and ¢ € &R, X, p,v) is
UNLque.

Remark 4.8. Let X = LP(Q), H). Then the Proposition 4.7 always holds.

Proposition 4.9. [11] Assume that (Hs) holds. Then the decomposition of (, v)-pseudo almost
automorphic function of class r in the form ¢ = ¢1 + ¢2, where ¢1 € AAR, X) and ¢2 €
E(R, X, u,v,r) is unique.

We denote the space of all such stochastic processes by PAA(R x LP(Q2, H), LP(Q, H), u,v).

Definition 4.10. Let u, v € M. A bounded continuous stochastic process f : R — LP(Q, H) is
said to be (u,v)-pseudo almost automorphic of class r in p-th mean sense, if it can decomposed
as follows

f=9+¢,
where g € AAR, LP(2, H)) and ¢ € (R, LP(Q, H), p, v, 7).

We denote by PAA(R, LP(Q2, H), u, v,7) the space of all such stochastic processes.

Proposition 4.11. Assume that (Ha) holds. Let p,v € M. The space PAA(R, LP(QY, H), u, v, 1)
endowed with the uniform topology norm is a Banach space.

Proof. This Proposition is the consequence of Lemma 4.2 and Proposition 3.6 B

Definition 4.12. Let u, v € M. A bounded continuous stochastic process f : R x LP(Q, H) —
LP(Q, H) is said to be (u,v)-pseudo almost automorphic of class r in p-th mean sense, if it can
decomposed as follows

f=9+0,
where g € AA(R x LP(QY, H), LP(Q, H)) and ¢ € 6,(R x LP(, H), LP(Y, H), p, v, 7).

We denote the space of all such stochastic processes by PAA(R x LP(Q, H), LP(Q2, H), p, v, 7).

Proposition 4.13. Let ju1, p2, v1 and vy € M if uy ~ po and vy ~ vo, then PAA(R, LP(Q, H), 1, v1,7) =
PAAR, LP(Q2, H), 2, va,T).

This Proposition is just a consequence of Theorem 3.12.

Theorem 4.14. Assume that (Hs3) holds. Let p,v € M and ¢ € PAA(R, LP(Q, H), u,v,r) then
the function t — ¢, belongs to PAA((C[—r,0],LP(2, H), p,v,7).
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Proof. Assume that ¢ = g + h, where g € AA(R,LP(Q2,H)) and h € &,(R, LP(Q, H), p,v, 7).
Then we ca see that ¢ = g + ht and g¢ is p-th mean almost automorphic process. Let us denote

1 T
M=t [ sw BIRO)Pdua ()
¢ Va([_Tv TD —7 0€ft—r,t] ¢

where 1, and v, are the positive measures defined by equation (3.1). By using Lemma 3.13 it fol-

lows that ;o and i, are equivalent, v and v, are equivalent by using theorem 3.12 &,(RLP(Q, H), p, v, 1) =
Ep(RLP(Q, H), fq, va, 1) therefore f € &,(RLP(Q, H), piq, Vg, r) that is lim M,(7) = 0 for all

T—00
a € R.
On the other hand for 7 > 0, we have

ey [ (e Elk@ )it < s [ (s BRI )duty
< s L (e EIROI+ s EIROIF)dat)
< o (e BP0+ s [ s B dute)
< s/ (e B+ s [T s BRI )uty)
i ([0 EIBOI)dut+r)+ s [ s WO )t
< M ey L (o B@P)du+n) + s [ Sl du),
Consequently
oy s (sw mle o) < METEETE D )
T J = oeft—ra] N oe[—r0] 7,7])
o Ly BRI i)

which shows usind Lemma 3.13 and Lemma 3.14 that ¢, belongs to PAA(C|[—r,0], u,v,r). Thus
we obtain the desired result. B
Next, we study the composition of (u, v)-pseudo almost automorphic process in p-th mean sense.

Theorem 4.15. [5] Let f : R x LP(Q, H) — LP(Q, H), (t,x) — f(t,x) be almost automorphic
in p-th sense int € R, for each x € LP(Q, H) and assume that f satisfies the lipschitz condition
in the following sense

E|f(t,2) = f(t, )" < Lllz — y|? Yo,y € LP(Q, H),
where L is positive number. Thent — f(t,z(t)) € AAR, LP(Q, H)) for anyx € AA(R, LP(Q, H)).

Theorem 4.16. Let (Hz) holds and p,v € M satisfy (Hy). Suppose that f € PAAR x
LP(Q,H), LP(QY, H), u,v,r) satisfies the Lipschitz condition in the second variable that is, there
exists a positive number L such that for any xz,y € LP(Q2, H),

Elf(t =) = ft 9l < Lijz —y|, t € R.
Then t — f(t,z(t)) € PAA(R, LP(Q, H), p,v,r) for any x € PAAR, LP(QY, H), p, v, 7).

Proof. Since z € PAA(R, LP(Q2, H), p,v,7), then we can decompose x = x1 + x2, where x; €
AAR,LP(Q, H)) and 22 € (R, LP(Q, H), i, v, 7). Otherwise, since f € PAA(RXLP(Q, H), LP(Q, H), p, v, 1)
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then f = fi + f2, where f; € AA(R x LP(Q, H)) and f2 € &,(R x LP(Q, H), LP(Q, H), p1, v, 7).
Then the function f can be decomposed as follows

Fa) = At z() + (6 2) = f(E )]+ [f(E21(@) = fi1(t 21(2))]

= Ntz () + [F & 2@) = f(821(0)] + folt, 21(2)).

Using Theorem4.15, we have t — f1(t,21) € AA(R x LP(Q, H), LP(2, H)). It remains to show
that the both functions ¢t — [f(t,z1(t)) — fi(t,z1(t))] and t — +fa(t, z1(t)) belong to &,(R x
LP(Q, H), LP(Q, H), p, v, 7).
We have

Ellf(t,2()) = f(t, 21O < Llx(t) — z1(8)[]”

sup E[f(0,2(0)) — f(0,z1(0))[P < L sup [[x(8) —z1(0)|".
Oelt—rt] oelt—rt]
It follows that
L

1 . )
/[—T;] eesup E|f(0,2(0)) — f(0,21(0))||Pdu(t) < V([_T,T])/[_T’T] sup [Elz(0) — z1(0)|[Pdu(t)

V([_Ta T]) [t—mrt] oc(t—r,t]

IA

: /
_ sup El||lxz2(0)||Pdu(t
v([=7,7]) [—7,7] O€[t—rt] (@)l 0

Since z3 € &,(R, LP(Y, H), p, v, ) then

lim / sup Bl (0) [Pdp(t) = 0.
[_7—77_}

T—too v([—T,T]) o€(t—mrt]
We deduce that
. 1
lim sup ————— /[ s ELJ0.20) ~ J0,00)Pdu() =

r—to0 V([—T,7]) O€ft—rt]

therefore [f(¢,x(t)) — f(t,z1(t))] € &R x LP(Q, H),LP(Q, H), p,v,7). Now to complete the
proof it is enough to prove that ¢t — fao(t,z1(t)) € &,(R, LP(Q, H), 1, v, 1)
In fact for each t € R, we have
If2(t,z) = St )P = f(t2) = fut,z) = fu(t,y) + f(E )P
< 27Y|f(t ) — fE )P+ 22| fi(E 2) — fu(ty)]P.

By using the Lipschitz condition, we have
Ellf2(t,x) = ot )P < 2P7'E|f(t,2) — F(E P + 22T E| A1t 2) = Al y)]P
< 2Pz —yl?

Since K = {x1(t) : t € R} is compact. Then for € > 0, there exists a finite number x1, ...,z
such that

m
e
K C UB(I’z,m),

i=

where B(ZL‘i, ﬁ) ={z € K,||z; — z||P < 5= }. Its implies that

" 5
KcJ{ze k¥ teR |nt) - L)l < 5 )

i=1
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Let t € R and = € K, there exists ig € {1,...,m} such that

E|lfa(t,2) - folt,zi)I” < 55
therefore
Ellfo(t, 1 (0)IP < 227 falt, 21(2)) — falt, i, ()P + 27 E| fo(t, 21, (1)) P
< e+ 2R fat, @i, (1)) P
< e+ 2070 Y Ellfalt, @i, (1)1

i=1
It follows that

1/([—177])/T sp  Elf2(8 21 0))Pdult) - < (85(([[—_:7:]])) " ; / l/([_lT 7]) /j 06?;1—1) t]E”h(e’xi(a))”pdﬂ(ﬂ).

T OEt—r,t]

K3

m T

By the fact Vi € {1,...,m}, lim Z,/([l/ sup K| fo(6,2;(0))||Pdu(t) = 0, we

T—+00 =T, TD T O€t—r,t]

=1

deduce that . .
lmsup - / sup  E| fo(6, 21(0))|Pdpu(t) < €.

T—+00 V([—T> T]) —7 O€[t—ryt]
Therefore t — fao(t,z1(t)) € (R x LP(Q, H), LP(Q, H), p,v, 7). B

Proposition 4.17. Assume that (Hy) holds. Then the space PAA(R, LP(Q, H), p, v, 1) is inva-
riant by translation, thatis f € PAA(R, LP(Q, H), p, v, 1) implies fo € PAA(R, LP(Q, H), p, v, 1)
for all o € R.

Lemma 4.18. [6] Let G : [0,T] x Q@ — L (LP(Q, H)) be an Fi-adapted measurable stochastic
process satisfying

T
/ EIG(®)]? < oo
0

almost surely, where L (LP(Q, H)) denote the space of all linear operators from LP(Q, H) to
itself. Then for any p > 1, there exists a constant C, > 0 such that

E sup H /OT G(s)dW(s)Hp < cpE(/OT ||G(s)\|2ds>p/2,T > 0.

0<s<T

We make the following assumption
(Hs) g is a stochastically bounded process in p-th mean sense.

Proposition 4.19. Assume that (Hp), (Hi1) and (Hs) hold and the semigroup (U(t))i>0 is
hyperbolic. If f is bounded on R, then there exists a unique bounded solution u of equation (1.1)
on R, given by

t _ t ~
u = lim UP(t — s)IT*(BrXo f(s))ds + lim U“(t — s)IT"(BrXo f(s))ds
A—=+o0 J_ A—=+oo J Lo
t ~ t _
+ lim UP(t — s)IT*(BrXog(s))dW (s) + lim U (t — s)IT*(BxXog(s))dW (s)
A—=+oo J_ A—=r+oo J o

where By = MM — Ay)~t ford > @, II® and TI* are projections of Co onto the stable and
unstable subspaces respectively.
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Proof. Let
t t ~
ug =v(t) + lim US(t — $)IT°(BxXog(s))dW (s) + lim U (t — s)TT*(BrXog(s))dW (s),
A—+o00 J_ A—=to0 S
where
t _ t _
v(t) = lim U (t — s)IT*(BrXof(s))ds + lim U (t — s)IT*(BrXof(s))ds
A—=+oo J_ A=+00 J 4o

Let us first prove that u; exists. The existence of v(t) have proved by [23]. Now we show that
t

the limit lim U (t — s)II°(BxXof(s))ds exists.

A—=+o0 J_ o

For each t € R and by Lemma 4.18, we have

t . t . p/2
Bl [ (- T (BaXog@)aW ) < GE( [ [U(e— 1 (BrXag(s)) ds)
TN ITTS ! —2w(t—s) 2 p/2
< GEIDIYE( [ e 0Ig(s)ds)
—o0o
n+1 9
< MM ‘Hs Z]E(/ e*QW(tfs)Hg(S)’PdS)p/
. +oo t—n+1 p—
< GOID Y B( [ e
n=1 t—n
W S p/2
xe 3 g s)]Pds )"
By using Holder inequality, we obtain
v L~ NS +00 t—n+1 (B2 )a(ta)y -2 —251p/2
Bl [ Wt o BaXog@)dW o) < GAIDI Y [([ () as)
—00 n=1 t—n
t—n-+1 4 p 2 p/2
<. / efgw(tfs) 2ds)?
[(M ( lg(s)]1?) #ds)” |
t—n+1 p—2
S MM |HS Z / —th S)d8> 2
t

t—n+1 )
<( / e IR g(s) [Pds ).
t—

n

Since g stochastic bounded process in p-th mean sense, then there exists, M > 0 such that
Ellg(s)I” < M.
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It follows that

t " L +oo t—n+1 p
B [ w9 BrXog)aw s)l7 < U@y ([ et i)™

<
n=1 -n
_ =
< CpM(MM)\HSDpZW( 2 PR e
n=1 w
ATANNITTS\P 1 2w p/2 = —wpn
< C,M(MM)|TT¥|) G )p/z(e — 1Py e,
w n=1
400 _
1 e wp
Since th i TPt =1 — = .
ince the serie nZ:l e P p—— < 00
It follows that
t ~
IEII/ U (t — s)IT°(BxXog(s))dW (s)||P <, (4.1)
where
_CM(MM)[IE)P oy €
(T 7 G A O pap L
Set

F(n,s,t) =U(t — s)II°(BAXof(s)) forn € N for s < t.

For n is sufficiently large and o < ¢, we have

g ~ o +oo o—n+1 p—2
Bl [ Wt - o (BrXog@)aW o) < GAIDmer Y ([ e as) ?
—o0 n—1 o—n
o—n—+1
([ IR g()ras)
7/\_/ +oo o—n+l1 2
< M@y ( / e—2w<t—8>d5)p/
n=1 Yo7
i 1 2g-oplt—a) o N~
Vi s 2w 2 _—wp(t—o —wpn
< C,M(MM)|I |)pW(e —1)P/2emwp x;e P
< ,ye—wp(t—o)'
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It follow that for n and m sufficiently large and o < t, we have

IEH/ (n,s, t)dW(s) — /_too F(m, s,t)dW(s)Hp < EH/ (n,s,t)dW (s (n, s, t)dW(s)

(
(m, s,t)dW (s) Hp

)+ /F
) /F

—/_; F(m,s,t)dW(s) —

IN

o » o r
3p—1]EH/m Fln, s, )W (s)| +3p—1E“[m Flm, s, 1)dW(s)|

AW (s) / Flm, s, 1w (s)|

IA

2 x 3P Lyemwplt=o)

t F(n,s,t)dW (s) — /U t F(m, s, t)dW (s) Hp

n—-+o0o

Since lim IEH/ (n, s, t)dW( )H exists, then

t
lim sup EH/ (n,s,t)dW(s) — / F(m,s,t)dW(s)H <2 x 3P lyemwp(t=o),
n,m——+00 —00

If 0 — —o0, then

lim sup IEH/ (n,s,t)dW(s) — /t F(m,s,t)dW(s)Hp =0.
n,m—+00 —00

We deduce that

lim EH/ F(n, s,t)dW (s)” = lim IEH/ US(t — $)TT° (B Xog(s ))dW(s)Hp
exists. .
Therefore the limit lir_i{l U (t — $)IT°(BpXog(s))dW (s) exists. In addition, one can see
n—-—+0o0

—00

from the equation (4.1) that the function

mit— lim E / UP (¢ — )1 (B, Xog(s))dW (s)
is bounded on R. Similarly, we can show that the function
+oo
mit— lim E / U (1 — I (B Xog(s)dW (s)||

is well defined and bounded on R. W

Proposition 4.20. Assume that (Hy) holds. Let f,g € AA(R, X) and T be the mapping defined
fort e R by

L(f,9)(t) = [Aggaoo /_ U(t = $)IT*(ByXof(s))ds +  Tim i U (t — s)TI*(ByXof(s))ds
+ lim t U (t — $)IT3(BxXog(s))dW (s) + lim t U (t — $)TT(BxXog(s))dW (s) | (0).

A—=+oo J_ A——+o00 +00
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Then T(f,g) € AA(R, LP(Q), H)).

Proof. The proof of this Proposition will be in two steps.

Step 1 : We will show that I'(f, g) is continuous. For ¢y € R, we have

E[[D(f,9)(t) — T(f; 9)(to)[I”

We have
L =E|
A

I

IN

t - t ~
EH )\ETOO ‘/700 U (t — s)IT°(B) Xo f(s))ds + )\ET@O . U™ (t — s)IT*(BrXof(s))ds
t - t ~
+ )\EIEOO /._oo U (t — s)IT° (BxXog(s))dW (s) + AETOO . U™ (t — s)IT*(BrXog(s))dW (s)

— lim /to U (to — s)II°(ByXo f(s))ds — lim N U™ (t — s)TT*(By X0 f(s))ds
0o A—+oco +oo

t

to . 0 ~ P
- Jim /_Oo U* (to = $)I1° (Bx Xog(s))dW () —  lim - U (to — s)H“(BAXOg(s))dW(s)H

t . to ~
4P7'E|| lim / U (t — $)TI°(BAXof(s))ds — lim / US (to — $)IT° (B Xo f(s))ds]||P
A—=+4o00 J_ o A—=+o0 ) _ o
1

t ~ 0 ~
+4P7E|| lim / UM (t — $)TT* (B Xo f(s))ds — _lim U (to — $)TT* (B Xo f(s))ds]|?
A—+o00 4o A

—+o0 S0

t - to ~
+4P71E|| lim / U (t — $)IT (B Xog(s))dW (s) — lim / US (to — $)II° (B Xog(s))dW (s)||?
A—=+oo /o A—=+o0 J o
t - to -
+4P71E|| lim U (L — $)IT%(BxXog(s))dW (s) — lim U (to — $)IT%(BxXog(s))dW (s)||?
A—+oo 400 A—+o0 400

4PN + o + I3 + 1y).

~ to ~
lim UP(t — s)IT*(BAXo f(s))ds — )\lirf U (tg — s)IT°(BaXof(s))ds|P.
—+00 —00
Let 0 = s — t +t9 and by Holder inequality, we have
~ to ~
U (tg — o)IT°(ByXof(o +t —tg))do — )\lirf UP(tg — s)IT°(BrXo f(s))ds||?
—+00 —00
E|| lim U (tg — s)IT3(BAXo[f (s +t — to) — f(s)])ds]|?

IN

IN

IN

IN

IN

IN

(MM |II*|)PE

(M M1 |)?

to

—— fto
E(MM/ == |15 || f (5 + t — to) — f(s)||ds>p

- o wp-1)(tg—s) _w(t—s) p
B(MMIE| [ T e (s - t0) = (5)ds)
—00

([ (yma) < (e“”“?S)Hﬂm—to)—f<s>||)pds)ir

oty ( [

—00 —00

<[

—0o0 —00

—1 to
e—w(to—s)ds)p x / e W O=IE|| f(s +t —to) — f(s)|Pds

0
e = f(s 4+t — to) — f(s)||Pds.

oo
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For an arbitrary sequence of real {t,,} with ¢, — ¢t as n — +o00. By Lemma 4.4 and the defiition
of AA(R, LP(R2, H)) we deduce that f € BC(R, LP(§2, H)). So

e WOSE| f(s 4 t, — to) — f(s)||P — 0 as , — 4o0.

Hence

e OTIR| f (5 + tn — to) — f(s)||P < 2Pe” (07| F||2,
for every n sufficiently large. Note that

to
/ 9P t0=3) || £IP_ds < oo,

—0o0

Then according to Lebesgue dominated convergence theorem, we have

to
lim e WIR| f(s 4t — to) — f(s)||Pds = 0.

n—-+00 — 00
Since the arbitrariness of {t,}, we deduce that

to

lim e W=IR| f(s 4+t — to) — f(s)||Pds = 0,

t—to oo

which implies that

t - to -
lim E| lim UP(t — s)TT°(BrXof(s))ds — lim U (tg — s)IT*(BaXof(s))ds|[P =0
t—to A=+o00 J_ A—=+oo J_
(4.2)
Similarly, we can se that
t - to ~
lim E|| lim Ut — s)IT*(BrXof(s))ds — lim U (to — s)IT*(BaXo f(s))ds||P = 0.
t—to A=+00 oo A—=to0 4o
(4.3)

Let W(T) =W(r+1t—ty) — W(t —tp). One can see that W is a Winner process and has the
same distribution as W. Let 7 = s —t+ty. Then by Lemma 4.18 and Holder inequality, we have

t - to -
o= Bl tim [ W o (BaXogeNaW(s) « tim [t — )1 (BaXog(s)dW (s)P

to ~ to ~

— Bl i [ (o~ T BaXoglr 1~ t0)dW(r 4o - t0) — tim [ U (to — )1 (BaXog(£)dW (s) P
to . __ to ~ —~

= E| AETOO/ U (to — $)TI° (BaXog(r + t — t0))dW (7) — AETOO/ US (to — $)IT° (B Xog(s))dW (s)[|?
to _ —

= Bl tim [ Ut — I (BaXolg(s +t — to) ~ g())dIV (5)

——~ to to
< Cp(MM|HS\)p(/ 672“’(’5073)(15> ? x / e 2w (t0=9)E||g(s + t — to) — g(s)||Pds.

By the similar arguments as above, we obtain

to
lim e~ 2R g(s +t — tg) — g(s)|[Pds = 0,

t—=to oo
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which implies that

t to

lim E|| lim U (t—s)II°(BxXog(s))dW (s)— lim U (to—s)TI3 (B Xog(s))dW (s)||P = 0.
t—to A—=+oo J_ A—=r+oo J_ o
(4.4)

Similarly, we can see that

t to

lim E| lim U (t—s)TT%(ByXog(s))dW (s)— lim U (tg—s)IT*(BrXog(s))dW (s)||P = 0.

t—to A——+00 +00 A——+o00 +oo

From equations (4.2), (4.3), (4.4) and (4.5), we deduce that

lim E[IT(f,9)(t) = T'(f, 9)(to) ||’ = 0

t—to

and yield the continuity of I'(f, g).

Step 2 : Since f,g € AA(R, LP(2, H)). Thus, for every sequence of real numbers (s,,)m € N,

there exists a subsequence (s,)n € N and stochastic processes f,§ : R — LP(Q, H) which each
t € R such that

Jim BJ|f(t+s0) = FO7 =0, lim E[[f(t —s0) — f@)II" =0
and
Tim Ellg(t + 52) — 50 =0, lim B[t — s) — g(0)|F = 0.
Let
t
w(t+sp) = )\ETOO US(t — $)IT*(BrXo f(s + s5))ds + Erfoo | Ut — $)ITY(BAXo f (s + sn))ds
+ /\luf L{S(t — $)II*(BxXog(s + 5n))dW (s + s
—+00 J _~o
t ~
+ lim UMt — s)IT(BrXog(s + $,))dW (s + sn)}
and
t ~ t _
w(t) = [ lim / UP(t — s)IT*(BrXo f(s))ds + lim U“(t — s)II"(BrXo f(s))ds
A—=+oo J_ o A—=+400 J 1o
t ~ t _
+ lim UP(t — s)TT* (B Xog(s))dW (s) + lim U (t — s)IT* (B Xog(s))dW (s)|.
A—=+o0 J_ o A=r+o0 J o

Then we have
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t
Blu(t +5,) - a(0))” < 7B tm [ U= 90 Bl (s +5.) - Fo)ds]P

t

+4P~1E|| Jm U (t — $)I*(BaXolf (s + sn) — f(s)]ds|]”
+oo
t —~
4r1E|| Jim [ute - $)I1* (B Xo[g(s + sn) — g(s)|dW (s)]|?
t _ —
+4P 1R Jim i U"(t — s)II"(BrxXo[g(s + sn) — g(s)|dW (s)]]”,

where W(s) =W (s + sn) — W(s). Note that W and W are two Wiener processes and have the
same distribution. Then we have

Bl +s,) - a0)? < @ @nme)e( [

—00

p—1 t
e 9s)" [ IR s 4 5) - f5)Pds

—0o0

t

-1
ew(t—s)ds)p y / e IR f(s + sn) — f(s)|Pds
+0o0

+4p_1(MM\H“\)p</t

—+00

rte ([ o) / e 2 IR lg(s + 5n) — g(5)|"ds

—00 o0

e O ( [ )T o [ Il o) - s

—00 “+o00

By similarly arguments as above, we have
t

lim / e ISR f(s + s,) — f(s)|[Pds = 0, Jim / SR f(s 4 s,) — f(s)||Pds = 0,

n—-+00

—00
t
lim e 2R g(s+5,)—g(s)|Pds = 0 and  lim WE=S)E||g(s+5,)—g(s)|[Pds = 0.
n—-+o0o oo n—-+o0o +<>o
Thus

lim E|w(t+s,) —w(t)||” =0.

n—-+oo
Similarly, we have
lim E|w(t— sp) —w(t)]|P =0.

n—-+o0o

Therefore by Steps 1 and 2, we proved that I'(f,g) € AA(R, LP(2, H)).

Theorem 4.21. Assume that (H3) and (Hs) hold. Let f,g € &(R,LP(QY, H), p,v,r), then
F(fa g) € (oﬁp(R,Lp(Q,H),/,L,I/,T).

Proof. We have

P(f9)t) = lim [ U(t—s)I*(ByXof(s))ds + lim i U (t — 5)I*(BXo f(5))ds
+ lim t U (t — s)I1°(BxXog(s))dW (s) + lim t U (t — $)IT*(BxXog(s))dW (s).

A—=+o0 J_ A——+o00 +00
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It follows that
0

E|T(f,9)0)|]P = IE /\hm us (0 — $)II*(By\Xof(s))ds + lim U0 — s)II*(BrXof(s))ds
——+o00 A——+00 +oo
0
+ lim U (0 — $)IT°(BxXog(s))dW (s)

A—=+o0 J_ o

9 ~
+ lim U9 — s)H“(B,\XOg(s))dW(s)Hp.

Then for 7 > 0, using Lemma 4.18 we have

T

[ s ErGo@r)no < [ ap e m @[ o)) wo

—7 0€t—r,t] —7 O€t—r,t]

T —_—
+/ sup 4p_1E<MM
—7 O€t—r,t]

0= £(s) s ) dp()

+o0o

T S 0 p/2
- / sup 4p_1CpE(M2M2 / e—W—S)ynsmg(s)u?ds) du(t)

—7 O€lt—r,t] —00

0

T S P /2
—i—/ sup 4p1CpIE(M2M2/ 672‘“(9*5)]H“|2Hg(s)H2ds>p du(t)

—7 0€[t—r,t] —0o0

By using Hoder inequality, we obtain

6 " 6 ~
EIN(f.9)@)" = E| lim_ / WO = (B Xof (9)ds+ N | U0 o)1 (ByXof (5))ds

0 ~
+ lim U (0 — s)IT°(BrXog(s))dW (s)
A—=+oo J_ o
0 ~ P
+ lim u*(6 — S)H“(B)\Xog(s))dW(s)H .wspace x 0.25¢cm

A—+00 +oo

Then for 7 > 0, using Lemma 4.18 again, we have

| sw (BICG9@)P)dute)

—7 0€[t—r,t]
_—~ 0 p—l 0
< L (T[T / sup / x / e~ f(s) Pds] du(t
—7 0€ft—r,t] 00 —00
o 0 -1 0
sy [ osw [([ e < [ e g ) s autt
—7 O€[t—r,t] +o0 +o00

[ u 0
[ em0as) T [ e ) psaute
—00

—7 O€t—r,t] 0o

I
+4P~ V(M M|1T°|)P / sup (
I

+4P= (M M |IT*|) / sup

—7 0€[t—r,t]

0 p—2 0
[ e0as) T [0 g ) s dute).
+oo

+o0
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Thus, we have

1 /T
_— sup
V([_7_7 T]) —7 0€[t—r,t]

4P=Y(M M 115 |y

(BT, 9)(0)]17 ) dpu(t)

4p=1(M M |T1%|)P

sup

(e / e IR £ (3)]Pds ) dpu)

gr—1

sup
—7 0€ft—r,t]

=i
X
v([-,7]) T 0€[t—r,t]
w1 /
v([—T,7])

( /;OO <OV 7(5)|ds) du(t

(MMIHSI)
(2w)"7

4r—1 M|H“|)

2R g(s) |Pds ) du(2)

6
X L / sup (eQ‘”/
V([_T T —7 O€t—r,t] 00

< (M
(20)" 7

i L (e

On the one hand using Fubini’s theorem, we have

T 0
[ sw (e [ e B )s) dute)
T O€t—r,t] —o0

T t
< / sup (e“”/ e~
—7 0€[t—r,t] —00

“=IE| f(s) | Pds ) dpu(t)

< e [T e ) pasante)
< e / /0 R f(t - 5)|Pdsdu(t)
< e / " g / :EHf(t — &) [Pdp(t)ds

By Theorem 3.15, we deduce that

lim

A

and

ewa

Similarly, we have

e

iy L Bl ) <

—ws

/ E||£(t — s)||Pdp(t) — 0 for all s € Ry

@D gy,

) —2ws T »
TETOOV([_T,TD/_TIEHg(t— $)|Pdu(t) = 0 for all s € R,
and
e TR — S e v({(nm)) )
e [ Bl spdue < T g
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Since f and g are two bounded functions, then the functions s — MH flI%, and

) v([=7,7])

—ZWws

5= e{/([(T’];—)DHgH& belong to L(]0, 00[) in view of the Lebesgue dominated convergence
v([—7,T

theorem, it follows that

e_WS T
e tim [ s [ Bl ) Pdu(ts =0
and
+oo 6720.)5 T
27 Jim e / Ellg(t — 8)|Pdu(t)ds = 0.
T

—T

On the other hand, we have

T 00 T +oo
[ osw ([ et ompras)ane < [ sw ([ et o)) aut
T O€t—r,t] 0 T O€t—r,t] t—

T

< / o ( /+°° HIE £(3)]Pds ) dp(t)
< / T / | f(s)|Pdsdp(t)
< | T g | Bl - Pduteyis

By the same arguments, we have

T +oo +oo T
[ osw ([0 mras)aun < [ e [ Blgte—s)Pduds
T O€t—r,t] 0 0

- -7

v([—=7,7]) 171 and s = v([—7,7]) lglls

belong to L!(]0, 00[) in view of the Lebesgue dominated convergence theorem, it follows that

Similarly as above, we have the functions s —

im [ 1/([—7'7'])/ E||f(t — 5)[Pdp(t)ds = 0

T—+00 J_ _r
and
r eQws T by 4 0
li —— | Elg(t— t)ds = 0.
dim [ [ Bl aPdus
Consequently

i o [ s (BN O )du) =0,

T+ V([_T7 T]) —7 0€[t—r,t]

Thus, we obtain the desired result. B
Our next objective is to show the existence of p-th (p > 2) mean (u,v)-pseudo almost auto-
morphic solution of class r for the following problem
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dz(t) = [Ax(t) + L(zt) + f(t,x¢)|dt + g(t, z¢)dW (t), for t € R, (4.6)

where f: R xC — LP(Q,H) and g : R x C — LP(Q), H) are two processes.

For the sequel we make the following assumptions.

(Hg) Let p,v € M and f : R x C(([-r,0],LP(Q2, H)) — LP(Q2, H) p-th mean cl(u, v)-pseudo
almost automorphic of class r such that there exists a positive constant Ly such that

E|f(t, ¢1) — f(t, P2)||P < LE|¢p1 — ¢2|P for all t € R and ¢1, 2 € C(([—r,0], LP (2, H)).

(H7) Let p,v € M and g : R x C(([-r,0], LP(Q?, H)) — LP(Q, H) p-th mean cl(u,v) pseudo
almost automorphic of class r such that there exists a positive constant L, such that

Ellg(t, 1) — g(t, ®2)||” < LgE|lp1 — ¢o||” for all t € R and ¢y, ¢2 € C(([—r, 0], LP(2, H)).
(Hg) The instable space U = {0}.

Theorem 4.22. Let p > 2, assume that (Hy), (Hy), (Hy), (Hg) (H7) and (Hg) hold. If

L L,C 1
fy Lt Z] < —,
wP (2@)2 2P

(AT |

then equation (4.6) has a unique p-th mean cl(p,v)-pseudo almost automorphic solution of class
r.

Proof. Let x be a function in PAA(R, LP (2, H), i, v, 7). From Theorem 4.14 the function ¢ — z;
belongs to PAA(C([—r,0]); LP(Q, H), p, v, 7). Hence Theorem 4.16 implies that g(.) = f(.,x) is
in PAA(R,LP(Q, H), i, v, 7). Since the unstable space U = {0}, then II* = 0. Consider the
following mapping H : PAA(R, LP(Q, H), u,v,r) — PAA(R, LP(Q, H), u,v,r) defined for ¢t € R
by

(Hz)(t) = [lim / U(t — $)II*(BrXof (s, xs))ds + lim w(t—S)HS(EAXOg(s,xS))dW(s)](0).

A——+o00 A——+oo J_

—0o0

Let z1,29 € PAA(R,LP(Q, H), i, v, 1), we have

[e.9]

B|(Hon)(0) — (Hea) O = || i [ (e = I BaXolf(5.00) — F(svw2.) s

A—=+o0 J_ o

+ lim U (t — $)IT*(BrXolg(s, w1s) — g(s, w25)])dW (s)

i
A—=+oo J_ o

IN

2”*1EH lim /t L{s(t—s)Hs(E,\Xo[f(s,xls)—f(s,xgs)])dsH

A=+o0 J

t ~ p
271 [ e (B Xolg(s.a1.) — g(s.2) )W )|

—+00 ) _ o

< 2p_1(11 +IQ)

By Holder inequality, it follows that
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L = ]EH lim /t us(t—s)Hs(EAXg[f(s,xls)—f(s,xQS)])dsH

A—=+o00 J_

< e[y ( [

—0o0

p—1 t
e s) s [ I i) — Sl

t t

o —1

< @y ( [ et0as) s [ IB o )  f(s, s
MM|ISP [t .

< (wl"—l‘)/_me =)L By, — s |Pds
(MM]|T1j*)P .

< _ P w(t—s)

< B Lswla) — e ([ e0-as)

(MM |TT}*)P
wP
By Holder inequality and by Lemma 4.18, we have

< Lyl|lzy — 22]|5,.

o= B [ U Bxalgte.) — oo, haw )|

A—400
. K s s 2 p/2
< GE[ lim / w2t = )T (BrXolg (s, 1) — (s, 224)]) 2]
A=+oo J_
7,\/ t p=2 t
< OOy ( [ etmas) T [ e IR (s ) — 5,220 P
MMy [t
< CP(JZH/ e—2w(t—S)LgE||mls_xQSdeS
(2w) 2z —c0
MM|II|*)P t
< SO 1 supBlea() - ma(olr ([ e0-as)
(2w)T teR —00
C, (M M|TI[*)P
< GOV o~ wall,
(2)"

Thus we have

LyCyp
(2w)?
This means that H is a strict contraction. Thus by Banach’s fixed point theorem, H has a

unique fixed point u in PAA(R; LP(Q?, H), u,v,r). We conclude that equation (4.6), has one and
only one p-th mean ¢l(u, v)-pseudo almost automorphic solution of class r. B

E||(Ha1)(t) = (Haz) (@) < 27~ (MM %#L ]Hxl — 2[5

Proposition 4.23. Let p > 2, assume that (Hy), (Hy) and (Hy) hold, f, g are lipschitz conti-
nuous with respect the second argument. If

Lip(f) = Lip(g) < — 1 1 1
2P=1(M M |II3|)P [@ +

1

[S13s]

(2w)
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then(4.6) has a unique p-th mean cl(u,v)-pseudo almost automorphic of class r, where Lip(f)
and Lip(g) are respectively the lipschitz constants of f and g.

Proof. Let us pose k = Lip(f) = Lip(g), we have

E||(Ha1)(t) — (Haa) ()P < 2p‘1(m‘7|ﬂ5|>p[£+ . }

IN

o 1
p—1 S1\P
2 (MM|H |)k[wp+(

Consequently H is a strict contraction if
1
= 1 1
2=t (M2 [ — + — |
wP (2w)§

k<

5. Application
For illustration, we propose to study the existence of solutions for the following model

2

dz(t,z) = f%z(t, w)dt + [/_O G(6)=(t + 0, 2)d0 + sin (

1
2+cost—|—cosx/§t

) + arctan(t) + /_0 h(0, z(t + H,x))de} dt

0
+[sin (m) + arctan(t) + /_T h(6,z(t + 6, x))d@] dW(t) for t € R, and x € [0, 7],

z(t,0) = z(t,7) =0 fort € R, and x € [0, 7],

(5.1)

where G : [-7,0] — R is continuous function and h : [—r,0] — R is lipschitz continuous with

the respect of the second argument. W (t) is a two-sided standard Brownian motion with values
in separable Hilbert space H. To rewrite equation (5.1) in abstract form, we introduce the space
H = L*((0,7)). Let A: D(A) — L?((0,7)) defined by

D(A) = H?(0,7) N H'(0,7)

Ay(t) =y"(t) for t € (0,7) and y € D(A).

Then A generates a Co-semigroup (U(t))>o on L?((0,7)) given by
+oo
UMD () =D ™™ <z e > 2 enlr),
n=1
where e,(r) = v2sin(nar) for n = 1,2... and |U(t)|]| < e ™t for all ¢ > 0. Thus M = 1 and
w = m2. Then A satisfies the Hille-Yosida conditions in L?(0, 7). Moreover the part A of A in

D(A) is the generator of compact semigroup. It follows that (Hp) and (H;) are satisfied.
We define f: R x C — L%((0,7)) and L : C — L*(Q, H) as follows

0

f(t, @)(z) = sin (2 p— i_ o \/it) + arctan(t) + /T h(0,¢(0)(z))dd for x € (0,7) and t € R,
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0

g(t, 6)(x) = sin (2 ppm 1+ — \/ﬁt) + arctan(t) + /_ h(0, 6(0)(x))df for z € (0,7) and t € R,
and
0
L(¢)(z) = G(0)(¢(0)(z) for —r <6 and z € (0,9).

T

Let us pose v(t) = z(t,x). Then equation (5.1) takes the following abstract form
dv(t) = [Av(t) + L(ve) + f(t,ve)]dt + g(t, ve)dW (t) for t € R. (5.2)

Consider the measure p and v where its Randon-Nikodym derivates are respectively p; and ps

() = 1 fort>0
Pt = et fort <0

and
p2(t) =t/ fort e R
i.e du(t) = p1(t)dt and du(t) = pa(t)dt, where dt denotes the Lebesgue measure on R and

w(A) = /Apl(t)dt for v(A) = pa(t)dt for A e N

From[14] pu, v € M satisfies Hypothesis (Hy).

0 . T
e'dt + dt
/r /0 I+e " +717

lim M = lim sup = = lim sup
T—+400 I/( —-T7,T ) T—400 2/ tdt T—+00 T
0

which implies that (Hy) is satisfied.

For t € R, —g < arctan(f) < g, therefore for all § € [t — r,t| arctan(t — r) < arctan(t). It
follows that |arctan — g] = g — arctand < |arctan(t —r) — g] = g — arctan(t — ) which

implies that | arctan§ — g|p < |arctan(t —r) — g|p, hence, we have

sup E|arctanf — f’p < E|arctan(t — r) — E]p,
Oc(t—rt] 2 2

On one hand, we have

1 T 1 T
/ E sup E]arctanﬂ—ﬁ\pdt < / E|arctan(t_r)_ﬁypdt
v([=77]) Jo  eeit—rg 2 v([=7,7]) Jo 2
1 /T T p
< - E(—= — arctan(t — r))"dt
A7) o Bla ~oretent =)
1 T P
< — —dt
- V([—Tﬁ])/o 2p
P
< — 0, as 7 — +o00.

2ptlr
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On other hand, we have

1 0 1 0 7P
/ E sup E|arctanf — E|pdt < / T etdt
V([_Tv T]) -7 O€t—rt] 2 V([_Tv 7_]) —r 2P
(1 —e ")
S W — 0, as 7 — +oo.
Consequently
I L /TE E| arctan 8 — ~ P du(t) = 0
im ———— sup arctand — —|P du(t) = 0.
T+00 V([_T’ T]) -7 O€t—r,t] 2

It follows that ¢ — arctan(t)—g is p-th mean (u, v)-ergodic of class r, consequently f is uniformly

p-th mean (u, v)-pseudo almost automorphic of class . Moreover L is bounded linear operator
from C to L%(Q, H).

Let k be the lipschitz constant of h. Then by using Holder-inequality for every o1, @2 € C and
t > 0, we have

|t o1)(e) - St @l = E| [ 0 (A6, £1(0) (@) = h(6, ¢2(0) (@) ) a0 |

< [ [ 110:010)@) — (0. ea(0))) 0]
0 p=1 0 1 P
< [( [ a8) " x ([ I )@) - 16 ca0)@)IP)
0
< [ BB, 1(6)(a) - hO. pa(6)()) Pt
0
< [ Bler0)@) - pa(®)(a) s
< Tk swp Ellei0)@) - pa(0)(a)lP
< 7Pka sup Ellgi(z) — p2(x)||? for a certain a € R

—r<6<0

Consequently, we conclude that f and g are Lipschitz continuous and ¢l(u, v)-pseudo almost
automorphic in p-th mean sense. Moreover, since h is stochastically bounded in p-th mean
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sense, i.e E||h(t,¢(t))||P < 5. By Hélder inequality, we have

Blott @)l = 145+ 8] [ ool

9 0 p—1 0

< 255w ( [ a0) x [ EIne. o) @) Pas
0

< Z;Wﬂml/ Bdo

< 2+7r+rpﬁ

2

2

S Bla Wlthﬁlz —;W_Frpﬁv

which implies that g satisfies (Hs).

For hyperbolicity, we suppose that

(Hy) /0 G(0)[do < 1.

-

Proposition 5.1. [18] Assume that (Hs) and (H7) hold. The the setigroup (U(t))i>0 is hyper-
bolic.

Then by Proposition 4.23, we deduce the following result

Theorem 5.2. Under above assumptions, if Lip(h) is small enough large, then equation (5.1)
has unique p-th mean cl(p,v)-pseudo almost automorphic solution of class r.

1.
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Abstract. The objective in this work is to present a new concept of p-th mean pseudo almost
automorphic by use of the measure theory. We use the (u, v)-ergodic process to define the spaces
of (u,v)-pseudo almost automorphic process of class r in the p-th sense. To do this, firstly we
show some interesting results regarding the completeness and composition theorems. Secondly
we study the existence, uniqueness of the p-th mean (u, v)-pseudo almost automorphic solution
of class r for the stochastic evolution equation.
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1. Introduction

In this work, we study some properties of the p-th mean (u,r)-pseudo almost automorphic
process using the measure theory and we use those results to study the following stochastic
evolution equations in a Hilbert space H,

dx(t) = [Ax(t) + L(xy) + f(t)]dt + g(t)dW (), for t € R (1.1)
where A : D(A) C H is the infinitesimal generator of a Cyp-semigroup (7'(t))¢>0 on H such that
|T(t)|| < Me™“*, for t >0,

for some M,w >0, f: R — LP(Q,H) and g : R — LP(§2, H) are appropriate functions specified
later, and W (t) is a two-sided standard Brownian motion with values in H.

C = C([-r,0],LP(Q2, H)) denotes the space of continuous functions from [—r,0] to LP(Q2, H)
endowed with the uniform topology norm. For every ¢t > 0, x; denotes the history function of C
defined by z4(0) = z(t +6) for —r <0 <0.

We assume (H, ||, ||) is a real separable Hilbert space and LP(2, H) is the space of all H-valued
random variables x such that

||| = / |zlPdP < oo.
Q

The concept of almost automorphiy is a generalization of the clasical periodicity. It was indro-
duced in literrature by Bochner This work is an extension of [11] whose authors had studied
equation (1.1) in the deterministic case. Some recent contributions concerning p-th mean pseudo

1. To whom all correspondence should be sent : mbainadjidjendode@gmail.com
1
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almost automorphic for abstract differential equations similar to equation (1.1) have been made.
For example [12, 25] the authors studied equation (1.1) without operator L. They showed that
equation has unique p-th mean p-pseudo almost periodic and p-pseudo almost automorphic
solutions on R when f ¢ are p-th mean pseudo almost periodic or p-th mean pseudo almost
automophic functions.

This work is organized as follows, in section 2, we give the spectral decomposition of the phase
space, in section 3, we study p-th mean (u, v)-ergodic process of class r, in section 4, we study p-
th mean (u, v)-pseudo almost automorphic process and we discuss the existence and uniqueness
of p-th mean (u, v)-pseudo almost automorphic solution of class r, the last section is devoted to
application.

2. Spectral decomposition

To equation (1.1), associate the following initial value problem

duy = [Aug + Lug + f(t)]dt + g(t)dW (t) for t > 0
(2.1)
uy = € C=C([-r0],LP(Q, H)),

where f: RT — LP(Q, H) and g : Rt — LP(2, H) are two stochastic processes continuous.

Definition 2.1. We say that a continuous function u : [—r,+oo[— LP(Q), H) is an integral
solution of equation, if the following conditions hold :

(1)/ s)ds € D(A) fort >0,

(2) u +A/ ds+/ (L(us) +f(s))ds+/0 g(s)dW (s) fort >0,
(3) uo =

If D(A) = LP(Q, H), the integral solution coincide with the know mild solutions. One can se
that if u(t) is an 1ntegral solution of equation (2.1), then u(t) € D(A) for all t > 0, in particular
©(0) € D(A). Let us introduce the part Ay of the operator A which defined by

D(Ap) = {z € D(A) : Az € D(A)}
Apx = Az for x € D(Ay).

We make the following assumption.
Hj A satisfies the Hille-Yosida condition.

Proposition 2.2. Ay generates a strongly continuous semigroup (To(t))e>0 on D(A). The phase
Co of equation (2.1) is defined by
Co={p € C:¢(0) € D(A)}.
For each ¢t > 0, we define the linear operator U(t) on Cy by
Z/{(t) = 'Ut(-, @)7
where v(., ¢) is the solution of the following homogeneous equation
d

%v(t) = Av(t) + L(vy)for t > 0

v=¢p€Cl
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Proposition 2.3. (U(t)):>0 is strongly continuous semigroup of linear operators on Cy. Moreo-
ver (U(U))e>0 satisfies for t > 0 and § € [—r,0] the following translation property

(U(t+ 0)p)(0) fort+6 > 0.
(U(t)>0 =
o(t+0) fort+6 <0.

Proposition 2.4. [23] Let Ay defined on Cy by
D(Ay) = {p € C*([-7,0; X),(0) € (D(A),»(0) € D(A) and (0)' = Ap(0) + L(y)}

Aup = ¢' € D(Au)

Then A, is the infinitesimal generator of the semigroup (U(t)); > 0 on Cj.
Let <X0> be the space defined by

(Xo)={Xoc:ce X},
where the function Xyc is defined by
0if 6 € [—r,0]
(Xoc)(0) =
cif§ =0.
The space Cy ® <X0> equipped with the norm |¢ + Xocle = |@|c + |c| for (¢, ¢) € Cp x X is a
Banach space. Consider the extension 4y, defined on C,, ® <X0> by

D(Ay) = { € C'(|=,0}, X) : 9(0) € D(A) and 4(0) € D(A)}

Ay = Xo(Ap(0) + L) — 0(0)).

Lemma 2.5. [24] Assume that (Hy) holds. Then, Ay satisfies the Hile-Yosida condition on
Co @® (Xo) there exist M >0, @ € R such that |, +oo[C p(Ay) and

|()\I—.21vu)_”|§ — forn € Nand A > w.

M
(A —w)
Moreover, the part offTu on D(ﬂz,{) = Cy 1is exactly the operator /Tu
Definition 2.6. We say a semigroup, (U(t))i>0 is hyperbolic if
o(Ay) NiR = @.

For the sequel, we make the following assumption :
(Hy) (T'(t))>0 is compact on D(A) for ¢ > 0.

Proposition 2.7. Assume that (Hy) and (Hy) hold. Then the semigroup (U(t))t>0 is compact
fort>r.

We get the following result on the spectral decomposition of the phase space Cj.

Proposition 2.8. Assume that (Hp) and (Hy) hold. If the semigroup U(t)s>o is hyperbolic,then
the space Cy is decomposed as a direct sum

Co=5SaU

of two U(t) invariant closed subspaces S and U such that the restriction of (U(t))i>0 on U is a
group and there exist positive constants M and w such that

Ut)p| < Me“p| fort >0 and ¢ € S,



U ()| < Me “ | for t <0 and ¢ € U,

where S and U are called respectively the stable and unstable space, 11° and II* denote respectively
the projection operator on S and U.

3. (u,v)-ergodic process in p-th mean sense of class r

Let N the Lebesgue o-field of R and by M the set of all positive measures p on N satisfying
#(R) = 400 and p([a,b]) < oo for all a,b € R (a < b). Let p > 2. LP(Q, H) is a Hilbert space

with the following norm
1
lellir = ( [ lallPap)”
Q

Definition 3.1. [20] Let  : R — LP(Q2, H) be a stochastic process.
(1) x said to be stochastically bounded in p-th mean sense, if there exists M > 0 such that
E|lz(t)||P < M for allt € R.
(2) x said to be stochastically continuous in p-th mean sense if

%imEHx(t) —xz(s)|[[P < M for all t,s € R.
—5

Let BC(R, LP(2, H)) denote the space of all the stochastically bounded continuous processes.
Remark 3.2. [20] (BC(R, LP(Q2, H)), ||.|lcc) s a Banach space, where

J2lloc = sup(E(||(t)|[7))¥
teR

Definition 3.3. Let u,v € M. A stochastic process f is said to be (u,v)-ergodic in p-th (p > 2)
mean sense, if f € BC(R, LP(Q2, H)) and satisfies
. 1 T
tim o [ B0 Pdutt) =0,
.

T—>+00 1/([—7‘, 7‘])
We denote by &,(R, LP(Q2, H), i1, v), the space of all such process.

Proposition 3.4. Let u,v € M. Then &,(R, LP(Q, H), 1, v) is a Banach space with the supre-
mum norm ||.||ec-

Definition 3.5. Let p,v € M. A stochastic process f is said to be p-th mean (p,v)-ergodic of
class r if f € BC(R,LP(Q, H)) and satisfies

. 1 /T
lim —— sup E|f(@)|Pdu(t) = 0.
(s WAL AP

We denote by &,(R, LP(Q2, H), i, v, ), the space of all such process.
For p € M and a € R, we denote p, the positive measure on (R, N') defined by

a(A) =p(la+b:be A]) for Ae N (3.1)
From pu, v € M, we formulate the following hypotheses.

(H3) Let p,v € M be such that
lim sup uwll=r7)
r—+o0 V([=7,7])
(H3) For all a, b and ¢ € R such that 0 < a < b < ¢, there exist dy and ag > 0 such that
10| > 0o = p(a+0,b40) > apu(d, ¢+ 9).
(Hy4) For all 7 € R there exist 5 > 0 and a bounded interval I such that

=0 < 0.



,u({a +7:a€ A}) < Bu(A) when A € N and satisfies ANT = @.

Proposition 3.6. Assume that (Hz) holds. Then &,(R, LP(Q2, H), i, v,7) is a Banach space with
the norm ||.||oo

Proof. We can see that &,(R, LP(Q2, H), p,v,7) is a vector subspace of BC(R, LP(Q2, H)). To
complete the proof is enough to prove that (Hz) holds. Then &,(R, LP(Q2, H), 1, v,7) is closed
in BO(R, LP(S?, H)). Let (f)n be a sequence in &,(R, LP(2, H), i, v, ) such that E:I_l fon=1f
uniformly in BC(R, LP(2, H)). From v(R) = +o0, it follows that v([—7,7]) > 0 for 7 sufficiently
large. Let ng € N such taht for all n > ng, || fn — flloo < . Let n > ng, then we have

A\

[ (s Bl < s [ s B0 - S0

[t—r,t] oc(t—r,t

v([=7,7])

2p—1 +7
_— u El fn Pld
+V([_T7TD ~/_T (Be?t—pr,t] £ ) Hit)
p—1 +T
< i [ (sl — s ) dute)
2p—1 +T
_— sup Elf.@®)|?)d
u([fwn/,f (, 00 Bl )dutt
p—1 _ FP p([=7,7]) 2! A su P
SR == e I T LT ETC

We deduce that

1 T
limsup([_TT])/ ( sup E||f(t)”p)du(t) < 27 15¢ for any e > 0.

T—=4o00 V —7  NOE[t—t

|
Next result is a characterisation of p-th mean (u,v)-ergodic processes of class r.

Theorem 3.7. Asume that (Hz) holds and let ji,v € M and I be a bounded interval (eventually
I =@). Assume that f € BC(R,LP(Q, H)). The following assertions are equivalent

Z) f € gp(Ra LP(Q7H)7/~L7V7T)

1
1) lim ——————— E| f()]|P)du(t) = 0.
i) [ (s BLAOP)an)

e v([=r, 7\ D)

oelt—r,t]
~ n(fte=n TN EIfO) > <))
iit) For any e > 0, TEEI}OO ACr AN D =0

Proof. The proof uses the same arguments of the proof of Theorem 2.22 in [28].
i) < i1). Denote By A = p(I) and B = / ( sup IEHf(G)Hp)d,u(t).
I MOeft—r,]
Since the interval I is bounded and the process f is stochastically bounded continuous. Then
A, B and C are finite.
For 7 > 0, such that I C [—7,7] and v([—7, 7] \ I) > 0, we have



TRV s ol POV 80 = G [ [ (g )i 5]

v([=7,7]) 1 /
sup E|f(0)||P)du(t
s i i S LU CLPRID
)
v([=7,7])
From above equalities and the fact v(R) = 400, we deduce i7) is equivalent to

m /W]( sup E|[fO)]P)dyut) = 0,

ToFoo V([flrv T]) oelt—r,t]

that ). 4ii) = 4i) Denote by AS and B: the following sets

A = {t el-r7]\I: sup E|f(O)|P > 5} and B = {t el-r,7]\I: sup E|f(O)|P < g}.
oelt—r,t] Oelt—r,t]

Assume that i) holds, that is

=0. (3.2)

From the equality

/[_W (O;ituf;ﬂEHf(ﬁ)H”)du@) = /A i <ae??‘1,t] LFON)dpu(t) + /B ; (ges[tu%Eufw)up)du(t)

we deduce that for 7 sufficient large

plAs) (B

1 p
/[_W( swp EIFO)IP)dnt) < ke xSy e

v([=r, 7]\ 1) ocft—rt]

Since u(R) = v(R) = oo and by using (Hz) then for all € > 0 we have

TN oo (o FOI) ) < 0

Consequently i) holds.
i) = i)

/[_Tﬁ]\l (ees[ia’t]EHf(H)Hp)du(t) > /Ai <ees[;1—€,t]E‘f(0)Hp>du<t)

p(A3)
v([-7, 7]\ )

1(A2)
v([=7, 7]\ 1)’

o) o (yom B0 a2

v, (o Bl 2

ev([=7, 7]\ I) felt—rt]

for 7 sufficiently large, we obtain equation (3.2), that is i7i). B



7

Definition 3.8. Let u,v € M. A function f : R x LP(Q, H) — LP(Q2, H) is said to be (u,v)-
ergodic in p-th mean sense in t € R uniformly with the respect to v € K, if f € BC(R x
LP(Q, H),LP(Q2, H)) and satisfies

1 T
lim ———— E| f(t Pdu(t) =
Jim s [ Bl a)Pdute) = 0
where KK C LP(Q, H) is compact.

We denote &,(R x LP(Q2, H), LP(, H), pi, ) the set of all such functions.

Definition 3.9. Let p,v € M. A function f : R x LP(Q,H) — LP(Q, H) is said to be p-th
mean (p,v)-ergodic of class v in t € R wuniformly with the respect to x € K, if f € BC(R x
LP(Q,H),LP(2, H)) and satisfies

1 T
lim / sup E||f(0,x)|[Pdu(t) = 0,
A ) S F O I
where I C LP(Q2, H) is compact.

We denote &,(R x LP(Q, H), LP(Q, H), 1, v, 1) the set of all such functions.

Definition 3.10. Let pq, pg € M. We say that py is equivalent to pa , denoting this as p ~ g
if there exist constants o and B > 0 and a bounded interval I (eventually I = &) such that
ap(A) < p2(A) < Bur(A), when A € N satisfies ANT = .

Remark 3.11. The relation ~ is an equivalence relation on M.

Theorem 3.12. Let pu1,vi, po,va € M. If i ~ po and vy ~ vy, then &,(R, LP(Y, H), pi,v1,1) =
éap(Rv Lp(Q7H)>,u27V27T)'

Proof. Since p; ~ po and v; ~ 1o, there exists some constants aq, ag, 51, f2 > 0 and a bounded
interval I (eventually I = &) such that ajpui(A4) < p2(A) < Bip2(A) and asvi(A) < 1p(A) <
Bivi(A) for each A € N satisfies ANT =@, i.e

1 1 1
< <
Bgl/l(A) - Z/Q(A) - 0521/1(14)
Since g1 ~ puo and N is the Lebesgue o-field for 7 sufficiently large,

i ({tel=nrI\T: swp EIfOIF >e})  pm{te-nr\I: swp E|fO)F ><})
oelt—rt] < oc(t—r,t]
Bopia =7, 71\ 1) 8 w7\ D)
Bun({t € [-nrl\ Iz sw BIFOI > <D
= a7\ D)

By using Theorem 3.7, we deduce that &,(R, LP(Q2, H), p1,v1,7) = E(R, LP(Q, H), pa, va, ).
Let pu,v € M, we denote by
cl(p,v) = {@1,@ € My~ pg, vy~ V2}

Lemma 3.13. [14] Let p € M satisfy (Hy). Then the measures ju and pir are equivalent for all
T €R.
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Lemma 3.14. [14] (Hy) implies

or all o >0 lim su ([ ’ ]) < 0.
f ) p
»+00 V([ ’ ])

Theorem 3.15. Assume that (Hy) holds. Then &,(R, LP(Q2, H), i, v, r) is invariant by transla-
tion.

Proof. The proof is inspired by Theorem 3.5 in [13].
Let f € &,(R,LP(Q, H), p,v,7) and a € R. Since ¥(R) = +oo, there exists ag > 0 such that
v([—7 — |a|, 7 + |a|]) > 0 for |a| > ag. Denote

1

M,(1) = vl 7)) /_: (0:[;133t]E”f(e)”p)dua(w V7 >0anda € R,

where v, is the positive measure define by equation (3.1) By using Lemma (3.13), it fol-
lows that v and v, are equivalent, p and p, are equivalent and by Theorem (3.12), we have
Ep(R,LP(Q, H), g, Va, 1) = E(R, LP(Q, H), i, v, 1), therefore f € &,(R, LP(Q, H), fiq, Va,r) that
is lim M,(7) =0 for all a € R.

t——+o0
For all A € N, we denote x4 the characteristic function of A. By using definition of the s, we
obtain that

/[_Tﬂ xa(t)dpa(t) = /[_m] xa(t)dpa(t 4+ a) = /[_m?m] xa(t)dpa(t).

Since t — sup [E| f(6)||” is the pointwise limit of an increasing sequence of function see([19,
oclt—r,t]
Theorem 1.17, p.15]), we deduce that

/ sup  E|[£(8)|Pdpa(t) = / sup  E||£(0)Pdp(t).
[—7,7] [-7+a,7+a]

oelt—r,t] 0c[t—a—rt—al
We denote by a™ = max(a,0) and ¢~ = max(—a,0). Then we have |a| +a = 2a™, |a] —a = 2a~
and [-7 +a — |a|,7 + a+ |a|]] = [-7 — 2a™, 7 + 2a™]. Therefore we obtain

1
M, = E| f(0)||Pdu(t 3.3
(T - ‘a’) V([_T —2a7,7+ 2a+]) /[TQa_,TJrQaﬂ 9€[tfstl{pr,t7a} Hf( )H Iu( ) ( )

From (3.3) and the following inequality

1 / 1
—_ sup E|f(8)|Pd tﬁ/ sup E|| f(@)|Pdu(t),
V([_T> T]) [—7,7] O€[t—a—r,t—a] ” ( )H ’U( ) V([_Ta T]) [-7—2a—,7+2at] O€t—a—r,t—q] H ( )| IU( )
we obtain
1 / v([-7—2a",7+2a™))
_ sup E|f(0)]|Pdu(t) < X My (T + |al).
V([_Tv T]) [—7,7] O€[t—a—r,t—a] H ( )H M( ) I/([—T, T]) ( | |)

This implies

1 " pr o vl — 2lal, 7+ 2lal)
V([_T’ T]) /[T,‘r} GE[tfafv)",tfa]EHf(e)H dﬂ(t) = I/([—T, T])

From equation (3.3) and equation (3.4) and using Lemma3.14, we deduce that

1
/ sup  E||f(B)|Pdp(t) = 0,
[—7,7] O€]

V([_Tv T]) t—a—r,t—al

X My (T + |a]). (3.4)



which equivalent to

1
%'] sup E|f(6— a)|Pdu(t) =0,

v([-7,7]) oe(t—mrt]

that is f, € &,(R,LP(Q, H), p,v, 7). We have proved that f € &,(R,LP(Q, H), p,v,7) then
f-a € &R, LP(Q, H), p,v,r) for all a € R, that is &,(R, LP(Q, H), i, v, r) invariant by transla-
tion. W

Proposition 3.16. The space PAA(R, LP(Q2, H), u, v, r) is invariant by translation, that is for
alla € R and f € PAAR, LP(Q2, H), p,v, 1), fo € PAAR,LP(Q, H), u,v,7).
4. p-th mean (u,v)-pseudo almost automorphic processes
In this section, we define p-th mean (u, ) -pseudo almost automorphic and their properties.

Definition 4.1. [4] A continuous function stochastic process f : R — LP(Q), H) is said to be
almost automorphic process in the p-th mean sense if for every sequence of real numbers (Sm )men,
there exists a subsequence (Sp)nen and a stochastic process g : R — LP(Q, H) such that

Tim E[£(t+ 5,) — g(0)]l” =0
1s well defined for each t € R and

Tim Ellg(t — s,) — F0)[7 =0
for each t € R.

We denote the space of all such stochastic processes by AA(R, LP(Q, H))

Lemma 4.2. [4] The space AA(R,LP(Q, H)) of p-th mean almost automorphic stochastic pro-
cesses equipped with the norm ||.||eo is a Banach space.

Definition 4.3. [4] A continuous function stochastic process f : R x LP(Q, H) — LP(Q, H),
(t,z) — f(t,x) is said to be almost automorphic process in the p-th mean sense in t € R
uniformly with respect to x € K, if for every sequence of real numbers (smy)men, there exists a
subsequence (sp)nen and a stochastic process g : R x LP(Q, H) — LP(Q, H) such that

lim E[|f(t + sn,z) — g(t,2)[[" =0
is well defined for each t € R and
lim Ellg(t — sn,7) — f(t,2)|[" = 0

for each t € R, where K C LP(Q), H) is compact.

We denote the space of all such stochastic processes by AA(R x LP(Q, H), LP(Q, H)).

Lemma 4.4. [4] If z and y are two automorphic processes in p-th mean sense, then
(1) = +y is almost automorphic in p-th mean sense;
(2) for every scalar \, A\x is almost automorphic in p-th mean sense ;
(8) there exists a constant M > 0 such that
sup E|z(t)[|” < M,
teR

that is, x is bounded in LP(Q, H).

We now introduce some new spaces used in the sequel.
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Definition 4.5. Let u, v € M. A bounded continuous stochastic process f : R — LP(), H) is
said to be (u,v)-pseudo almost automorphic in p-th mean sense, if it can decomposed as follows

f=g9+0,
where g € AA(R, LP(Q, H)) and ¢ € (R, LP(Q2, H), i, v).

We denote the space of all such stochastic processes by PAA(R x LP(Q2, H), LP(Q, H), u,v).

Definition 4.6. Let u, v € M. A bounded continuous stochastic process f : R x LP(Q, H) —
LP(Q, H) is said to be (p,v)-pseudo almost automorphic in p-th mean sense, if it can decomposed
as follows

f=9+¢,
where g € AA(R x LP(Q, H), LP(Q, H)) and ¢ € &,(R x LP(Q, H), LP(, H), p,v).

Proposition 4.7. [28] Assume that (Hs) holds. Then the decomposition of (u,v)-pseudo almost
automorphic function in the form f = g+ ¢, where g € AA(R, X) and ¢ € &R, X, p,v) is
UNLque.

Remark 4.8. Let X = LP(Q), H). Then the Proposition 4.7 always holds.

Proposition 4.9. [11] Assume that (Hs) holds. Then the decomposition of (, v)-pseudo almost
automorphic function of class r in the form ¢ = ¢1 + ¢2, where ¢1 € AAR, X) and ¢2 €
E(R, X, u,v,r) is unique.

We denote the space of all such stochastic processes by PAA(R x LP(Q2, H), LP(Q, H), u,v).

Definition 4.10. Let u, v € M. A bounded continuous stochastic process f : R — LP(Q, H) is
said to be (u,v)-pseudo almost automorphic of class r in p-th mean sense, if it can decomposed
as follows

f=9+¢,
where g € AAR, LP(2, H)) and ¢ € (R, LP(Q, H), p, v, 7).

We denote by PAA(R, LP(Q2, H), u, v,7) the space of all such stochastic processes.

Proposition 4.11. Assume that (Ha) holds. Let p,v € M. The space PAA(R, LP(QY, H), u, v, 1)
endowed with the uniform topology norm is a Banach space.

Proof. This Proposition is the consequence of Lemma 4.2 and Proposition 3.6 B

Definition 4.12. Let u, v € M. A bounded continuous stochastic process f : R x LP(Q, H) —
LP(Q, H) is said to be (u,v)-pseudo almost automorphic of class r in p-th mean sense, if it can
decomposed as follows

f=9+0,
where g € AA(R x LP(QY, H), LP(Q, H)) and ¢ € 6,(R x LP(, H), LP(Y, H), p, v, 7).

We denote the space of all such stochastic processes by PAA(R x LP(Q, H), LP(Q2, H), p, v, 7).

Proposition 4.13. Let ju1, p2, v1 and vy € M if uy ~ po and vy ~ vo, then PAA(R, LP(Q, H), 1, v1,7) =
PAAR, LP(Q2, H), 2, va,T).

This Proposition is just a consequence of Theorem 3.12.

Theorem 4.14. Assume that (Hs3) holds. Let p,v € M and ¢ € PAA(R, LP(Q, H), u,v,r) then
the function t — ¢, belongs to PAA((C[—r,0],LP(2, H), p,v,7).
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Proof. Assume that ¢ = g + h, where g € AA(R,LP(Q2,H)) and h € &,(R, LP(Q, H), p,v, 7).
Then we ca see that ¢ = g + ht and g¢ is p-th mean almost automorphic process. Let us denote

1 T
M=t [ sw BIRO)Pdua ()
¢ Va([_Tv TD —7 0€ft—r,t] ¢

where 1, and v, are the positive measures defined by equation (3.1). By using Lemma 3.13 it fol-

lows that ;o and i, are equivalent, v and v, are equivalent by using theorem 3.12 &,(RLP(Q, H), p, v, 1) =
Ep(RLP(Q, H), fq, va, 1) therefore f € &,(RLP(Q, H), piq, Vg, r) that is lim M,(7) = 0 for all

T—00
a € R.
On the other hand for 7 > 0, we have

ey [ (e Elk@ )it < s [ (s BRI )duty
< s L (e EIROI+ s EIROIF)dat)
< o (e BP0+ s [ s B dute)
< s/ (e B+ s [T s BRI )uty)
i ([0 EIBOI)dut+r)+ s [ s WO )t
< M ey L (o B@P)du+n) + s [ Sl du),
Consequently
oy s (sw mle o) < METEETE D )
T J = oeft—ra] N oe[—r0] 7,7])
o Ly BRI i)

which shows usind Lemma 3.13 and Lemma 3.14 that ¢, belongs to PAA(C|[—r,0], u,v,r). Thus
we obtain the desired result. B
Next, we study the composition of (u, v)-pseudo almost automorphic process in p-th mean sense.

Theorem 4.15. [5] Let f : R x LP(Q, H) — LP(Q, H), (t,x) — f(t,x) be almost automorphic
in p-th sense int € R, for each x € LP(Q, H) and assume that f satisfies the lipschitz condition
in the following sense

E|f(t,2) = f(t, )" < Lllz — y|? Yo,y € LP(Q, H),
where L is positive number. Thent — f(t,z(t)) € AAR, LP(Q, H)) for anyx € AA(R, LP(Q, H)).

Theorem 4.16. Let (Hz) holds and p,v € M satisfy (Hy). Suppose that f € PAAR x
LP(Q,H), LP(QY, H), u,v,r) satisfies the Lipschitz condition in the second variable that is, there
exists a positive number L such that for any xz,y € LP(Q2, H),

Elf(t =) = ft 9l < Lijz —y|, t € R.
Then t — f(t,z(t)) € PAA(R, LP(Q, H), p,v,r) for any x € PAAR, LP(QY, H), p, v, 7).

Proof. Since z € PAA(R, LP(Q2, H), p,v,7), then we can decompose x = x1 + x2, where x; €
AAR,LP(Q, H)) and 22 € (R, LP(Q, H), i, v, 7). Otherwise, since f € PAA(RXLP(Q, H), LP(Q, H), p, v, 1)
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then f = fi + f2, where f; € AA(R x LP(Q, H)) and f2 € &,(R x LP(Q, H), LP(Q, H), p1, v, 7).
Then the function f can be decomposed as follows

Fa) = At z() + (6 2) = f(E )]+ [f(E21(@) = fi1(t 21(2))]

= Ntz () + [F & 2@) = f(821(0)] + folt, 21(2)).

Using Theorem4.15, we have t — f1(t,21) € AA(R x LP(Q, H), LP(2, H)). It remains to show
that the both functions ¢t — [f(t,z1(t)) — fi(t,z1(t))] and t — +fa(t, z1(t)) belong to &,(R x
LP(Q, H), LP(Q, H), p, v, 7).
We have

Ellf(t,2()) = f(t, 21O < Llx(t) — z1(8)[]”

sup E[f(0,2(0)) — f(0,z1(0))[P < L sup [[x(8) —z1(0)|".
Oelt—rt] oelt—rt]
It follows that
L

1 . )
/[—T;] eesup E|f(0,2(0)) — f(0,21(0))||Pdu(t) < V([_T,T])/[_T’T] sup [Elz(0) — z1(0)|[Pdu(t)

V([_Ta T]) [t—mrt] oc(t—r,t]

IA

: /
_ sup El||lxz2(0)||Pdu(t
v([=7,7]) [—7,7] O€[t—rt] (@)l 0

Since z3 € &,(R, LP(Y, H), p, v, ) then

lim / sup Bl (0) [Pdp(t) = 0.
[_7—77_}

T—too v([—T,T]) o€(t—mrt]
We deduce that
. 1
lim sup ————— /[ s ELJ0.20) ~ J0,00)Pdu() =

r—to0 V([—T,7]) O€ft—rt]

therefore [f(¢,x(t)) — f(t,z1(t))] € &R x LP(Q, H),LP(Q, H), p,v,7). Now to complete the
proof it is enough to prove that ¢t — fao(t,z1(t)) € &,(R, LP(Q, H), 1, v, 1)
In fact for each t € R, we have
If2(t,z) = St )P = f(t2) = fut,z) = fu(t,y) + f(E )P
< 27Y|f(t ) — fE )P+ 22| fi(E 2) — fu(ty)]P.

By using the Lipschitz condition, we have
Ellf2(t,x) = ot )P < 2P7'E|f(t,2) — F(E P + 22T E| A1t 2) = Al y)]P
< 2Pz —yl?

Since K = {x1(t) : t € R} is compact. Then for € > 0, there exists a finite number x1, ...,z
such that

m
e
K C UB(I’z,m),

i=

where B(ZL‘i, ﬁ) ={z € K,||z; — z||P < 5= }. Its implies that

" 5
KcJ{ze k¥ teR |nt) - L)l < 5 )

i=1
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Let t € R and = € K, there exists ig € {1,...,m} such that

E|lfa(t,2) - folt,zi)I” < 55
therefore
Ellfo(t, 1 (0)IP < 227 falt, 21(2)) — falt, i, ()P + 27 E| fo(t, 21, (1)) P
< e+ 2R fat, @i, (1)) P
< e+ 2070 Y Ellfalt, @i, (1)1

i=1
It follows that

1/([—177])/T sp  Elf2(8 21 0))Pdult) - < (85(([[—_:7:]])) " ; / l/([_lT 7]) /j 06?;1—1) t]E”h(e’xi(a))”pdﬂ(ﬂ).

T OEt—r,t]

K3

m T

By the fact Vi € {1,...,m}, lim Z,/([l/ sup K| fo(6,2;(0))||Pdu(t) = 0, we

T—+00 =T, TD T O€t—r,t]

=1

deduce that . .
lmsup - / sup  E| fo(6, 21(0))|Pdpu(t) < €.

T—+00 V([—T> T]) —7 O€[t—ryt]
Therefore t — fao(t,z1(t)) € (R x LP(Q, H), LP(Q, H), p,v, 7). B

Proposition 4.17. Assume that (Hy) holds. Then the space PAA(R, LP(Q, H), p, v, 1) is inva-
riant by translation, thatis f € PAA(R, LP(Q, H), p, v, 1) implies fo € PAA(R, LP(Q, H), p, v, 1)
for all o € R.

Lemma 4.18. [6] Let G : [0,T] x Q@ — L (LP(Q, H)) be an Fi-adapted measurable stochastic
process satisfying

T
/ EIG(®)]? < oo
0

almost surely, where L (LP(Q, H)) denote the space of all linear operators from LP(Q, H) to
itself. Then for any p > 1, there exists a constant C, > 0 such that

E sup H /OT G(s)dW(s)Hp < cpE(/OT ||G(s)\|2ds>p/2,T > 0.

0<s<T

We make the following assumption
(Hs) g is a stochastically bounded process in p-th mean sense.

Proposition 4.19. Assume that (Hp), (Hi1) and (Hs) hold and the semigroup (U(t))i>0 is
hyperbolic. If f is bounded on R, then there exists a unique bounded solution u of equation (1.1)
on R, given by

t _ t ~
u = lim UP(t — s)IT*(BrXo f(s))ds + lim U“(t — s)IT"(BrXo f(s))ds
A—=+o0 J_ A—=+oo J Lo
t ~ t _
+ lim UP(t — s)IT*(BrXog(s))dW (s) + lim U (t — s)IT*(BxXog(s))dW (s)
A—=+oo J_ A—=r+oo J o

where By = MM — Ay)~t ford > @, II® and TI* are projections of Co onto the stable and
unstable subspaces respectively.
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Proof. Let
t t ~
ug =v(t) + lim US(t — $)IT°(BxXog(s))dW (s) + lim U (t — s)TT*(BrXog(s))dW (s),
A—+o00 J_ A—=to0 S
where
t _ t _
v(t) = lim U (t — s)IT*(BrXof(s))ds + lim U (t — s)IT*(BrXof(s))ds
A—=+oo J_ A=+00 J 4o

Let us first prove that u; exists. The existence of v(t) have proved by [23]. Now we show that
t

the limit lim U (t — s)II°(BxXof(s))ds exists.

A—=+o0 J_ o

For each t € R and by Lemma 4.18, we have

t . t . p/2
Bl [ (- T (BaXog@)aW ) < GE( [ [U(e— 1 (BrXag(s)) ds)
TN ITTS ! —2w(t—s) 2 p/2
< GEIDIYE( [ e 0Ig(s)ds)
—o0o
n+1 9
< MM ‘Hs Z]E(/ e*QW(tfs)Hg(S)’PdS)p/
. +oo t—n+1 p—
< GOID Y B( [ e
n=1 t—n
W S p/2
xe 3 g s)]Pds )"
By using Holder inequality, we obtain
v L~ NS +00 t—n+1 (B2 )a(ta)y -2 —251p/2
Bl [ Wt o BaXog@)dW o) < GAIDI Y [([ () as)
—00 n=1 t—n
t—n-+1 4 p 2 p/2
<. / efgw(tfs) 2ds)?
[(M ( lg(s)]1?) #ds)” |
t—n+1 p—2
S MM |HS Z / —th S)d8> 2
t

t—n+1 )
<( / e IR g(s) [Pds ).
t—

n

Since g stochastic bounded process in p-th mean sense, then there exists, M > 0 such that
Ellg(s)I” < M.
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It follows that

t " L +oo t—n+1 p
B [ w9 BrXog)aw s)l7 < U@y ([ et i)™

<
n=1 -n
_ =
< CpM(MM)\HSDpZW( 2 PR e
n=1 w
ATANNITTS\P 1 2w p/2 = —wpn
< C,M(MM)|TT¥|) G )p/z(e — 1Py e,
w n=1
400 _
1 e wp
Since th i TPt =1 — = .
ince the serie nZ:l e P p—— < 00
It follows that
t ~
IEII/ U (t — s)IT°(BxXog(s))dW (s)||P <, (4.1)
where
_CM(MM)[IE)P oy €
(T 7 G A O pap L
Set

F(n,s,t) =U(t — s)II°(BAXof(s)) forn € N for s < t.

For n is sufficiently large and o < ¢, we have

g ~ o +oo o—n+1 p—2
Bl [ Wt - o (BrXog@)aW o) < GAIDmer Y ([ e as) ?
—o0 n—1 o—n
o—n—+1
([ IR g()ras)
7/\_/ +oo o—n+l1 2
< M@y ( / e—2w<t—8>d5)p/
n=1 Yo7
i 1 2g-oplt—a) o N~
Vi s 2w 2 _—wp(t—o —wpn
< C,M(MM)|I |)pW(e —1)P/2emwp x;e P
< ,ye—wp(t—o)'
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It follow that for n and m sufficiently large and o < t, we have

IEH/ (n,s, t)dW(s) — /_too F(m, s,t)dW(s)Hp < EH/ (n,s,t)dW (s (n, s, t)dW(s)

(
(m, s,t)dW (s) Hp

)+ /F
) /F

—/_; F(m,s,t)dW(s) —

IN

o » o r
3p—1]EH/m Fln, s, )W (s)| +3p—1E“[m Flm, s, 1)dW(s)|

AW (s) / Flm, s, 1w (s)|

IA

2 x 3P Lyemwplt=o)

t F(n,s,t)dW (s) — /U t F(m, s, t)dW (s) Hp

n—-+o0o

Since lim IEH/ (n, s, t)dW( )H exists, then

t
lim sup EH/ (n,s,t)dW(s) — / F(m,s,t)dW(s)H <2 x 3P lyemwp(t=o),
n,m——+00 —00

If 0 — —o0, then

lim sup IEH/ (n,s,t)dW(s) — /t F(m,s,t)dW(s)Hp =0.
n,m—+00 —00

We deduce that

lim EH/ F(n, s,t)dW (s)” = lim IEH/ US(t — $)TT° (B Xog(s ))dW(s)Hp
exists. .
Therefore the limit lir_i{l U (t — $)IT°(BpXog(s))dW (s) exists. In addition, one can see
n—-—+0o0

—00

from the equation (4.1) that the function

mit— lim E / UP (¢ — )1 (B, Xog(s))dW (s)
is bounded on R. Similarly, we can show that the function
+oo
mit— lim E / U (1 — I (B Xog(s)dW (s)||

is well defined and bounded on R. W

Proposition 4.20. Assume that (Hy) holds. Let f,g € AA(R, X) and T be the mapping defined
fort e R by

L(f,9)(t) = [Aggaoo /_ U(t = $)IT*(ByXof(s))ds +  Tim i U (t — s)TI*(ByXof(s))ds
+ lim t U (t — $)IT3(BxXog(s))dW (s) + lim t U (t — $)TT(BxXog(s))dW (s) | (0).

A—=+oo J_ A——+o00 +00
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Then T(f,g) € AA(R, LP(Q), H)).

Proof. The proof of this Proposition will be in two steps.

Step 1 : We will show that I'(f, g) is continuous. For ¢y € R, we have

E[[D(f,9)(t) — T(f; 9)(to)[I”

We have
L =E|
A

I

IN

t - t ~
EH )\ETOO ‘/700 U (t — s)IT°(B) Xo f(s))ds + )\ET@O . U™ (t — s)IT*(BrXof(s))ds
t - t ~
+ )\EIEOO /._oo U (t — s)IT° (BxXog(s))dW (s) + AETOO . U™ (t — s)IT*(BrXog(s))dW (s)

— lim /to U (to — s)II°(ByXo f(s))ds — lim N U™ (t — s)TT*(By X0 f(s))ds
0o A—+oco +oo

t

to . 0 ~ P
- Jim /_Oo U* (to = $)I1° (Bx Xog(s))dW () —  lim - U (to — s)H“(BAXOg(s))dW(s)H

t . to ~
4P7'E|| lim / U (t — $)TI°(BAXof(s))ds — lim / US (to — $)IT° (B Xo f(s))ds]||P
A—=+4o00 J_ o A—=+o0 ) _ o
1

t ~ 0 ~
+4P7E|| lim / UM (t — $)TT* (B Xo f(s))ds — _lim U (to — $)TT* (B Xo f(s))ds]|?
A—+o00 4o A

—+o0 S0

t - to ~
+4P71E|| lim / U (t — $)IT (B Xog(s))dW (s) — lim / US (to — $)II° (B Xog(s))dW (s)||?
A—=+oo /o A—=+o0 J o
t - to -
+4P71E|| lim U (L — $)IT%(BxXog(s))dW (s) — lim U (to — $)IT%(BxXog(s))dW (s)||?
A—+oo 400 A—+o0 400

4PN + o + I3 + 1y).

~ to ~
lim UP(t — s)IT*(BAXo f(s))ds — )\lirf U (tg — s)IT°(BaXof(s))ds|P.
—+00 —00
Let 0 = s — t +t9 and by Holder inequality, we have
~ to ~
U (tg — o)IT°(ByXof(o +t —tg))do — )\lirf UP(tg — s)IT°(BrXo f(s))ds||?
—+00 —00
E|| lim U (tg — s)IT3(BAXo[f (s +t — to) — f(s)])ds]|?

IN

IN

IN

IN

IN

IN

(MM |II*|)PE

(M M1 |)?

to

—— fto
E(MM/ == |15 || f (5 + t — to) — f(s)||ds>p

- o wp-1)(tg—s) _w(t—s) p
B(MMIE| [ T e (s - t0) = (5)ds)
—00

([ (yma) < (e“”“?S)Hﬂm—to)—f<s>||)pds)ir

oty ( [

—00 —00

<[

—0o0 —00

—1 to
e—w(to—s)ds)p x / e W O=IE|| f(s +t —to) — f(s)|Pds

0
e = f(s 4+t — to) — f(s)||Pds.

oo
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For an arbitrary sequence of real {t,,} with ¢, — ¢t as n — +o00. By Lemma 4.4 and the defiition
of AA(R, LP(R2, H)) we deduce that f € BC(R, LP(§2, H)). So

e WOSE| f(s 4 t, — to) — f(s)||P — 0 as , — 4o0.

Hence

e OTIR| f (5 + tn — to) — f(s)||P < 2Pe” (07| F||2,
for every n sufficiently large. Note that

to
/ 9P t0=3) || £IP_ds < oo,

—0o0

Then according to Lebesgue dominated convergence theorem, we have

to
lim e WIR| f(s 4t — to) — f(s)||Pds = 0.

n—-+00 — 00
Since the arbitrariness of {t,}, we deduce that

to

lim e W=IR| f(s 4+t — to) — f(s)||Pds = 0,

t—to oo

which implies that

t - to -
lim E| lim UP(t — s)TT°(BrXof(s))ds — lim U (tg — s)IT*(BaXof(s))ds|[P =0
t—to A=+o00 J_ A—=+oo J_
(4.2)
Similarly, we can se that
t - to ~
lim E|| lim Ut — s)IT*(BrXof(s))ds — lim U (to — s)IT*(BaXo f(s))ds||P = 0.
t—to A=+00 oo A—=to0 4o
(4.3)

Let W(T) =W(r+1t—ty) — W(t —tp). One can see that W is a Winner process and has the
same distribution as W. Let 7 = s —t+ty. Then by Lemma 4.18 and Holder inequality, we have

t - to -
o= Bl tim [ W o (BaXogeNaW(s) « tim [t — )1 (BaXog(s)dW (s)P

to ~ to ~

— Bl i [ (o~ T BaXoglr 1~ t0)dW(r 4o - t0) — tim [ U (to — )1 (BaXog(£)dW (s) P
to . __ to ~ —~

= E| AETOO/ U (to — $)TI° (BaXog(r + t — t0))dW (7) — AETOO/ US (to — $)IT° (B Xog(s))dW (s)[|?
to _ —

= Bl tim [ Ut — I (BaXolg(s +t — to) ~ g())dIV (5)

——~ to to
< Cp(MM|HS\)p(/ 672“’(’5073)(15> ? x / e 2w (t0=9)E||g(s + t — to) — g(s)||Pds.

By the similar arguments as above, we obtain

to
lim e~ 2R g(s +t — tg) — g(s)|[Pds = 0,

t—=to oo
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which implies that

t to

lim E|| lim U (t—s)II°(BxXog(s))dW (s)— lim U (to—s)TI3 (B Xog(s))dW (s)||P = 0.
t—to A—=+oo J_ A—=r+oo J_ o
(4.4)

Similarly, we can see that

t to

lim E| lim U (t—s)TT%(ByXog(s))dW (s)— lim U (tg—s)IT*(BrXog(s))dW (s)||P = 0.

t—to A——+00 +00 A——+o00 +oo

From equations (4.2), (4.3), (4.4) and (4.5), we deduce that

lim E[IT(f,9)(t) = T'(f, 9)(to) ||’ = 0

t—to

and yield the continuity of I'(f, g).

Step 2 : Since f,g € AA(R, LP(2, H)). Thus, for every sequence of real numbers (s,,)m € N,

there exists a subsequence (s,)n € N and stochastic processes f,§ : R — LP(Q, H) which each
t € R such that

Jim BJ|f(t+s0) = FO7 =0, lim E[[f(t —s0) — f@)II" =0
and
Tim Ellg(t + 52) — 50 =0, lim B[t — s) — g(0)|F = 0.
Let
t
w(t+sp) = )\ETOO US(t — $)IT*(BrXo f(s + s5))ds + Erfoo | Ut — $)ITY(BAXo f (s + sn))ds
+ /\luf L{S(t — $)II*(BxXog(s + 5n))dW (s + s
—+00 J _~o
t ~
+ lim UMt — s)IT(BrXog(s + $,))dW (s + sn)}
and
t ~ t _
w(t) = [ lim / UP(t — s)IT*(BrXo f(s))ds + lim U“(t — s)II"(BrXo f(s))ds
A—=+oo J_ o A—=+400 J 1o
t ~ t _
+ lim UP(t — s)TT* (B Xog(s))dW (s) + lim U (t — s)IT* (B Xog(s))dW (s)|.
A—=+o0 J_ o A=r+o0 J o

Then we have
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t
Blu(t +5,) - a(0))” < 7B tm [ U= 90 Bl (s +5.) - Fo)ds]P

t

+4P~1E|| Jm U (t — $)I*(BaXolf (s + sn) — f(s)]ds|]”
+oo
t —~
4r1E|| Jim [ute - $)I1* (B Xo[g(s + sn) — g(s)|dW (s)]|?
t _ —
+4P 1R Jim i U"(t — s)II"(BrxXo[g(s + sn) — g(s)|dW (s)]]”,

where W(s) =W (s + sn) — W(s). Note that W and W are two Wiener processes and have the
same distribution. Then we have

Bl +s,) - a0)? < @ @nme)e( [

—00

p—1 t
e 9s)" [ IR s 4 5) - f5)Pds

—0o0

t

-1
ew(t—s)ds)p y / e IR f(s + sn) — f(s)|Pds
+0o0

+4p_1(MM\H“\)p</t

—+00

rte ([ o) / e 2 IR lg(s + 5n) — g(5)|"ds

—00 o0

e O ( [ )T o [ Il o) - s

—00 “+o00

By similarly arguments as above, we have
t

lim / e ISR f(s + s,) — f(s)|[Pds = 0, Jim / SR f(s 4 s,) — f(s)||Pds = 0,

n—-+00

—00
t
lim e 2R g(s+5,)—g(s)|Pds = 0 and  lim WE=S)E||g(s+5,)—g(s)|[Pds = 0.
n—-+o0o oo n—-+o0o +<>o
Thus

lim E|w(t+s,) —w(t)||” =0.

n—-+oo
Similarly, we have
lim E|w(t— sp) —w(t)]|P =0.

n—-+o0o

Therefore by Steps 1 and 2, we proved that I'(f,g) € AA(R, LP(2, H)).

Theorem 4.21. Assume that (H3) and (Hs) hold. Let f,g € &(R,LP(QY, H), p,v,r), then
F(fa g) € (oﬁp(R,Lp(Q,H),/,L,I/,T).

Proof. We have

P(f9)t) = lim [ U(t—s)I*(ByXof(s))ds + lim i U (t — 5)I*(BXo f(5))ds
+ lim t U (t — s)I1°(BxXog(s))dW (s) + lim t U (t — $)IT*(BxXog(s))dW (s).

A—=+o0 J_ A——+o00 +00
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It follows that
0

E|T(f,9)0)|]P = IE /\hm us (0 — $)II*(By\Xof(s))ds + lim U0 — s)II*(BrXof(s))ds
——+o00 A——+00 +oo
0
+ lim U (0 — $)IT°(BxXog(s))dW (s)

A—=+o0 J_ o

9 ~
+ lim U9 — s)H“(B,\XOg(s))dW(s)Hp.

Then for 7 > 0, using Lemma 4.18 we have

T

[ s ErGo@r)no < [ ap e m @[ o)) wo

—7 0€t—r,t] —7 O€t—r,t]

T —_—
+/ sup 4p_1E<MM
—7 O€t—r,t]

0= £(s) s ) dp()

+o0o

T S 0 p/2
- / sup 4p_1CpE(M2M2 / e—W—S)ynsmg(s)u?ds) du(t)

—7 O€lt—r,t] —00

0

T S P /2
—i—/ sup 4p1CpIE(M2M2/ 672‘“(9*5)]H“|2Hg(s)H2ds>p du(t)

—7 0€[t—r,t] —0o0

By using Hoder inequality, we obtain

6 " 6 ~
EIN(f.9)@)" = E| lim_ / WO = (B Xof (9)ds+ N | U0 o)1 (ByXof (5))ds

0 ~
+ lim U (0 — s)IT°(BrXog(s))dW (s)
A—=+oo J_ o
0 ~ P
+ lim u*(6 — S)H“(B)\Xog(s))dW(s)H .wspace x 0.25¢cm

A—+00 +oo

Then for 7 > 0, using Lemma 4.18 again, we have

| sw (BICG9@)P)dute)

—7 0€[t—r,t]
_—~ 0 p—l 0
< L (T[T / sup / x / e~ f(s) Pds] du(t
—7 0€ft—r,t] 00 —00
o 0 -1 0
sy [ osw [([ e < [ e g ) s autt
—7 O€[t—r,t] +o0 +o00

[ u 0
[ em0as) T [ e ) psaute
—00

—7 O€t—r,t] 0o

I
+4P~ V(M M|1T°|)P / sup (
I

+4P= (M M |IT*|) / sup

—7 0€[t—r,t]

0 p—2 0
[ e0as) T [0 g ) s dute).
+oo

+o0
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Thus, we have

1 /T
_— sup
V([_7_7 T]) —7 0€[t—r,t]

4P=Y(M M 115 |y

(BT, 9)(0)]17 ) dpu(t)

4p=1(M M |T1%|)P

sup

(e / e IR £ (3)]Pds ) dpu)

gr—1

sup
—7 0€ft—r,t]

=i
X
v([-,7]) T 0€[t—r,t]
w1 /
v([—T,7])

( /;OO <OV 7(5)|ds) du(t

(MMIHSI)
(2w)"7

4r—1 M|H“|)

2R g(s) |Pds ) du(2)

6
X L / sup (eQ‘”/
V([_T T —7 O€t—r,t] 00

< (M
(20)" 7

i L (e

On the one hand using Fubini’s theorem, we have

T 0
[ sw (e [ e B )s) dute)
T O€t—r,t] —o0

T t
< / sup (e“”/ e~
—7 0€[t—r,t] —00

“=IE| f(s) | Pds ) dpu(t)

< e [T e ) pasante)
< e / /0 R f(t - 5)|Pdsdu(t)
< e / " g / :EHf(t — &) [Pdp(t)ds

By Theorem 3.15, we deduce that

lim

A

and

ewa

Similarly, we have

e

iy L Bl ) <

—ws

/ E||£(t — s)||Pdp(t) — 0 for all s € Ry

@D gy,

) —2ws T »
TETOOV([_T,TD/_TIEHg(t— $)|Pdu(t) = 0 for all s € R,
and
e TR — S e v({(nm)) )
e [ Bl spdue < T g
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Since f and g are two bounded functions, then the functions s — MH flI%, and

) v([=7,7])

—ZWws

5= e{/([(T’];—)DHgH& belong to L(]0, 00[) in view of the Lebesgue dominated convergence
v([—7,T

theorem, it follows that

e_WS T
e tim [ s [ Bl ) Pdu(ts =0
and
+oo 6720.)5 T
27 Jim e / Ellg(t — 8)|Pdu(t)ds = 0.
T

—T

On the other hand, we have

T 00 T +oo
[ osw ([ et ompras)ane < [ sw ([ et o)) aut
T O€t—r,t] 0 T O€t—r,t] t—

T

< / o ( /+°° HIE £(3)]Pds ) dp(t)
< / T / | f(s)|Pdsdp(t)
< | T g | Bl - Pduteyis

By the same arguments, we have

T +oo +oo T
[ osw ([0 mras)aun < [ e [ Blgte—s)Pduds
T O€t—r,t] 0 0

- -7

v([—=7,7]) 171 and s = v([—7,7]) lglls

belong to L!(]0, 00[) in view of the Lebesgue dominated convergence theorem, it follows that

Similarly as above, we have the functions s —

im [ 1/([—7'7'])/ E||f(t — 5)[Pdp(t)ds = 0

T—+00 J_ _r
and
r eQws T by 4 0
li —— | Elg(t— t)ds = 0.
dim [ [ Bl aPdus
Consequently

i o [ s (BN O )du) =0,

T+ V([_T7 T]) —7 0€[t—r,t]

Thus, we obtain the desired result. B
Our next objective is to show the existence of p-th (p > 2) mean (u,v)-pseudo almost auto-
morphic solution of class r for the following problem
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dz(t) = [Ax(t) + L(zt) + f(t,x¢)|dt + g(t, z¢)dW (t), for t € R, (4.6)

where f: R xC — LP(Q,H) and g : R x C — LP(Q), H) are two processes.

For the sequel we make the following assumptions.

(Hg) Let p,v € M and f : R x C(([-r,0],LP(Q2, H)) — LP(Q2, H) p-th mean cl(u, v)-pseudo
almost automorphic of class r such that there exists a positive constant Ly such that

E|f(t, ¢1) — f(t, P2)||P < LE|¢p1 — ¢2|P for all t € R and ¢1, 2 € C(([—r,0], LP (2, H)).

(H7) Let p,v € M and g : R x C(([-r,0], LP(Q?, H)) — LP(Q, H) p-th mean cl(u,v) pseudo
almost automorphic of class r such that there exists a positive constant L, such that

Ellg(t, 1) — g(t, ®2)||” < LgE|lp1 — ¢o||” for all t € R and ¢y, ¢2 € C(([—r, 0], LP(2, H)).
(Hg) The instable space U = {0}.

Theorem 4.22. Let p > 2, assume that (Hy), (Hy), (Hy), (Hg) (H7) and (Hg) hold. If

L L,C 1
fy Lt Z] < —,
wP (2@)2 2P

(AT |

then equation (4.6) has a unique p-th mean cl(p,v)-pseudo almost automorphic solution of class
r.

Proof. Let x be a function in PAA(R, LP (2, H), i, v, 7). From Theorem 4.14 the function ¢ — z;
belongs to PAA(C([—r,0]); LP(Q, H), p, v, 7). Hence Theorem 4.16 implies that g(.) = f(.,x) is
in PAA(R,LP(Q, H), i, v, 7). Since the unstable space U = {0}, then II* = 0. Consider the
following mapping H : PAA(R, LP(Q, H), u,v,r) — PAA(R, LP(Q, H), u,v,r) defined for ¢t € R
by

(Hz)(t) = [lim / U(t — $)II*(BrXof (s, xs))ds + lim w(t—S)HS(EAXOg(s,xS))dW(s)](0).

A——+o00 A——+oo J_

—0o0

Let z1,29 € PAA(R,LP(Q, H), i, v, 1), we have

[e.9]

B|(Hon)(0) — (Hea) O = || i [ (e = I BaXolf(5.00) — F(svw2.) s

A—=+o0 J_ o

+ lim U (t — $)IT*(BrXolg(s, w1s) — g(s, w25)])dW (s)

i
A—=+oo J_ o

IN

2”*1EH lim /t L{s(t—s)Hs(E,\Xo[f(s,xls)—f(s,xgs)])dsH

A=+o0 J

t ~ p
271 [ e (B Xolg(s.a1.) — g(s.2) )W )|

—+00 ) _ o

< 2p_1(11 +IQ)

By Holder inequality, it follows that
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L = ]EH lim /t us(t—s)Hs(EAXg[f(s,xls)—f(s,xQS)])dsH

A—=+o00 J_

< e[y ( [

—0o0

p—1 t
e s) s [ I i) — Sl

t t

o —1

< @y ( [ et0as) s [ IB o )  f(s, s
MM|ISP [t .

< (wl"—l‘)/_me =)L By, — s |Pds
(MM]|T1j*)P .

< _ P w(t—s)

< B Lswla) — e ([ e0-as)

(MM |TT}*)P
wP
By Holder inequality and by Lemma 4.18, we have

< Lyl|lzy — 22]|5,.

o= B [ U Bxalgte.) — oo, haw )|

A—400
. K s s 2 p/2
< GE[ lim / w2t = )T (BrXolg (s, 1) — (s, 224)]) 2]
A=+oo J_
7,\/ t p=2 t
< OOy ( [ etmas) T [ e IR (s ) — 5,220 P
MMy [t
< CP(JZH/ e—2w(t—S)LgE||mls_xQSdeS
(2w) 2z —c0
MM|II|*)P t
< SO 1 supBlea() - ma(olr ([ e0-as)
(2w)T teR —00
C, (M M|TI[*)P
< GOV o~ wall,
(2)"

Thus we have

LyCyp
(2w)?
This means that H is a strict contraction. Thus by Banach’s fixed point theorem, H has a

unique fixed point u in PAA(R; LP(Q?, H), u,v,r). We conclude that equation (4.6), has one and
only one p-th mean ¢l(u, v)-pseudo almost automorphic solution of class r. B

E||(Ha1)(t) = (Haz) (@) < 27~ (MM %#L ]Hxl — 2[5

Proposition 4.23. Let p > 2, assume that (Hy), (Hy) and (Hy) hold, f, g are lipschitz conti-
nuous with respect the second argument. If

Lip(f) = Lip(g) < — 1 1 1
2P=1(M M |II3|)P [@ +

1

[S13s]

(2w)
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then(4.6) has a unique p-th mean cl(u,v)-pseudo almost automorphic of class r, where Lip(f)
and Lip(g) are respectively the lipschitz constants of f and g.

Proof. Let us pose k = Lip(f) = Lip(g), we have

E||(Ha1)(t) — (Haa) ()P < 2p‘1(m‘7|ﬂ5|>p[£+ . }

IN

o 1
p—1 S1\P
2 (MM|H |)k[wp+(

Consequently H is a strict contraction if
1
= 1 1
2=t (M2 [ — + — |
wP (2w)§

k<

5. Application
For illustration, we propose to study the existence of solutions for the following model

2

dz(t,z) = f%z(t, w)dt + [/_O G(6)=(t + 0, 2)d0 + sin (

1
2+cost—|—cosx/§t

) + arctan(t) + /_0 h(0, z(t + H,x))de} dt

0
+[sin (m) + arctan(t) + /_T h(6,z(t + 6, x))d@] dW(t) for t € R, and x € [0, 7],

z(t,0) = z(t,7) =0 fort € R, and x € [0, 7],

(5.1)

where G : [-7,0] — R is continuous function and h : [—r,0] — R is lipschitz continuous with

the respect of the second argument. W (t) is a two-sided standard Brownian motion with values
in separable Hilbert space H. To rewrite equation (5.1) in abstract form, we introduce the space
H = L*((0,7)). Let A: D(A) — L?((0,7)) defined by

D(A) = H?(0,7) N H'(0,7)

Ay(t) =y"(t) for t € (0,7) and y € D(A).

Then A generates a Co-semigroup (U(t))>o on L?((0,7)) given by
+oo
UMD () =D ™™ <z e > 2 enlr),
n=1
where e,(r) = v2sin(nar) for n = 1,2... and |U(t)|]| < e ™t for all ¢ > 0. Thus M = 1 and
w = m2. Then A satisfies the Hille-Yosida conditions in L?(0, 7). Moreover the part A of A in

D(A) is the generator of compact semigroup. It follows that (Hp) and (H;) are satisfied.
We define f: R x C — L%((0,7)) and L : C — L*(Q, H) as follows

0

f(t, @)(z) = sin (2 p— i_ o \/it) + arctan(t) + /T h(0,¢(0)(z))dd for x € (0,7) and t € R,
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0

g(t, 6)(x) = sin (2 ppm 1+ — \/ﬁt) + arctan(t) + /_ h(0, 6(0)(x))df for z € (0,7) and t € R,
and
0
L(¢)(z) = G(0)(¢(0)(z) for —r <6 and z € (0,9).

T

Let us pose v(t) = z(t,x). Then equation (5.1) takes the following abstract form
dv(t) = [Av(t) + L(ve) + f(t,ve)]dt + g(t, ve)dW (t) for t € R. (5.2)

Consider the measure p and v where its Randon-Nikodym derivates are respectively p; and ps

() = 1 fort>0
Pt = et fort <0

and
p2(t) =t/ fort e R
i.e du(t) = p1(t)dt and du(t) = pa(t)dt, where dt denotes the Lebesgue measure on R and

w(A) = /Apl(t)dt for v(A) = pa(t)dt for A e N

From[14] pu, v € M satisfies Hypothesis (Hy).

0 . T
e'dt + dt
/r /0 I+e " +717

lim M = lim sup = = lim sup
T—+400 I/( —-T7,T ) T—400 2/ tdt T—+00 T
0

which implies that (Hy) is satisfied.

For t € R, —g < arctan(f) < g, therefore for all § € [t — r,t| arctan(t — r) < arctan(t). It
follows that |arctan — g] = g — arctand < |arctan(t —r) — g] = g — arctan(t — ) which

implies that | arctan§ — g|p < |arctan(t —r) — g|p, hence, we have

sup E|arctanf — f’p < E|arctan(t — r) — E]p,
Oc(t—rt] 2 2

On one hand, we have

1 T 1 T
/ E sup E]arctanﬂ—ﬁ\pdt < / E|arctan(t_r)_ﬁypdt
v([=77]) Jo  eeit—rg 2 v([=7,7]) Jo 2
1 /T T p
< - E(—= — arctan(t — r))"dt
A7) o Bla ~oretent =)
1 T P
< — —dt
- V([—Tﬁ])/o 2p
P
< — 0, as 7 — +o00.

2ptlr
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On other hand, we have

1 0 1 0 7P
/ E sup E|arctanf — E|pdt < / T etdt
V([_Tv T]) -7 O€t—rt] 2 V([_Tv 7_]) —r 2P
(1 —e ")
S W — 0, as 7 — +oo.
Consequently
I L /TE E| arctan 8 — ~ P du(t) = 0
im ———— sup arctand — —|P du(t) = 0.
T+00 V([_T’ T]) -7 O€t—r,t] 2

It follows that ¢ — arctan(t)—g is p-th mean (u, v)-ergodic of class r, consequently f is uniformly

p-th mean (u, v)-pseudo almost automorphic of class . Moreover L is bounded linear operator
from C to L%(Q, H).

Let k be the lipschitz constant of h. Then by using Holder-inequality for every o1, @2 € C and
t > 0, we have

|t o1)(e) - St @l = E| [ 0 (A6, £1(0) (@) = h(6, ¢2(0) (@) ) a0 |

< [ [ 110:010)@) — (0. ea(0))) 0]
0 p=1 0 1 P
< [( [ a8) " x ([ I )@) - 16 ca0)@)IP)
0
< [ BB, 1(6)(a) - hO. pa(6)()) Pt
0
< [ Bler0)@) - pa(®)(a) s
< Tk swp Ellei0)@) - pa(0)(a)lP
< 7Pka sup Ellgi(z) — p2(x)||? for a certain a € R

—r<6<0

Consequently, we conclude that f and g are Lipschitz continuous and ¢l(u, v)-pseudo almost
automorphic in p-th mean sense. Moreover, since h is stochastically bounded in p-th mean
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sense, i.e E||h(t,¢(t))||P < 5. By Hélder inequality, we have

Blott @)l = 145+ 8] [ ool

9 0 p—1 0

< 255w ( [ a0) x [ EIne. o) @) Pas
0

< Z;Wﬂml/ Bdo

< 2+7r+rpﬁ

2

2

S Bla Wlthﬁlz —;W_Frpﬁv

which implies that g satisfies (Hs).

For hyperbolicity, we suppose that

(Hy) /0 G(0)[do < 1.

-

Proposition 5.1. [18] Assume that (Hs) and (H7) hold. The the setigroup (U(t))i>0 is hyper-
bolic.

Then by Proposition 4.23, we deduce the following result

Theorem 5.2. Under above assumptions, if Lip(h) is small enough large, then equation (5.1)
has unique p-th mean cl(p,v)-pseudo almost automorphic solution of class r.

1.
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