p -th mean pseudo almost automorphic solutions of class r under the light of measure theory

Mbaiandji Djendode¹ and Issa ZABSONRE²

May 16, 2023

Abstract

The objective in this work is to present a new concept of p-th mean pseudo almost automorphic by use of the measure theory. We use the (μ,ν)-ergodic process to define the spaces of (μ,ν)-pseudo almost automorphic process of class r in the p-th sense. To do this, firstly we show some interesting results regarding the completeness and composition theorems. Secondly we study the existence, uniqueness of the p-th mean (μ,ν)-pseudo almost automorphic solution of class r for the stochastic evolution equation. AMS Subject Classification: 60H15; 60G20; 34K30; 34K50; 43A60.

Hosted file

p-th mean pseudo almost automorphic_2.tex available at https://authorea.com/users/413828/articles/643778-p-th-mean-pseudo-almost-automorphic-solutions-of-class-r-under-the-light-of-measure-theory

¹Universite de N'Djamena

²Universite Joseph Ki-Zerbo

p-th mean pseudo almost automorphic solutions of class r under the light of measure theory

Djendode MBAINADJI ¹ and Issa ZABSONRE²

1 Université de Ndjaména, Département de Mathématiques, BP 1117, Ndjaména Tchad 2 Université Joseph KI-ZERBO, Unité de Recherche et de Formation en Sciences Exactes et Appliquées, Département de Mathématiques B.P.7021 Ouaqadouqou 03, Burkina Faso

Abstract. The objective in this work is to present a new concept of p-th mean pseudo almost automorphic by use of the measure theory. We use the (μ, ν) -ergodic process to define the spaces of (μ, ν) -pseudo almost automorphic process of class r in the p-th sense. To do this, firstly we show some interesting results regarding the completeness and composition theorems. Secondly we study the existence, uniqueness of the p-th mean (μ, ν) -pseudo almost automorphic solution of class r for the stochastic evolution equation.

AMS Subject Classification: 60H15; 60G20; 34K30; 34K50; 43A60.

Keywords and phrases: Measure theory, ergodicity, (μ, ν) -pseudo almost automorphic function, evolution equations, partial functional differential equations, Stochastic processes, evolution equations.

1. Introduction

In this work, we study some properties of the p-th mean (μ, ν) -pseudo almost automorphic process using the measure theory and we use those results to study the following stochastic evolution equations in a Hilbert space H,

$$dx(t) = [Ax(t) + L(x_t) + f(t)]dt + g(t)dW(t), \text{ for } t \in \mathbb{R}$$
(1.1)

where $A:D(A)\subset H$ is the infinitesimal generator of a C_0 -semigroup $(T(t))_{t\geq 0}$ on H such that

$$||T(t)|| \leq Me^{-\omega t}$$
, for $t \geq 0$,

for some $M, \omega > 0$, $f : \mathbb{R} \to L^p(\Omega, H)$ and $g : \mathbb{R} \to L^p(\Omega, H)$ are appropriate functions specified later, and W(t) is a two-sided standard Brownian motion with values in H. $\mathcal{C} = C([-r, 0], L^p(\Omega, H))$ denotes the space of continuous functions from [-r, 0] to $L^p(\Omega, H)$ endowed with the uniform topology norm. For every $t \geq 0$, x_t denotes the history function of \mathcal{C} defined by $x_t(\theta) = x(t + \theta)$ for $-r \leq \theta \leq 0$.

We assume (H, ||, ||) is a real separable Hilbert space and $L^p(\Omega, H)$ is the space of all H-valued random variables x such that

$$\mathbb{E}\|x\|^p = \int_{\Omega} \|x\|^p dP < \infty.$$

The concept of almost automorphiy is a generalization of the clasical periodicity. It was indroduced in literrature by Bochner This work is an extension of [11] whose authors had studied equation (1.1) in the deterministic case. Some recent contributions concerning p-th mean pseudo

^{1.} To whom all correspondence should be sent : mbainadjidjendode@gmail.com

almost automorphic for abstract differential equations similar to equation (1.1) have been made. For example [12, 25] the authors studied equation (1.1) without operator L. They showed that equation has unique p-th mean μ -pseudo almost periodic and μ -pseudo almost automorphic solutions on \mathbb{R} when f g are p-th mean pseudo almost periodic or p-th mean pseudo almost automorphic functions.

This work is organized as follows, in section 2, we give the spectral decomposition of the phase space, in section 3, we study p-th mean (μ, ν) -ergodic process of class r, in section 4, we study p-th mean (μ, ν) -pseudo almost automorphic process and we discuss the existence and uniqueness of p-th mean (μ, ν) -pseudo almost automorphic solution of class r, the last section is devoted to application.

2. Spectral decomposition

To equation (1.1), associate the following initial value problem

$$\begin{cases}
du_t = [Au_t + Lu_t + f(t)]dt + g(t)dW(t) \text{ for } t \ge 0 \\
u_0 = \varphi \in C = C([-r, 0], L^p(\Omega, H)),
\end{cases}$$
(2.1)

where $f: \mathbb{R}^+ \to L^p(\Omega, H)$ and $g: \mathbb{R}^+ \to L^p(\Omega, H)$ are two stochastic processes continuous.

Definition 2.1. We say that a continuous function $u: [-r, +\infty[\to L^p(\Omega, H) \text{ is an integral solution of equation, if the following conditions hold:$

(1)
$$\int_0^t u(s)ds \in D(A)$$
 for $t \ge 0$,
(2) $u(t) + A \int_0^t u(s)ds + \int_0^t (L(u_s) + f(s))ds + \int_0^t g(s)dW(s)$ for $t \ge 0$,

If $\overline{D(A)} = L^p(\Omega, H)$, the integral solution coincide with the know mild solutions. One can se that if $\underline{u(t)}$ is an integral solution of equation (2.1), then $\underline{u(t)} \in \overline{D(A)}$ for all $\underline{t} \geq 0$, in particular $\varphi(0) \in \overline{D(A)}$. Let us introduce the part A_0 of the operator A which defined by

$$\begin{cases} D(A_0) = \{x \in D(A) : Ax \in \overline{D(A)}\} \\ A_0x = Ax \text{ for } x \in D(A_0). \end{cases}$$

We make the following assumption.

 \mathbf{H}_0 A satisfies the Hille-Yosida condition.

Proposition 2.2. A_0 generates a strongly continuous semigroup $(T_0(t))_{t\geq 0}$ on $\overline{D(A)}$. The phase C_0 of equation (2.1) is defined by

$$C_0 = \{ \varphi \in C : \varphi(0) \in \overline{D(A)} \}.$$

For each $t \geq 0$, we define the linear operator $\mathcal{U}(t)$ on C_0 by

$$\mathcal{U}(t) = v_t(.,\varphi),$$

where $v(.,\varphi)$ is the solution of the following homogeneous equation

$$\begin{cases} \frac{d}{dt}v(t) = Av(t) + L(v_t) \text{for } t \ge 0 \\ v_0 = \varphi \in \mathcal{C} \end{cases}$$

Proposition 2.3. $(\mathcal{U}(t))_{t\geq 0}$ is strongly continuous semigroup of linear operators on C_0 . Moreover $(\mathcal{U}(\sqcup))_{t\geq 0}$ satisfies for $t\geq 0$ and $\theta\in [-r,0]$ the following translation property

$$(\mathcal{U}(t))_{\geq 0} = \begin{cases} (\mathcal{U}(t+\theta)\varphi)(0) \text{ for } t+\theta \geq 0. \\ \varphi(t+\theta) \text{ for } t+\theta \leq 0. \end{cases}$$

Proposition 2.4. [23] Let $A_{\mathcal{U}}$ defined on C_0 by

$$\begin{cases} D(\mathcal{A}_{\mathcal{U}}) = \{ \varphi \in C^{1}([-r, 0]; X), \varphi(0) \in (D(A), \varphi(0)' \in \overline{D(A)} \text{ and } \varphi(0)' = A\varphi(0) + L(\varphi) \} \\ \mathcal{A}_{\mathcal{U}}\varphi = \varphi' \in D(\mathcal{A}_{\mathcal{U}}) \end{cases}$$

Then $\mathcal{A}_{\mathcal{U}}$ is the infinitesimal generator of the semigroup $(\mathcal{U}(t))_t \geq 0$ on C_0 . Let $\langle X_0 \rangle$ be the space defined by

$$\langle X_0 \rangle = \{ X_0 c : c \in X \},$$

where the function X_0c is defined by

$$(X_0c)(\theta) = \begin{cases} 0 \text{ if } \theta \in [-r, 0[\\ c \text{ if } \theta = 0. \end{cases}$$

The space $C_0 \oplus \langle X_0 \rangle$ equipped with the norm $|\phi + X_0 c|_{\mathcal{C}} = |\phi|_{\mathcal{C}} + |c|$ for $(\phi, c) \in C_0 \times X$ is a Banach space. Consider the extension $\widetilde{\mathcal{A}}_{\mathcal{U}}$ defined on $C_{\alpha} \oplus \langle X_0 \rangle$ by

$$\begin{cases} D(\widetilde{\mathcal{A}_{\mathcal{U}}}) = \left\{ \varphi \in C^{1}([-r,0],X) : \varphi(0) \in D(A) \text{ and } \varphi(0)' \in \overline{D(A)} \right\} \\ \widetilde{\mathcal{A}_{\mathcal{U}}}\varphi = X_{0}(A\varphi(0) + L(\varphi) - \varphi(0)'). \end{cases}$$

Lemma 2.5. [24] Assume that (\mathbf{H}_0) holds. Then, $\widetilde{\mathcal{A}}_{\mathcal{U}}$ satisfies the Hile-Yosida condition on $C_0 \oplus \left\langle X_0 \right\rangle$ there exist $\widetilde{M} \geq 0$, $\widetilde{\omega} \in \mathbb{R}$ such that $]\widetilde{\omega}, +\infty[\subset \rho(\widetilde{\mathcal{A}}_{\mathcal{U}})]$ and

$$|(\lambda I - \widetilde{\mathcal{A}}_{\mathcal{U}})^{-n}| \leq \frac{\widetilde{M}}{(\lambda - \widetilde{\omega})^n} \text{ for } n \in \mathbb{N} \text{ and } \lambda > \widetilde{\omega}.$$

Moreover, the part of $\widetilde{\mathcal{A}}_{\mathcal{U}}$ on $D(\widetilde{\mathcal{A}}_{\mathcal{U}}) = C_0$ is exactly the operator $\widetilde{\mathcal{A}}_{\mathcal{U}}$.

Definition 2.6. We say a semigroup, $(\mathcal{U}(t))_{t>0}$ is hyperbolic if

$$\sigma(\mathcal{A}_{\mathcal{U}}) \cap i\mathbb{R} = \emptyset.$$

For the sequel, we make the following assumption :

 (\mathbf{H}_1) $(T(t))_{\geq 0}$ is compact on D(A) for t > 0.

Proposition 2.7. Assume that (\mathbf{H}_0) and (\mathbf{H}_1) hold. Then the semigroup $(\mathcal{U}(t))_{t\geq 0}$ is compact for t>r.

We get the following result on the spectral decomposition of the phase space C_0 .

Proposition 2.8. Assume that (\mathbf{H}_0) and (\mathbf{H}_1) hold. If the semigroup $\mathcal{U}(t)_{t\geq 0}$ is hyperbolic, then the space C_0 is decomposed as a direct sum

$$C_0 = S \oplus U$$

of two U(t) invariant closed subspaces S and U such that the restriction of $(U(t))_{t\geq 0}$ on U is a group and there exist positive constants \overline{M} and ω such that

$$|\mathcal{U}(t)\varphi| \leq \overline{M}e^{-\omega t}|\varphi| \text{ for } t \geq 0 \text{ and } \varphi \in S,$$

$$|\mathcal{U}(t)\varphi| \leq \overline{M}e^{-\omega t}|\varphi| \text{ for } t \leq 0 \text{ and } \varphi \in U,$$

where S and U are called respectively the stable and unstable space, Π^s and Π^u denote respectively the projection operator on S and U.

3. (μ, ν) -ergodic process in p-th mean sense of class r

Let \mathcal{N} the Lebesgue σ -field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{N} satisfying $\mu(\mathbb{R}) = +\infty$ and $\mu([a,b]) < \infty$ for all $a,b \in \mathbb{R}$ $(a \leq b)$. Let $p \geq 2$. $L^p(\Omega,H)$ is a Hilbert space with the following norm

$$||x||_{L^p} = \Big(\int_{\Omega} ||x||^p dP\Big)^{\frac{1}{p}}$$

Definition 3.1. [20] Let $x : \mathbb{R} \to L^p(\Omega, H)$ be a stochastic process.

(1) x said to be stochastically bounded in p-th mean sense, if there exists M>0 such that

$$\mathbb{E}||x(t)||^p < M \text{ for all } t \in \mathbb{R}.$$

(2) x said to be stochastically continuous in p-th mean sense if

$$\lim_{t \to s} \mathbb{E} \|x(t) - x(s)\|^p \le M \text{ for all } t, s \in \mathbb{R}.$$

Let $BC(\mathbb{R}, L^p(\Omega, H))$ denote the space of all the stochastically bounded continuous processes.

Remark 3.2. [20] $(BC(\mathbb{R}, L^p(\Omega, H)), \|.\|_{\infty})$ is a Banach space, where

$$||x||_{\infty} = \sup_{t \in \mathbb{R}} (\mathbb{E}(||x(t)||^p))^{\frac{1}{p}}$$

Definition 3.3. Let $\mu, \nu \in \mathcal{M}$. A stochastic process f is said to be (μ, ν) -ergodic in p-th $(p \ge 2)$ mean sense, if $f \in BC(\mathbb{R}, L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t)\|^p d\mu(t) = 0.$$

We denote by $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu)$, the space of all such process.

Proposition 3.4. Let $\mu, \nu \in \mathcal{M}$. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu)$ is a Banach space with the supremum norm $\|.\|_{\infty}$.

Definition 3.5. Let $\mu, \nu \in \mathcal{M}$. A stochastic process f is said to be p-th mean (μ, ν) -ergodic of class r if $f \in BC(\mathbb{R}, L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p d\mu(t) = 0.$$

We denote by $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, the space of all such process.

For $\mu \in \mathcal{M}$ and $a \in \mathbb{R}$, we denote μ_a the positive measure on $(\mathbb{R}, \mathcal{N})$ defined by

$$\mu_a(A) = \mu([a+b:b \in A]) \text{ for } A \in \mathcal{N}$$
(3.1)

From $\mu, \nu \in \mathcal{M}$, we formulate the following hypotheses.

 (\mathbf{H}_2) Let $\mu,\nu\in\mathcal{M}$ be such that

$$\limsup_{\tau \to +\infty} \frac{\mu([-\tau, \tau])}{\nu([-\tau, \tau])} = \delta < \infty.$$

 (\mathbf{H}_3) For all a, b and $c \in \mathbb{R}$ such that $0 \le a < b < c$, there exist δ_0 and $\alpha_0 > 0$ such that

$$|\delta| \ge \delta_0 \Rightarrow \mu(a+\delta,b+\delta) \ge \alpha_0 \mu(\delta,c+\delta).$$

 (\mathbf{H}_4) For all $\tau \in \mathbb{R}$ there exist $\beta > 0$ and a bounded interval I such that

$$\mu(\{a+\tau:a\in A\}) \leq \beta\mu(A)$$
 when $A\in\mathcal{N}$ and satisfies $A\cap I=\varnothing$.

Proposition 3.6. Assume that (\mathbf{H}_2) holds. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is a Banach space with the norm $\|.\|_{\infty}$

Proof. We can see that $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is a vector subspace of $BC(\mathbb{R}, L^p(\Omega, H))$. To complete the proof is enough to prove that (\mathbf{H}_2) holds. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is closed in $BC(\mathbb{R}, L^p(\Omega, H))$. Let $(f_n)_n$ be a sequence in $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ such that $\lim_{n \to +\infty} f_n = f$ uniformly in $BC(\mathbb{R}, L^p(\Omega, H))$. From $\nu(\mathbb{R}) = +\infty$, it follows that $\nu([-\tau, \tau]) > 0$ for τ sufficiently large. Let $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $||f_n - f||_{\infty} < \varepsilon$. Let $n \geq n_0$, then we have

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f(t)\|^p \Big) d\mu(t) \leq \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t) - f(t)\|^p \Big) d\mu(t) \\
+ \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t)\|^p \Big) d\mu(t) \\
\leq \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t) - f(t)\|^p \Big) d\mu(t) \\
+ \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t)\|^p \Big) d\mu(t) \\
\leq 2^{p-1} \|f_n - f\|_{\infty}^p \frac{\mu([-\tau,\tau])}{\nu([-\tau,\tau])} + \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t)\|^p \Big) d\mu(t).$$

We deduce that

$$\limsup_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(t)\|^p \Big) d\mu(t) \leq 2^{p-1} \delta \varepsilon \text{ for any } \varepsilon > 0.$$

Next result is a characterisation of p-th mean (μ, ν) -ergodic processes of class r.

Theorem 3.7. Asume that (\mathbf{H}_2) holds and let $\mu, \nu \in \mathcal{M}$ and I be a bounded interval (eventually $I = \varnothing$). Assume that $f \in BC(\mathbb{R}, L^p(\Omega, H))$. The following assertions are equivalent

$$i) f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$$

$$ii) \ \lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau] \setminus I)} \int_{[-\tau,\tau] \setminus I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) = 0.$$

$$iii) \ \textit{For any } \varepsilon > 0, \ \lim_{\tau \to +\infty} \frac{\mu\Big(\{t \in [-\tau,\tau] \setminus I : \mathbb{E}\|f(\theta)\|^p > \varepsilon\}\Big)}{\nu([-\tau,\tau] \setminus I)} = 0$$

Proof. The proof uses the same arguments of the proof of Theorem 2.22 in [28].

$$i) \Leftrightarrow ii)$$
. Denote By $A = \mu(I)$ and $B = \int_{I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t)$.

Since the interval I is bounded and the process f is stochastically bounded continuous. Then A, B and C are finite.

For
$$\tau > 0$$
, such that $I \subset [-\tau, \tau]$ and $\nu([-\tau, \tau] \setminus I) > 0$, we have

$$\frac{1}{\nu([-\tau,\tau])\setminus I} \int_{[-\tau,\tau]\setminus I} \left(\sup_{\theta\in[t-r,t]} \mathbb{E}\|f(\theta\|^p) d\mu(t)\right) = \frac{1}{\nu([-\tau,\tau]-A} \left[\int_{[-\tau,\tau]} \left(\sup_{\theta\in[t-r,t]} \mathbb{E}\|f(\theta)\|^p\right) d\mu(t) - B\right]$$

$$= \frac{\nu([-\tau,\tau])}{\nu[-\tau,\tau]-A} \left[\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \left(\sup_{\theta\in[t-r,t]} \mathbb{E}|f(\theta)\|^p\right) d\mu(t)$$

$$-\frac{B}{\nu([-\tau,\tau])}\right]$$

From above equalities and the fact $\nu(\mathbb{R}) = +\infty$, we deduce ii) is equivalent to

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \left(\sup_{\theta \in [t-r, t]} \mathbb{E} \| f(\theta) \|^p \right) d\mu(t) = 0,$$

that i). iii) $\Rightarrow ii$) Denote by A^{ε}_{τ} and B^{ε}_{τ} the following sets

$$A^{\varepsilon}_{\tau} = \Big\{ t \in [-\tau, \tau] \setminus I : \sup_{\theta \in [t-r, t]} \mathbb{E} \| f(\theta) \|^p > \varepsilon \Big\} \text{ and } B^{\varepsilon}_{\tau} = \Big\{ t \in [-\tau, \tau] \setminus I : \sup_{\theta \in [t-r, t]} \mathbb{E} \| f(\theta) \|^p \le \varepsilon \Big\}.$$

Assume that ii) holds, that is

$$\lim_{\tau \to +\infty} \frac{\mu(A_{\tau}^{\varepsilon})}{\nu([-\tau, \tau]) \setminus I)} = 0. \tag{3.2}$$

From the equality

$$\begin{split} &\int_{[-\tau,\tau]\backslash I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) = \int_{A^\varepsilon_\tau} \Big(\sup_{\theta \in [t-r,t]} \|f(\theta)\|^p \Big) d\mu(t) + \int_{B^\varepsilon_\tau} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \\ &\text{we deduce that for } \tau \text{ sufficient large} \end{split}$$

$$\frac{1}{\nu([-\tau,\tau]\setminus I)}\int_{[-\tau,\tau]\setminus I}\Big(\sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^p\Big)d\mu(t) \quad \leq \quad \|f\|_{\infty}\times\frac{\mu(A^{\varepsilon}_{\tau})}{\nu([-\tau,\tau]\setminus I)}+\varepsilon\frac{\mu(B^{\varepsilon}_{\tau})}{\nu([-\tau,\tau]\setminus I)}$$

Since $\mu(\mathbb{R}) = \nu(\mathbb{R}) = \infty$ and by using (\mathbf{H}_2) then for all $\varepsilon > 0$ we have

$$\frac{1}{\nu([-\tau,\tau]\setminus I)}\int_{[-\tau,\tau]\setminus I} \Big(\sup_{\theta\in[t-r,t]} \mathbb{E}\|f(\theta)\|^p\Big) d\mu(t) \leq \delta\varepsilon$$

Consequently ii) holds.

 $ii) \Rightarrow iii)$

$$\begin{split} &\int_{[-\tau,\tau]\backslash I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \geq \int_{A^{\varepsilon}_{\tau}} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \\ &\frac{1}{\nu([-\tau,\tau] \setminus I)} \int_{[-\tau,\tau] \setminus I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \geq \varepsilon \frac{\mu(A^{\varepsilon}_{\tau})}{\nu([-\tau,\tau] \setminus I)} \\ &\frac{1}{\varepsilon \nu([-\tau,\tau] \setminus I)} \int_{[-\tau,\tau] \setminus I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \geq \frac{\mu(A^{\varepsilon}_{\tau})}{\nu([-\tau,\tau] \setminus I)}, \end{split}$$

for τ sufficiently large, we obtain equation (3.2), that is *iii*).

Definition 3.8. Let $\mu, \nu \in \mathcal{M}$. A function $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be (μ, ν) ergodic in p-th mean sense in $t \in \mathbb{R}$ uniformly with the respect to $x \in \mathcal{K}$, if $f \in BC(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t,x)\|^p d\mu(t) = 0,$$

where $\mathcal{K} \subset L^p(\Omega, H)$ is compact.

We denote $\mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$ the set of all such functions.

Definition 3.9. Let $\mu, \nu \in \mathcal{M}$. A function $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be p-th mean (μ, ν) -ergodic of class r in $t \in \mathbb{R}$ uniformly with the respect to $x \in \mathcal{K}$, if $f \in BC(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta,x)\|^p d\mu(t) = 0,$$

where $\mathcal{K} \subset L^p(\Omega, H)$ is compact.

We denote $\mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$ the set of all such functions.

Definition 3.10. Let $\mu_1, \mu_2 \in \mathcal{M}$. We say that μ_1 is equivalent to μ_2 , denoting this as $\mu_1 \sim \mu_2$ if there exist constants α and $\beta > 0$ and a bounded interval I (eventually $I = \varnothing$) such that $\alpha \mu_1(A) \leq \mu_2(A) \leq \beta \mu_1(A)$, when $A \in \mathcal{N}$ satisfies $A \cap I = \varnothing$.

Remark 3.11. The relation \sim is an equivalence relation on \mathcal{M} .

Theorem 3.12. Let $\mu_1, \nu_1, \mu_2, \nu_2 \in \mathcal{M}$. If $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2$, then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_1, \nu_1, r) = \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_2, \nu_2, r)$.

Proof. Since $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2$, there exists some constants $\alpha_1, \alpha_2, \beta_1, \beta_2 > 0$ and a bounded interval I (eventually $I = \emptyset$) such that $\alpha_1 \mu_1(A) \leq \mu_2(A) \leq \beta_1 \mu_2(A)$ and $\alpha_2 \nu_1(A) \leq \nu_2(A) \leq \beta_1 \nu_1(A)$ for each $A \in \mathcal{N}$ satisfies $A \cap I = \emptyset$, i.e

$$\frac{1}{\beta_2\nu_1(A)} \le \frac{1}{\nu_2(A)} \le \frac{1}{\alpha_2\nu_1(A)}$$

Since $\mu_1 \sim \mu_2$ and \mathcal{N} is the Lebesgue σ -field for τ sufficiently large,

$$\frac{\alpha_{1}\mu_{1}\Big(\{t\in[-\tau,\tau]\setminus I: \sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^{p}>\varepsilon\}\Big)}{\beta_{2}\mu_{2}([-\tau,\tau]\setminus I)} \leq \frac{\mu_{2}\Big(\{t\in[-\tau,\tau]\setminus I: \sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^{p}>\varepsilon\}\Big)}{\nu_{2}([-\tau,\tau]\setminus I)}$$

$$\leq \frac{\beta_{1}\mu_{1}\Big(\{t\in[-\tau,\tau]\setminus I: \sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^{p}>\varepsilon\}\Big)}{\alpha_{2}\nu([-\tau,\tau]\setminus I)}.$$

By using Theorem 3.7, we deduce that $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_1, \nu_1, r) = \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_2, \nu_2, r)$.

Let $\mu, \nu \in \mathcal{M}$, we denote by

$$cl(\mu, \nu) = \left\{ \overline{\omega}_1, \overline{\omega}_2 \in \mathcal{M} : \mu_1 \sim \mu_2, \nu_1 \sim \nu_2 \right\}$$

Lemma 3.13. [14] Let $\mu \in \mathcal{M}$ satisfy (\mathbf{H}_4) . Then the measures μ and μ_{τ} are equivalent for all $\tau \in \mathbb{R}$.

Lemma 3.14. [14] (H_4) implies

for all
$$\sigma > 0$$
, $\limsup_{\tau \to +\infty} \frac{\mu([-\tau - \sigma, \tau + \sigma])}{\nu([-\tau, \tau])} < \infty$.

Theorem 3.15. Assume that (\mathbf{H}_4) holds. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is invariant by translation.

Proof. The proof is inspired by Theorem 3.5 in [13].

Let $f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ and $a \in \mathbb{R}$. Since $\nu(\mathbb{R}) = +\infty$, there exists $a_0 > 0$ such that $\nu([-\tau - |a|, \tau + |a|]) > 0$ for $|a| > a_0$. Denote

$$M_a(\tau) = \frac{1}{\nu_a([\tau,\tau])} \int_{-\tau}^{\tau} \big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \big) d\mu_a(t) \ \, \forall \tau > 0 \text{ and } a \in \mathbb{R},$$

where ν_a is the positive measure define by equation (3.1) By using Lemma (3.13), it follows that ν and ν_a are equivalent, μ and μ_a are equivalent and by Theorem (3.12), we have $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_a, \nu_a, r) = \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, therefore $f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_a, \nu_a, r)$ that is $\lim_{t \to +\infty} M_a(\tau) = 0$ for all $a \in \mathbb{R}$.

For all $A \in \mathcal{N}$, we denote χ_A the characteristic function of A. By using definition of the μ_a , we obtain that

$$\int_{[-\tau,\tau]} \chi_A(t) d\mu_a(t) = \int_{[-\tau,\tau]} \chi_A(t) d\mu_a(t+a) = \int_{[-\tau+a,\tau+a]} \chi_A(t) d\mu_a(t).$$

Since $t \mapsto \sup_{\theta \in [t-r,t]} \mathbb{E} ||f(\theta)||^p$ is the pointwise limit of an increasing sequence of function see([19,

Theorem 1.17, p.15]), we deduce that

$$\int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p d\mu_a(t) = \int_{[-\tau+a,\tau+a]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t).$$

We denote by $a^+ = \max(a,0)$ and $a^- = \max(-a,0)$. Then we have $|a| + a = 2a^+$, $|a| - a = 2a^-$ and $[-\tau + a - |a|, \tau + a + |a|] = [-\tau - 2a^-, \tau + 2a^+]$. Therefore we obtain

$$M_a(\tau + |a|) = \frac{1}{\nu([-\tau - 2a^-, \tau + 2a^+])} \int_{[-\tau - 2a^-, \tau + 2a^+]} \sup_{\theta \in [t - a - r, t - a]} \mathbb{E} \|f(\theta)\|^p d\mu(t)$$
(3.3)

From (3.3) and the following inequality

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t) \le \frac{1}{\nu([-\tau,\tau])} \int_{[-\tau-2a^-,\tau+2a^+]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t),$$

we obtain

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t) \le \frac{\nu([-\tau-2a^-,\tau+2a^+])}{\nu([-\tau,\tau])} \times M_a(\tau+|a|).$$

This implies

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t) \le \frac{\nu([-\tau-2|a|,\tau+2|a|])}{\nu([-\tau,\tau])} \times M_a(\tau+|a|).$$
 (3.4)

From equation (3.3) and equation (3.4) and using Lemma 3.14, we deduce that

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} ||f(\theta)||^p d\mu(t) = 0,$$

which equivalent to

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta - a)\|^p d\mu(t) = 0,$$

that is $f_a \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. We have proved that $f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ then $f_{-a} \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ for all $a \in \mathbb{R}$, that is $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ invariant by translation

Proposition 3.16. The space $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is invariant by translation, that is for all $a \in \mathbb{R}$ and $f \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, $f_a \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

4. p-th mean (μ, ν) -pseudo almost automorphic processes

In this section, we define p-th mean (μ, ν) -pseudo almost automorphic and their properties.

Definition 4.1. [4] A continuous function stochastic process $f: \mathbb{R} \to L^p(\Omega, H)$ is said to be almost automorphic process in the p-th mean sense if for every sequence of real numbers $(s_m)_{m\in\mathbb{N}}$, there exists a subsequence $(s_n)_{n\in\mathbb{N}}$ and a stochastic process $g: \mathbb{R} \to L^p(\Omega, H)$ such that

$$\lim_{n \to \infty} \mathbb{E} \| f(t+s_n) - g(t) \|^p = 0$$

is well defined for each $t \in \mathbb{R}$ and

$$\lim_{n \to \infty} \mathbb{E} \|g(t - s_n) - f(t)\|^p = 0$$

for each $t \in \mathbb{R}$.

We denote the space of all such stochastic processes by $AA(\mathbb{R}, L^p(\Omega, H))$

Lemma 4.2. [4] The space $AA(\mathbb{R}, L^p(\Omega, H))$ of p-th mean almost automorphic stochastic processes equipped with the norm $\|.\|_{\infty}$ is a Banach space.

Definition 4.3. [4] A continuous function stochastic process $f: \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$, $(t,x) \mapsto f(t,x)$ is said to be almost automorphic process in the p-th mean sense in $t \in \mathbb{R}$ uniformly with respect to $x \in K$, if for every sequence of real numbers $(s_m)_{m \in \mathbb{N}}$, there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ and a stochastic process $g: \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ such that

$$\lim_{n \to \infty} \mathbb{E} \| f(t + s_n, x) - g(t, x) \|^p = 0$$

is well defined for each $t \in \mathbb{R}$ and

$$\lim_{n \to \infty} \mathbb{E} \|g(t - s_n, x) - f(t, x)\|^p = 0$$

for each $t \in \mathbb{R}$, where $K \subset L^p(\Omega, H)$ is compact.

We denote the space of all such stochastic processes by $AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$.

Lemma 4.4. [4] If x and y are two automorphic processes in p-th mean sense, then

- (1) x + y is almost automorphic in p-th mean sense;
- (2) for every scalar λ , λx is almost automorphic in p-th mean sense;
- (3) there exists a constant M > 0 such that

$$\sup_{t \in \mathbb{R}} \mathbb{E} ||x(t)||^p \le M,$$

that is, x is bounded in $L^p(\Omega, H)$.

We now introduce some new spaces used in the sequel.

Definition 4.5. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic in p-th mean sense, if it can decomposed as follows

$$f = g + \phi$$
,

where $g \in AA(\mathbb{R}, L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu)$.

We denote the space of all such stochastic processes by $PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$.

Definition 4.6. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic in p-th mean sense, if it can decomposed as follows

$$f = g + \phi$$
,

where $g \in AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$.

Proposition 4.7. [28] Assume that (\mathbf{H}_3) holds. Then the decomposition of (μ, ν) -pseudo almost automorphic function in the form $f = g + \phi$, where $g \in AA(\mathbb{R}, X)$ and $\phi \in \mathscr{E}(\mathbb{R}, X, \mu, \nu)$ is unique.

Remark 4.8. Let $X = L^p(\Omega, H)$. Then the Proposition 4.7 always holds.

Proposition 4.9. [11] Assume that (\mathbf{H}_3) holds. Then the decomposition of (μ, ν) -pseudo almost automorphic function of class r in the form $\phi = \phi_1 + \phi_2$, where $\phi_1 \in AA(\mathbb{R}, X)$ and $\phi_2 \in \mathscr{E}(\mathbb{R}, X, \mu, \nu, r)$ is unique.

We denote the space of all such stochastic processes by $PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$.

Definition 4.10. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic of class r in p-th mean sense, if it can decomposed as follows

$$f = q + \phi$$
,

where $g \in AA(\mathbb{R}, L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

We denote by $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ the space of all such stochastic processes.

Proposition 4.11. Assume that (\mathbf{H}_2) holds. Let $\mu, \nu \in \mathcal{M}$. The space $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ endowed with the uniform topology norm is a Banach space.

Proof. This Proposition is the consequence of Lemma 4.2 and Proposition 3.6 ■

Definition 4.12. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic of class r in p-th mean sense, if it can decomposed as follows

$$f = g + \phi$$
,

where $g \in AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

We denote the space of all such stochastic processes by $PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

Proposition 4.13. Let μ_1, μ_2, ν_1 and $\nu_2 \in \mathcal{M}$ if $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2$, then $PAA(\mathbb{R}, L^p(\Omega, H), \mu_1, \nu_1, r) = PAA(\mathbb{R}, L^p(\Omega, H), \mu_2, \nu_2, r)$.

This Proposition is just a consequence of Theorem 3.12.

Theorem 4.14. Assume that (\mathbf{H}_3) holds. Let $\mu, \nu \in \mathcal{M}$ and $\phi \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ then the function $t \to \phi_t$ belongs to $PAA((C[-r, 0], L^p(\Omega, H), \mu, \nu, r))$.

Proof. Assume that $\phi = g + h$, where $g \in AA(\mathbb{R}, L^p(\Omega, H))$ and $h \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. Then we cause that $\phi_t = g_t + h_t$ and g_t is p-th mean almost automorphic process. Let us denote

$$M_a = \frac{1}{\nu_a([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r, t]} \mathbb{E} \|h(\theta)\|^p d\mu_a(t),$$

where μ_a and ν_a are the positive measures defined by equation (3.1). By using Lemma 3.13 it follows that μ and μ_a are equivalent, ν and ν_a are equivalent by using theorem 3.12 $\mathscr{E}_p(\mathbb{R}L^p(\Omega, H), \mu, \nu, r) = \mathscr{E}_p(\mathbb{R}L^p(\Omega, H), \mu_a, \nu_a, r)$ therefore $f \in \mathscr{E}_p(\mathbb{R}L^p(\Omega, H), \mu_a, \nu_a, r)$ that is $\lim_{\tau \to \infty} M_a(\tau) = 0$ for all $a \in \mathbb{R}$.

On the other hand for $\tau > 0$, we have

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\sup_{\theta \in [-\tau,0]} \mathbb{E} \|h(\theta+\xi)\|^{p} a \right) d\mu(t) \leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-2r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-2r,t-r]} \mathbb{E} \|h(\theta)\|^{p} + \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-2r,t-r]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau-r}^{\tau-r} \left(\sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau-r}^{\tau+r} \left(\sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t+r) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \|h(\theta)\|^{p} d\mu(t)$$

$$\leq \frac{\mu([-\tau-r,\tau+r])}{\nu([-\tau,\tau])} \left(\frac{1}{\mu([-\tau-r,\tau+r])} \int_{-\tau-r}^{\tau} \left(\sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t+r) \right) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} d\mu(t).$$

Consequently

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big(\sup_{\theta \in [-r,0]} \mathbb{E} \|h(\theta + \xi)\|^p \Big) d\mu(t) \leq \frac{\mu([-\tau - r, \tau + r])}{\nu([-\tau,\tau])} \times M_{\delta}(\tau + r) \\
+ \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^p \Big) d\mu(t),$$

which shows usind Lemma 3.13 and Lemma 3.14 that ϕ_t belongs to $PAA(C[-r,0],\mu,\nu,r)$. Thus we obtain the desired result.

Next, we study the composition of (μ, ν) -pseudo almost automorphic process in p-th mean sense.

Theorem 4.15. [5] Let $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$, $(t, x) \mapsto f(t, x)$ be almost automorphic in p-th sense in $t \in \mathbb{R}$, for each $x \in L^p(\Omega, H)$ and assume that f satisfies the lipschitz condition in the following sense

$$\mathbb{E}||f(t,x) - f(t,y)||^p \le L||x - y||^p \,\forall x, y \in L^p(\Omega, H),$$

where L is positive number. Then $t \mapsto f(t, x(t)) \in AA(\mathbb{R}, L^p(\Omega, H))$ for any $x \in AA(\mathbb{R}, L^p(\Omega, H))$.

Theorem 4.16. Let (\mathbf{H}_2) holds and $\mu, \nu \in \mathcal{M}$ satisfy (\mathbf{H}_4) . Suppose that $f \in PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$ satisfies the Lipschitz condition in the second variable that is, there exists a positive number L such that for any $x, y \in L^p(\Omega, H)$,

$$\mathbb{E}||f(t,x) - f(t,y)||^p \le L||x - y||^p, \ t \in \mathbb{R}.$$

Then $t \mapsto f(t, x(t)) \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ for any $x \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

Proof. Since $x \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, then we can decompose $x = x_1 + x_2$, where $x_1 \in AA(\mathbb{R}, L^p(\Omega, H))$ and $x_2 \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. Otherwise, since $f \in PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$

then $f = f_1 + f_2$, where $f_1 \in AA(\mathbb{R} \times L^p(\Omega, H))$ and $f_2 \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$. Then the function f can be decomposed as follows

$$f(t, x(t)) = f_1(t, x_1(t)) + [f(t, x(t)) - f(t, x_1)] + [f(t, x_1(t)) - f_1(t, x_1(t))]$$
$$= f_1(t, x_1(t)) + [f(t, x(t)) - f(t, x_1(t))] + f_2(t, x_1(t)).$$

Using Theorem4.15, we have $t \mapsto f_1(t, x_1) \in AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$. It remains to show that the both functions $t \mapsto [f(t, x_1(t)) - f_1(t, x_1(t))]$ and $t \mapsto +f_2(t, x_1(t))$ belong to $\mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

We have

$$\mathbb{E}||f(t,x(t)) - f(t,x_1(t))||^p \le L||x(t) - x_1(t)||^p$$

$$\sup_{\theta \in [t-r,t]} \mathbb{E} \| f(\theta, x(\theta)) - f(\theta, x_1(\theta)) \|^p \le L \sup_{\theta \in [t-r,t]} \| x(\theta) - x_1(\theta) \|^p.$$

It follows that

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta, x(\theta)) - f(\theta, x_1(\theta))\|^p d\mu(t) \leq \frac{L}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|x(\theta) - x_1(\theta)\|^p d\mu(t) \\
\leq \frac{L}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|x_2(\theta)\|^p d\mu(t)$$

Since $x_2 \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ then

$$\lim_{\tau \to +\infty} \frac{L}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E} ||x_2(\theta)||^p d\mu(t) = 0.$$

We deduce that

$$\lim_{\tau \to +\infty} \sup_{\tau ([-\tau, \tau])} \frac{1}{\int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E} \|f(\theta, x(\theta)) - f(\theta, x_1(\theta))\|^p d\mu(t) = 0,$$

therefore $[f(t,x(t))-f(t,x_1(t))] \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega,H),L^p(\Omega,H),\mu,\nu,r)$. Now to complete the proof it is enough to prove that $t \mapsto f_2(t,x_1(t)) \in \mathscr{E}_p(\mathbb{R},L^p(\Omega,H),\mu,\nu,r)$

In fact for each $t \in \mathbb{R}$, we have

$$||f_2(t,x) - f_2(t,y)||^p = ||f(t,x) - f_1(t,x) - f_1(t,y) + f(t,y)||^p$$

$$\leq 2^{p-1} ||f(t,x) - f(t,y)||^p + 2^{p-1} ||f_1(t,x) - f_1(t,y)||^p.$$

By using the Lipschitz condition, we have

$$\mathbb{E}\|f_2(t,x) - f_2(t,y)\|^p \leq 2^{p-1}\mathbb{E}\|f(t,x) - f(t,y)\|^p + 2^{p-1}\mathbb{E}\|f_1(t,x) - f_1(t,y)\|^p$$

$$\leq 2^p\|x - y\|^p$$

Since $K = \overline{\{x_1(t) : t \in \mathbb{R}\}}$ is compact. Then for $\varepsilon > 0$, there exists a finite number x_1, \ldots, x_m such that

$$K \subset \bigcup_{i=1}^{m} B\left(x_i, \frac{\varepsilon}{2^{2p-1}L}\right),$$

where $B\left(x_i, \frac{\varepsilon}{2^{2p-1}L}\right) = \left\{x \in K, \|x_i - x\|^p \le \frac{\varepsilon}{2^{2p-1}L}\right\}$. Its implies that

$$K \subset \bigcup_{i=1}^{m} \left\{ x \in K, \forall \ t \in \mathbb{R}, \|f_2(t,x) - f_2(t,x_i)\|^p \le \frac{\varepsilon}{2^{p-1}} \right\}$$

Let $t \in \mathbb{R}$ and $x \in K$, there exists $i_0 \in \{1, ..., m\}$ such that

$$\mathbb{E} \|f_2(t,x) - f_2(t,x_{i_0})\|^p \le \frac{\varepsilon}{2^{p-1}},$$

therefore

$$\mathbb{E}\|f_{2}(t,x_{1}(t))\|^{p} \leq 2^{p-1}\|f_{2}(t,x_{1}(t)) - f_{2}(t,x_{i_{o}}(t))\|^{p} + 2^{p-1}\mathbb{E}\|f_{2}(t,x_{i_{o}}(t))\|^{p}$$

$$\leq \varepsilon + 2^{p-1}\mathbb{E}\|f_{2}(t,x_{i_{o}}(t))\|^{p}$$

$$\leq \varepsilon + 2^{p-1}\sum_{i=1}^{m}\mathbb{E}\|f_{2}(t,x_{i_{o}}(t))\|^{p}.$$

It follows that

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f_2(\theta,x_1(\theta))\|^p d\mu(t) \leq \left(\frac{\varepsilon \mu([-\tau,\tau])}{\nu([-\tau,\tau])} + \sum_{i=1}^m \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f_2(\theta,x_i(\theta))\|^p d\mu(t)\right).$$

By the fact
$$\forall i \in \{1, ..., m\}, \lim_{\tau \to +\infty} \sum_{i=1}^{m} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r, t]} \mathbb{E} \|f_2(\theta, x_i(\theta))\|^p d\mu(t) = 0$$
, we

deduce that

$$\limsup_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f_2(\theta,x_1(\theta))\|^p d\mu(t) \le \varepsilon \delta.$$

Therefore $t \mapsto f_2(t, x_1(t)) \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

Proposition 4.17. Assume that (\mathbf{H}_4) holds. Then the space $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is invariant by translation, that is $f \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ implies $f_{\alpha} \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ for all $\alpha \in \mathbb{R}$.

Lemma 4.18. [6] Let $G:[0,T]\times\Omega\to\mathscr{L}(L^p(\Omega,H))$ be an \mathcal{F}_t -adapted measurable stochastic process satisfying

$$\int_0^T \mathbb{E} \|G(t)\|^2 < \infty$$

almost surely, where $\mathcal{L}(L^p(\Omega, H))$ denote the space of all linear operators from $L^p(\Omega, H)$ to itself. Then for any $p \geq 1$, there exists a constant $C_p > 0$ such that

$$\mathbb{E} \sup_{0 \le s \le T} \left\| \int_0^T G(s) dW(s) \right\|^p \le C_p \mathbb{E} \left(\int_0^T \|G(s)\|^2 ds \right)^{p/2}, T > 0.$$

We make the following assumption

 (\mathbf{H}_5) q is a stochastically bounded process in p-th mean sense.

Proposition 4.19. Assume that (\mathbf{H}_0) , (\mathbf{H}_1) and (\mathbf{H}_5) hold and the semigroup $(U(t))_{t\geq 0}$ is hyperbolic. If f is bounded on \mathbb{R} , then there exists a unique bounded solution u of equation (1.1) on \mathbb{R} , given by

$$u_{t} = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s)) ds$$
$$+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s)$$

where $\widetilde{B}_{\lambda} = \lambda(\lambda I - \mathcal{A}_{\mathcal{U}})^{-1}$ for $\lambda > \widetilde{\omega}$, Π^s and Π^u are projections of C_0 onto the stable and unstable subspaces respectively.

Proof. Let

$$u_t = v(t) + \lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_{\lambda} X_0 g(s)) dW(s),$$

where

$$v(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda} X_{0} f(s)) ds$$

Let us first prove that u_t exists. The existence of v(t) have proved by [23]. Now we show that the limit $\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 f(s)) ds$ exists.

For each $t \in \mathbb{R}$ and by Lemma 4.18, we have

$$\begin{split} \mathbb{E} \| \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s) \|^{p} & \leq C_{p} \mathbb{E} \Big(\int_{-\infty}^{t} \|\mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) \|^{2} ds \Big)^{p/2} \\ & \leq C_{p}(\overline{M}\widetilde{M}) |\Pi^{s}|)^{p} \mathbb{E} \Big(\int_{-\infty}^{t} e^{-2\omega(t-s)} \|g(s)\|^{2} ds \Big)^{p/2} \\ & \leq C_{p}(\overline{M}\widetilde{M}) |\Pi^{s}|)^{p} \sum_{n=1}^{+\infty} \mathbb{E} \Big(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} \|g(s)\|^{2} ds \Big)^{p/2} \\ & \leq C_{p}(\overline{M}\widetilde{M}) |\pi^{s}|)^{p} \sum_{n=1}^{+\infty} \mathbb{E} \Big(\int_{t-n}^{t-n+1} e^{-2(\frac{p-2}{p})\omega(t-s)} \\ & \times e^{-\frac{4}{p}\omega(t-s)} \|g(s)\|^{2} ds \Big)^{p/2}. \end{split}$$

By using Hölder inequality, we obtain

$$\mathbb{E} \| \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) \|^{p} \leq C_{p}(\overline{M} \widetilde{M}) |\Pi^{s}|^{p} \sum_{n=1}^{+\infty} \left[\left(\int_{t-n}^{t-n+1} \left(e^{-2(\frac{p-2}{p})\omega(t-s)} \right)^{\frac{p}{p-2}} ds \right)^{\frac{p}{p-2}} \right]^{p/2} \\
\times \mathbb{E} \left[\left(\int_{t-n}^{t-n+1} \left(e^{-\frac{4}{p}\omega(t-s)} \|g(s)\|^{2} \right)^{\frac{p}{2}} ds \right)^{\frac{2}{p}} \right]^{p/2} \\
\leq C_{p}(\overline{M} \widetilde{M}) |\Pi^{s}|^{p} \sum_{n=1}^{+\infty} \left(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} ds \right)^{\frac{p-2}{2}} \\
\times \left(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} \mathbb{E} \|g(s)\|^{p} ds \right).$$

Since g stochastic bounded process in p-th mean sense, then there exists, M>0 such that $\mathbb{E}\|g(s)\|^P\leq M$.

It follows that

$$\begin{split} \mathbb{E} \| \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) \|^{p} & \leq C_{p} M(\overline{M} \widetilde{M}) |\Pi^{s}|)^{p} \sum_{n=1}^{+\infty} \left(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} ds \right)^{p/2} \\ & \leq C_{p} M(\overline{M} \widetilde{M}) |\Pi^{s}|)^{p} \sum_{n=1}^{+\infty} \frac{1}{(2\omega)^{p/2}} (e^{2\omega} - 1)^{p/2} \times e^{-\omega p n} \\ & \leq C_{p} M(\overline{M} \widetilde{M}) |\Pi^{s}|)^{p} \frac{1}{(2\omega)^{p/2}} (e^{2\omega} - 1)^{p/2} \times \sum_{n=1}^{+\infty} e^{-\omega p n}. \end{split}$$

Since the serie
$$\sum_{n=1}^{+\infty} e^{-\omega pn} = 1 - \frac{1}{1 - e^{-\omega p}} = \frac{e^{-\omega p}}{1 - e^{-\omega p}} < \infty.$$

It follows that

$$\mathbb{E}\|\int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \leq \gamma, \tag{4.1}$$

where

$$\gamma = \frac{C_p M(\overline{M}M) |\Pi^s|^p}{(2\omega)^{p/2}} (e^{2\omega} - 1)^{p/2} \times \frac{e^{-\omega p}}{1 - e^{-\omega p}}.$$

Set

$$F(n,s,t) = \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0f(s)) \text{ for } n \in \mathbb{N} \text{ for } s \leq t.$$

For n is sufficiently large and $\sigma \leq t$, we have

$$\mathbb{E}\|\int_{-\infty}^{\sigma} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \leq C_{p}(\overline{M}\widetilde{M})|\Pi^{s}|)^{p}\sum_{n=1}^{+\infty}\left(\int_{\sigma-n}^{\sigma-n+1}e^{-2\omega(t-s)}ds\right)^{\frac{p-2}{2}}$$

$$\times\left(\int_{\sigma-n}^{\sigma-n+1}e^{-2\omega(t-s)}\mathbb{E}\|g(s)\|^{p}ds\right)$$

$$\leq C_{p}M(\overline{M}\widetilde{M})|\Pi^{s}|)^{p}\sum_{n=1}^{+\infty}\left(\int_{\sigma-n}^{\sigma-n+1}e^{-2\omega(t-s)}ds\right)^{p/2}$$

$$\leq C_{p}M(\overline{M}\widetilde{M})|\Pi^{s}|)^{p}\frac{1}{(2\omega)^{p/2}}(e^{2\omega}-1)^{p/2}e^{-\omega p(t-\sigma)}\times\sum_{n=1}^{+\infty}e^{-\omega pn}ds$$

$$\leq \gamma e^{-\omega p(t-\sigma)}.$$

It follow that for n and m sufficiently large and $\sigma \leq t$, we have

$$\begin{split} \mathbb{E} \Big\| \int_{-\infty}^t F(n,s,t) dW(s) - \int_{-\infty}^t F(m,s,t) dW(s) \Big\|^p & \leq & \mathbb{E} \Big\| \int_{-\infty}^\sigma F(n,s,t) dW(s) + \int_\sigma^t F(n,s,t) dW(s) \\ & - \int_{-\infty}^\sigma F(m,s,t) dW(s) - \int_\sigma^t F(m,s,t) dW(s) \Big\|^p \\ & \leq & 3^{p-1} \mathbb{E} \Big\| \int_{-\infty}^\sigma F(n,s,t) dW(s) \Big\|^p + 3^{p-1} \mathbb{E} \Big\| \int_{-\infty}^\sigma F(m,s,t) dW(s) \Big\|^p \\ & + 3^{p-1} \mathbb{E} \Big\| \int_\sigma^t F(n,s,t) dW(s) - \int_\sigma^t F(m,s,t) dW(s) \Big\|^p \\ & \leq & 2 \times 3^{p-1} \gamma e^{-\omega p(t-\sigma)} \\ & + 3^{p-1} \mathbb{E} \Big\| \int_\sigma^t F(n,s,t) dW(s) - \int_\sigma^t F(m,s,t) dW(s) \Big\|^p \end{split}$$

Since $\lim_{n\to+\infty} \mathbb{E} \left\| \int_{\sigma}^{t} F(n,s,t) dW(s) \right\|^{p}$ exists, then

$$\limsup_{n,m\to +\infty} \mathbb{E} \Big\| \int_{-\infty}^t F(n,s,t) dW(s) - \int_{-\infty}^t F(m,s,t) dW(s) \Big\|^p \leq 2 \times 3^{p-1} \gamma e^{-\omega p(t-\sigma)}.$$

If $\sigma \to -\infty$, then

$$\limsup_{n,m\to +\infty} \mathbb{E} \Big\| \int_{-\infty}^t F(n,s,t) dW(s) - \int_{-\infty}^t F(m,s,t) dW(s) \Big\|^p = 0.$$

We deduce that

$$\lim_{n\to\infty} \mathbb{E} \left\| \int_{-\infty}^t F(n,s,t) dW(s) \right\|^p = \lim_{n\to\infty} \mathbb{E} \left\| \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_n X_0 g(s)) dW(s) \right\|^p$$

exists.

Therefore the limit $\lim_{n\to+\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_nX_0g(s))dW(s)$ exists. In addition, one can see from the equation (4.1) that the function

$$\eta_1: t \to \lim_{n \to +\infty} \mathbb{E} \Big\| \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_n X_0 g(s)) dW(s) \Big\|^p$$

is bounded on \mathbb{R} . Similarly, we can show that the function

$$\eta_2: t \to \lim_{n \to +\infty} \mathbb{E} \Big\| \int_t^{+\infty} \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_n X_0 g(s)) dW(s) \Big\|^p$$

is well defined and bounded on \mathbb{R} .

Proposition 4.20. Assume that (\mathbf{H}_5) holds. Let $f, g \in AA(\mathbb{R}, X)$ and Γ be the mapping defined for $t \in \mathbb{R}$ by

$$\Gamma(f,g)(t) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\right](0).$$

Then $\Gamma(f,g) \in AA(\mathbb{R}, L^p(\Omega, H))$.

Proof. The proof of this Proposition will be in two steps.

Step 1: We will show that $\Gamma(f,g)$ is continuous. For $t_0 \in \mathbb{R}$, we have

$$\begin{split} \mathbb{E}\|\Gamma(f,g)(t) - \Gamma(f,g)(t_0)\|^p &= \mathbb{E}\Big\| \lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0f(s))ds \\ &+ \lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \\ &- \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0f(s))ds - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &\leq 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))ds - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0f(s))ds \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &= 4^{p-1}(I_1+I_2+I_3+I_4). \end{split}$$

We have

$$I_1 = \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0f(s))ds - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\widetilde{B}_{\lambda}X_0f(s))ds\|^p.$$

Let $\sigma = s - t + t_0$ and by Hölder inequality, we have

$$\begin{split} I_{1} &= \mathbb{E} \| \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0} - \sigma) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(\sigma + t - t_{0})) d\sigma - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0} - s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(s)) ds \|^{p} \\ &\leq \mathbb{E} \| \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0} - s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} [f(s + t - t_{0}) - f(s)]) ds \|^{p} \\ &\leq \mathbb{E} \left(\overline{M} \widetilde{M} \int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} |\Pi^{s}| \| f(s + t - t_{0}) - f(s) \| ds \right)^{p} \\ &\leq \mathbb{E} \left(\overline{M} \widetilde{M} |\Pi^{s}| \int_{-\infty}^{t_{0}} e^{-\frac{\omega(p - 1)(t_{0} - s)}{p}} \times e^{-\frac{\omega(t - s)}{p}} \| f(s + t - t_{0}) - f(s) \| ds \right)^{p} \\ &\leq (\overline{M} \widetilde{M} |\Pi^{s}|)^{p} \mathbb{E} \left[\left(\int_{-\infty}^{t} \left(e^{-\frac{\omega(p - 1)(t_{0} - s)}{p}} \right)^{\frac{p}{p - 1}} ds \right)^{\frac{p - 1}{p}} \times \left(\int_{-\infty}^{t} \left(e^{-\frac{\omega(t - s)}{p}} \| f(s + t - t_{0}) - f(s) \|^{p} ds \right)^{\frac{1}{p}} \right]^{p} \\ &\leq (\overline{M} \widetilde{M} |\Pi^{s}|)^{p} \left(\int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} ds \right)^{p - 1} \times \int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} \mathbb{E} \| f(s + t - t_{0}) - f(s) \|^{p} ds \\ &\leq \frac{(\overline{M} \widetilde{M} |\Pi^{s}|)^{p}}{\omega^{p - 1}} \times \int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} \mathbb{E} \| f(s + t - t_{0}) - f(s) \|^{p} ds. \end{split}$$

For an arbitrary sequence of real $\{t_n\}$ with $t_n \to t$ as $n \to +\infty$. By Lemma 4.4 and the defition of $AA(\mathbb{R}, L^p(\Omega, H))$ we deduce that $f \in BC(\mathbb{R}, L^p(\Omega, H))$. So

$$e^{-\omega(t_0-s)}\mathbb{E}||f(s+t_n-t_0)-f(s)||^p\to 0 \text{ as }, \to +\infty.$$

Hence

$$e^{-\omega(t_0-s)}\mathbb{E}\|f(s+t_n-t_0)-f(s)\|^p \leq 2^p e^{-\omega(t_0-s)}\|f\|_{\infty}^p$$

for every n sufficiently large. Note that

$$\int_{-\infty}^{t_0} 2^p e^{-\omega(t_0 - s)} ||f||_{\infty}^p ds < \infty.$$

Then according to Lebesgue dominated convergence theorem, we have

$$\lim_{n \to +\infty} \int_{-\infty}^{t_0} e^{-\omega(t_0 - s)} \mathbb{E} \|f(s + t - t_0) - f(s)\|^p ds = 0.$$

Since the arbitrariness of $\{t_n\}$, we deduce that

$$\lim_{t \to t_0} \int_{-\infty}^{t_0} e^{-\omega(t_0 - s)} \mathbb{E} \|f(s + t - t_0) - f(s)\|^p ds = 0,$$

which implies that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 f(s)) ds - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s) \Pi^s(\widetilde{B}_{\lambda} X_0 f(s)) ds \|^p = 0$$
(4.2)

Similarly, we can se that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_{\lambda} X_0 f(s)) ds - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s) \Pi^u(\widetilde{B}_{\lambda} X_0 f(s)) ds \|^p = 0.$$

$$(4.3)$$

Let $\widetilde{W}(\tau) = W(\tau + t - t_0) - W(t - t_0)$. One can see that \widetilde{W} is a Winner process and has the same distribution as W. Let $\tau = s - t + t_0$. Then by Lemma 4.18 and Hölder inequality, we have

$$\begin{split} I_{3} &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \\ &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(\tau+t-t_{0}))dW(\tau+t-t_{0}) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \\ &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(\tau+t-t_{0}))d\widetilde{W}(\tau) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))d\widetilde{W}(s)\|^{p} \\ &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[g(s+t-t_{0})-g(s)])d\widetilde{W}(s) \\ &\leq & C_{p}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p} \Big(\int_{-\infty}^{t_{0}} e^{-2\omega(t_{0}-s)}ds\Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{t_{0}} e^{-2\omega(t_{0}-s)}\mathbb{E}\|g(s+t-t_{0})-g(s)\|^{p}ds. \end{split}$$

By the similar arguments as above, we obtain

$$\lim_{t \to t_0} \int_{-\infty}^{t_0} e^{-2\omega(t_0 - s)} \mathbb{E} \|g(s + t - t_0) - g(s)\|^p ds = 0,$$

which implies that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s) \Pi^s(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) \|^p = 0.$$

$$(4.4)$$

Similarly, we can see that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s) \Pi^u(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) \|^p = 0.$$

$$(4.5)$$

From equations (4.2), (4.3), (4.4) and (4.5), we deduce that

$$\lim_{t \to t_0} \mathbb{E} \|\Gamma(f, g)(t) - \Gamma(f, g)(t_0)\|^p = 0$$

and yield the continuity of $\Gamma(f,g)$.

Step 2: Since $f, g \in AA(\mathbb{R}, L^p(\Omega, H))$. Thus, for every sequence of real numbers $(s_m)m \in \mathbb{N}$, there exists a subsequence $(s_n)n \in \mathbb{N}$ and stochastic processes $\widetilde{f}, \widetilde{g} : \mathbb{R} \to L^p(\Omega, H)$ which each $t \in \mathbb{R}$ such that

$$\lim_{n \to \infty} \mathbb{E} \| f(t+s_n) - \widetilde{f}(t) \|^p = 0, \quad \lim_{n \to \infty} \mathbb{E} \| \widetilde{f}(t-s_n) - f(t) \|^p = 0$$

and

$$\lim_{n \to \infty} \mathbb{E} \|g(t+s_n) - \widetilde{g}(t)\|^p = 0, \quad \lim_{n \to \infty} \mathbb{E} \|\widetilde{g}(t-s_n) - g(t)\|^p = 0.$$

Let

$$w(t+s_n) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0 f(s+s_s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0 f(s+s_n)) ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0 g(s+s_n)) dW(s+s_n) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0 g(s+s_n)) dW(s+s_n)\right]$$

and

$$\widetilde{w}(t) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda} X_{0} f(s)) ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) \right].$$

Then we have

$$\mathbb{E}\|w(t+s_n) - \widetilde{w}(t)\|^p \leq 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0[f(s+s_n) - f(s)]ds\|^p$$

$$+4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0[f(s+s_n) - f(s)]ds\|^p$$

$$4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0[g(s+s_n) - g(s)]d\widetilde{W}(s)\|^p$$

$$+4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0[g(s+s_n) - g(s)]d\widetilde{W}(s)\|^p,$$

where $\widetilde{W}(s) = W(s+s_n) - W(s)$. Note that W and \widetilde{W} are two Wiener processes and have the same distribution. Then we have

$$\mathbb{E}\|w(t+s_{n})-\widetilde{w}(t)\|^{p} \leq 4^{p-1}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p} \Big(\int_{-\infty}^{t} e^{-\omega(t-s)} ds\Big)^{p-1} \times \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E}\|f(s+s_{n})-f(s)\|^{p} ds$$

$$+4^{p-1}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p} \Big(\int_{+\infty}^{t} e^{\omega(t-s)} ds\Big)^{p-1} \times \int_{+\infty}^{t} e^{-\omega(t-s)} \mathbb{E}\|f(s+s_{n})-f(s)\|^{p} ds$$

$$+4^{p-1}C_{p}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p} \Big(\int_{-\infty}^{t} e^{-2\omega(t-s)} ds\Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{t} e^{-2\omega(t-s)} \mathbb{E}\|g(s+s_{n})-g(s)\|^{p} ds$$

$$+4^{p-1}C_{p}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p} \Big(\int_{-\infty}^{t} e^{2\omega(t-s)} ds\Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{t} e^{2\omega(t-s)} \mathbb{E}\|g(s+s_{n})-g(s)\|^{p} ds.$$

By similarly arguments as above, we have

$$\lim_{n \to +\infty} \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s+s_n) - f(s)\|^p ds = 0, \quad \lim_{n \to +\infty} \int_{+\infty}^{t} e^{\omega(t-s)} \mathbb{E} \|f(s+s_n) - f(s)\|^p ds = 0,$$

$$\lim_{n \to +\infty} \int_{-\infty}^{t} e^{-2\omega(t-s)} \mathbb{E} \|g(s+s_n) - g(s)\|^p ds = 0 \text{ and } \lim_{n \to +\infty} \int_{+\infty}^{t} e^{2\omega(t-s)} \mathbb{E} \|g(s+s_n) - g(s)\|^p ds = 0.$$

Thus

$$\lim_{n \to +\infty} \mathbb{E} \| w(t + s_n) - \widetilde{w}(t) \|^p = 0.$$

Similarly, we have

$$\lim_{n \to +\infty} \mathbb{E} \|\widetilde{w}(t - s_n) - w(t)\|^p = 0.$$

Therefore by **Steps 1** and **2**, we proved that $\Gamma(f,g) \in AA(\mathbb{R}, L^p(\Omega, H))$.

Theorem 4.21. Assume that (\mathbf{H}_3) and (\mathbf{H}_5) hold. Let $f, g \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, then $\Gamma(f, g) \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

Proof. We have

$$\Gamma(f,g)(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s)) ds$$
$$+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s).$$

It follows that

$$\mathbb{E}\|\Gamma(f,g)(\theta)\|^{p} = \mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\right\|^{p}.$$

Then for $\tau > 0$, using Lemma 4.18 we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\mathbb{E} \| \Gamma(f,g)(\theta) \|^{p} \right) d\mu(t) \leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} \mathbb{E} \left(\overline{M} \widetilde{M} \int_{-\infty}^{\theta} e^{-\omega(\theta-s)} |\Pi^{s}| \| f(s) \| ds \right)^{p} d\mu(t) \\
+ \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} \mathbb{E} \left(\overline{M} \widetilde{M} \int_{+\infty}^{\theta} e^{\omega(\theta-s)} |\Pi^{u}| \| f(s) \| ds \right)^{p} d\mu(t) \\
+ \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} C_{p} \mathbb{E} \left(\overline{M}^{2} \widetilde{M}^{2} \int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} |\Pi^{s}|^{2} \| g(s) \|^{2} ds \right)^{p/2} d\mu(t) \\
+ \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} C_{p} \mathbb{E} \left(\overline{M}^{2} \widetilde{M}^{2} \int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} |\Pi^{u}|^{2} \| g(s) \|^{2} ds \right)^{p/2} d\mu(t)$$

By using Höder inequality, we obtain

$$\mathbb{E}\|\Gamma(f,g)(\theta)\|^{p} = \mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\right\|^{p} \cdot vspace * 0.25cm$$

Then for $\tau > 0$, using Lemma 4.18 again, we have

$$\begin{split} &\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big(\mathbb{E} \| \Gamma(f,g)(\theta) \|^p \Big) d\mu(t) \\ &\leq & 4^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{-\infty}^{\theta} e^{-\omega(\theta-s)} ds \Big)^{p-1} \times \int_{-\infty}^{\theta} e^{-\omega(\theta-s)} \mathbb{E} \| f(s) \|^p ds \Big] d\mu(t) \\ & + 4^{p-1} (\overline{M}\widetilde{M}|\Pi^u|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{+\infty}^{\theta} e^{\omega(\theta-s)} ds \Big)^{p-1} \times \int_{+\infty}^{\theta} e^{\omega(\theta-s)} \mathbb{E} \| f(s) \|^p ds \Big] d\mu(t) \\ & + 4^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} ds \Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} \mathbb{E} \| g(s) \|^p ds \Big] d\mu(t) \\ & + 4^{p-1} (\overline{M}\widetilde{M}|\Pi^u|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{+\infty}^{\theta} e^{2\omega(\theta-s)} ds \Big)^{\frac{p-2}{2}} \times \int_{+\infty}^{\theta} e^{2\omega(\theta-s)} \mathbb{E} \| g(s) \|^p ds \Big] d\mu(t). \end{split}$$

Thus, we have

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\mathbb{E} \| \Gamma(f,g)(\theta) \|^{p} \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p}}{\omega^{p-1}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{\omega r} \int_{-\infty}^{\theta} e^{-\omega(t-s)} \mathbb{E} \| f(s) \|^{p} ds \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p}}{\omega^{p-1}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{\omega(t-s)} \mathbb{E} \| f(s) \|^{p} ds \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p}}{(2\omega)^{\frac{p-2}{2}}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{2\omega r} \int_{-\infty}^{\theta} e^{-2\omega(t-s)} \mathbb{E} \| g(s) \|^{p} ds \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p}}{(2\omega)^{\frac{p-2}{2}}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{2\omega(t-s)} \mathbb{E} \| g(s) \|^{p} ds \right) d\mu(t)$$

On the one hand using Fubini's theorem, we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{\omega r} \int_{-\infty}^{\theta} e^{-\omega(t-s)} \mathbb{E} \|f(s)\|^p ds \right) d\mu(t) \leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{\omega r} \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s)\|^p ds \right) d\mu(t) \\
\leq e^{\omega r} \int_{-\tau}^{\tau} \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s)\|^p ds d\mu(t) \\
\leq e^{\omega r} \int_{-\tau}^{\tau} \int_{0}^{\infty} e^{-\omega s} \mathbb{E} \|f(t-s)\|^p ds d\mu(t) \\
\leq e^{\omega r} \int_{0}^{\tau} e^{-\omega s} \int_{-\tau}^{\tau} \mathbb{E} \|f(t-s)\|^p d\mu(t) ds.$$

By Theorem 3.15, we deduce that

$$\lim_{\tau \to +\infty} \frac{e^{-\omega s}}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t - s)\|^p d\mu(t) \to 0 \text{ for all } s \in \mathbb{R}_+$$

and

$$\frac{e^{-\omega s}}{\nu([-\tau,\tau])}\int_{-\tau}^{\tau}\mathbb{E}\|f(t-s)\|^pd\mu(t)\leq \frac{e^{-\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|f\|_{\infty}^p.$$

Similarly, we have

$$\lim_{\tau \to +\infty} \frac{e^{-2\omega s}}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|g(t-s)\|^p d\mu(t) \to 0 \text{ for all } s \in \mathbb{R}_+$$

and

$$\frac{e^{-2\omega s}}{\nu([-\tau,\tau])}\int_{-\tau}^{\tau}\mathbb{E}\|f(t-s)\|^pd\mu(t)\leq \frac{e^{-\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|g\|_{\infty}^p.$$

Since f and g are two bounded functions, then the functions $s \mapsto \frac{e^{-\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|f\|_{\infty}^p$ and $s \mapsto \frac{e^{-2\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|g\|_{\infty}^p$ belong to $L^1(]0,\infty[)$ in view of the Lebesgue dominated convergence theorem, it follows that

$$e^{\omega r} \lim_{\tau \to +\infty} \int_0^{+\infty} \frac{e^{-\omega s}}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t - s)\|^p d\mu(t) ds = 0$$

and

$$e^{2\omega r}\lim_{\tau\to+\infty}\int_0^{+\infty}\frac{e^{-2\omega s}}{\nu([-\tau,\tau])}\int_{-\tau}^{\tau}\mathbb{E}\|g(t-s)\|^pd\mu(t)ds=0.$$

On the other hand, we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{\omega(\theta-s)} \mathbb{E} \|f(s)\|^{p} ds \right) d\mu(t) \leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{t-r}^{+\infty} e^{\omega(\theta-s)} \mathbb{E} \|f(s)\|^{p} ds \right) d\mu(t) \\
\leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{t-r}^{+\infty} e^{\omega(t-s)} \mathbb{E} \|f(s)\|^{p} ds \right) d\mu(t) \\
\leq \int_{-\tau}^{\tau} \int_{-\infty}^{r} e^{\omega(\theta-s)} \mathbb{E} \|f(s)\|^{p} ds d\mu(t) \\
\leq \int_{0}^{+\infty} e^{\omega s} \int_{-\tau}^{\tau} \mathbb{E} \|f(t-s)\|^{p} d\mu(t) ds$$

By the same arguments, we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{2\omega(\theta-s)} \mathbb{E} \|f(s)\|^p ds \right) d\mu(t) \leq \int_{0}^{+\infty} e^{2\omega s} \int_{-\tau}^{\tau} \mathbb{E} \|g(t-s)\|^p d\mu(t) ds$$

Similarly as above, we have the functions $s \mapsto \frac{e^{\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])} \|f\|_{\infty}^p$ and $s \mapsto \frac{e^{2\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])} \|g\|_{\infty}^p$ belong to $L^1(]0,\infty[)$ in view of the Lebesgue dominated convergence theorem, it follows that

$$\lim_{\tau \to +\infty} \int_{-\infty}^{r} \frac{e^{\omega s}}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t-s)\|^{p} d\mu(t) ds = 0$$

and

$$\lim_{\tau \to +\infty} \int_{-\infty}^{\tau} \frac{e^{2\omega s}}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|g(t-s)\|^p d\mu(t) ds = 0.$$

Consequently

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r, t]} \left(\mathbb{E} \|\Gamma(f, g)(\theta)\|^p \right) d\mu(t) = 0.$$

Thus, we obtain the desired result. ■

Our next objective is to show the existence of p-th $(p \ge 2)$ mean (μ, ν) -pseudo almost automorphic solution of class r for the following problem

$$dx(t) = [Ax(t) + L(x_t) + f(t, x_t)]dt + g(t, x_t)dW(t), \text{ for } t \in \mathbb{R},$$
(4.6)

where $f: \mathbb{R} \times \mathcal{C} \to L^p(\Omega, H)$ and $g: \mathbb{R} \times \mathcal{C} \to L^p(\Omega, H)$ are two processes. For the sequel we make the following assumptions.

 (\mathbf{H}_6) Let $\mu, \nu \in \mathcal{M}$ and $f: \mathbb{R} \times C(([-r, 0], L^p(\Omega, H)) \to L^p(\Omega, H)$ p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic of class r such that there exists a positive constant L_f such that

$$\mathbb{E}\|f(t,\phi_1) - f(t,\Phi_2)\|^p \le L_f \mathbb{E}\|\phi_1 - \phi_2\|^p \text{ for all } t \in \mathbb{R} \text{ and } \phi_1,\phi_2 \in C(([-r,0],L^p(\Omega,H)).$$

 (\mathbf{H}_7) Let $\mu, \nu \in \mathcal{M}$ and $g : \mathbb{R} \times C(([-r, 0], L^p(\Omega, H)) \to L^p(\Omega, H)$ p-th mean $cl(\mu, \nu)$ pseudo almost automorphic of class r such that there exists a positive constant L_g such that

$$\mathbb{E}\|g(t,\phi_1) - g(t,\Phi_2)\|^p \le L_g \mathbb{E}\|\phi_1 - \phi_2\|^p \text{ for all } t \in \mathbb{R} \text{ and } \phi_1, \phi_2 \in C(([-r,0],L^p(\Omega,H)).$$

 (\mathbf{H}_8) The instable space $U \equiv \{0\}$.

Theorem 4.22. Let $p \ge 2$, assume that (H_0) , (H_1) , (H_4) , (H_6) (H_7) and (H_8) hold. If

$$(\overline{M}\widetilde{M}|\Pi|^s)^p \Big[\frac{L_f}{\omega^p} + \frac{L_g C_p}{(2\omega)^{\frac{p}{2}}} \Big] < \frac{1}{2^{p-1}},$$

then equation (4.6) has a unique p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic solution of class r.

Proof. Let x be a function in $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. From Theorem 4.14 the function $t \to x_t$ belongs to $PAA(C([-r, 0]); L^p(\Omega, H), \mu, \nu, r)$. Hence Theorem 4.16 implies that g(.) = f(., x) is in $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. Since the unstable space $U \equiv \{0\}$, then $\Pi^u \equiv 0$. Consider the following mapping $H : PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r) \to PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ defined for $t \in \mathbb{R}$ by

$$(\mathcal{H}x)(t) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s,x_{s}))ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s,x_{s}))dW(s)\right](0).$$

Let $x_1, x_2 \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, we have

$$\mathbb{E}\|(\mathcal{H}x_{1})(t) - (\mathcal{H}x_{2})(t)\|^{p} = \mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[f(s,x_{1s}) - f(s,x_{2s})])ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[g(s,x_{1s}) - g(s,x_{2s})])dW(s)\right\|^{p}$$

$$\leq 2^{p-1}\mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[f(s,x_{1s}) - f(s,x_{2s})])ds\right\|$$

$$+2^{p-1}\mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[g(s,x_{1s}) - g(s,x_{2s})])dW(s)\right\|^{p}$$

$$\leq 2^{p-1}(I_{1} + I_{2}).$$

By Hölder inequality, it follows that

$$I_{1} = \mathbb{E} \left\| \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0}[f(s,x_{1s}) - f(s,x_{2s})]) ds \right\|$$

$$\leq \mathbb{E} \left[(\overline{M}\widetilde{M}|\Pi|^{s})^{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)^{p-1} \times \int_{-\infty}^{t} e^{-\omega(t-s)} \|f(s,x_{1s}) - f(s,x_{2s})\|^{p} \right]$$

$$\leq (\overline{M}\widetilde{M}|\Pi|^{s})^{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)^{p-1} \times \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s,x_{1s}) - f(s,x_{2s})\|^{p} ds$$

$$\leq \frac{(\overline{M}\widetilde{M}|\Pi|^{s})^{p}}{\omega^{p-1}} \int_{-\infty}^{t} e^{-\omega(t-s)} L_{f} \mathbb{E} \|x_{1s} - x_{2s}\|^{p} ds$$

$$\leq \frac{(\overline{M}\widetilde{M}|\Pi|^{s})^{p}}{\omega^{p-1}} L_{f} \sup_{t \in \mathbb{R}} \|x_{1}(t) - x_{2}(t)\|^{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)$$

$$\leq \frac{(\overline{M}\widetilde{M}|\Pi|^{s})^{p}}{\omega^{p}} L_{f} \|x_{1} - x_{2}\|_{\infty}^{p}.$$

By Hölder inequality and by Lemma 4.18, we have

$$I_{2} = \mathbb{E} \left\| \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0}[g(s,x_{1s}) - g(s,x_{2s})]) dW(s) \right\|^{p}$$

$$\leq C_{p} \mathbb{E} \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \left\| \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0}[g(s,x_{1s}) - g(s,x_{2s})]) \right\|^{2} ds \right]^{p/2}$$

$$\leq (\overline{M} \widetilde{M} |\Pi|^{s})^{p} C_{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)^{\frac{p-2}{2}} \times \int_{-\infty}^{t} e^{-2\omega(t-s)} \mathbb{E} \|g(s,x_{1s}) - g(s,x_{2s})\|^{p} ds$$

$$\leq \frac{C_{p} (\overline{M} \widetilde{M} |\Pi|^{s})^{p}}{(2\omega)^{\frac{p-2}{2}}} \int_{-\infty}^{t} e^{-2\omega(t-s)} L_{g} \mathbb{E} \|x_{1s} - x_{2s}\|^{p} ds$$

$$\leq \frac{C_{p} (\overline{M} \widetilde{M} |\Pi|^{s})^{p}}{(2\omega)^{\frac{p-2}{2}}} L_{g} \sup_{t \in \mathbb{R}} \mathbb{E} \|x_{1}(t) - x_{2}(t)\|^{p} \left(\int_{-\infty}^{t} e^{-2\omega(t-s)} ds \right)$$

$$\leq \frac{C_{p} (\overline{M} \widetilde{M} |\Pi|^{s})^{p}}{(2\omega)^{\frac{p-2}{2}}} L_{g} \|x_{1} - x_{2}\|_{\infty}^{p}.$$

Thus we have

$$\mathbb{E}\|(\mathcal{H}x_1)(t) - (\mathcal{H}x_2)(t)\|^p \leq 2^{p-1} (\overline{M}\widetilde{M}|\Pi|^s)^p \Big[\frac{L_f}{\omega^p} + \frac{L_g C_p}{(2\omega)^{\frac{p}{2}}}\Big] \|x_1 - x_2\|_{\infty}^p$$

This means that \mathcal{H} is a strict contraction. Thus by Banach's fixed point theorem, \mathcal{H} has a unique fixed point u in $PAA(\mathbb{R}; L^p(\Omega, H), \mu, \nu, r)$. We conclude that equation (4.6), has one and only one p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic solution of class r.

Proposition 4.23. Let $p \ge 2$, assume that (\mathbf{H}_0) , (\mathbf{H}_1) and (\mathbf{H}_4) hold, f, g are lipschitz continuous with respect the second argument. If

$$Lip(f) = Lip(g) < \frac{1}{2^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \left[\frac{1}{\omega^p} + \frac{1}{(2\omega)^{\frac{p}{2}}}\right]},$$

then (4.6) has a unique p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic of class r, where Lip(f) and Lip(g) are respectively the lipschitz constants of f and g.

Proof. Let us pose k = Lip(f) = Lip(g), we have

$$\mathbb{E}\|(\mathcal{H}x_1)(t) - (\mathcal{H}x_2)(t)\|^p \leq 2^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \left[\frac{k}{\omega^p} + \frac{k}{(2\omega)^{\frac{p}{2}}}\right] \sup_{t \in \mathbb{R}} \mathbb{E}\|x_1(t) - x_2(t)\|^p$$

$$\leq 2^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p k \left[\frac{1}{\omega^p} + \frac{1}{(2\omega)^{\frac{p}{2}}}\right] \sup_{t \in \mathbb{R}} \mathbb{E}\|x_1(t) - x_2(t)\|^p$$

Consequently \mathcal{H} is a strict contraction if

$$k < \frac{1}{2^{p-1}(\overline{M}\widetilde{M}|\Pi^s|)^p \left[\frac{1}{\omega^p} + \frac{1}{(2\omega)^{\frac{p}{2}}}\right]}$$

5. Application

For illustration, we propose to study the existence of solutions for the following model

$$\begin{cases}
dz(t,x) = -\frac{\partial^2}{\partial x^2} z(t,x) dt + \left[\int_{-r}^0 G(\theta) z(t+\theta,x) d\theta + \sin\left(\frac{1}{2+\cos t + \cos\sqrt{2}t}\right) + \arctan(t) + \int_{-r}^0 h(\theta,z(t+\theta,x)) d\theta \right] dt \\
+ \left[\sin\left(\frac{1}{2+\cos t + \cos\sqrt{3}t}\right) + \arctan(t) + \int_{-r}^0 h(\theta,z(t+\theta,x)) d\theta \right] dW(t) \text{ for } t \in \mathbb{R}, \text{ and } x \in [0,\pi], \\
z(t,0) = z(t,\pi) = 0 \text{ for } t \in \mathbb{R}, \text{ and } x \in [0,\pi],
\end{cases}$$
(5.1)

where $G: [-r, 0] \to \mathbb{R}$ is continuous function and $h: [-r, 0] \to \mathbb{R}$ is lipschitz continuous with the respect of the second argument. W(t) is a two-sided standard Brownian motion with values in separable Hilbert space H. To rewrite equation (5.1) in abstract form, we introduce the space $H = L^2((0,\pi))$. Let $A: D(A) \to L^2((0,\pi))$ defined by

$$\begin{cases} D(A)=H^2(0,\pi)\cap H^1(0,\pi)\\ \\ Ay(t)=y''(t) \text{ for } t\in (0,\pi) \text{ and } y\in D(A). \end{cases}$$

Then A generates a C_0 -semigroup $(\mathcal{U}(t))_{\geq 0}$ on $L^2((0,\pi))$ given by

$$(\mathcal{U}(t)x)(r) = \sum_{n=1}^{+\infty} e^{-n^2\pi^2t} < x, e_n >_{L^2} e_n(r),$$

where $e_n(r) = \sqrt{2}\sin(n\pi r)$ for $n = 1, 2 \dots$ and $\|\mathcal{U}(t)\| \leq e^{-\pi^2 t}$ for all $t \geq 0$. Thus $\overline{M} = 1$ and $\omega = \pi^2$. Then A satisfies the Hille-Yosida conditions in $L^2(0, \pi)$. Moreover the part A_0 of A in $\overline{D(A)}$ is the generator of compact semigroup. It follows that (\mathbf{H}_0) and (\mathbf{H}_1) are satisfied. We define $f: \mathbb{R} \times \mathcal{C} \to L^2((0, \pi))$ and $L: \mathcal{C} \to L^2(\Omega, H)$ as follows

$$f(t,\phi)(x) = \sin\left(\frac{1}{2 + \cos t + \cos\sqrt{2}t}\right) + \arctan(t) + \int_{-r}^{0} h(\theta,\phi(\theta)(x))d\theta \text{ for } x \in (0,\pi) \text{ and } t \in \mathbb{R},$$

$$g(t,\phi)(x) = \sin\left(\frac{1}{2 + \cos t + \cos\sqrt{3}t}\right) + \arctan(t) + \int_{-r}^{0} h(\theta,\phi(\theta)(x))d\theta \text{ for } x \in (0,\pi) \text{ and } t \in \mathbb{R},$$

and

$$L(\phi)(x) = \int_{-r}^{0} G(\theta)(\phi(\theta)(x) \text{ for } -r \le \theta \text{ and } x \in (0, \phi).$$

Let us pose v(t) = z(t, x). Then equation (5.1) takes the following abstract form

$$dv(t) = [Av(t) + L(v_t) + f(t, v_t)]dt + g(t, v_t)dW(t) \text{ for } t \in \mathbb{R}.$$
 (5.2)

Consider the measure μ and ν where its Randon-Nikodym derivates are respectively ρ_1 and ρ_2

$$\rho_1(t) = \begin{cases} 1 & \text{for } t > 0 \\ e^t & \text{for } t \le 0 \end{cases}$$

and

$$\rho_2(t) = |t| \text{ for } t \in \mathbb{R}$$

i.e $d\mu(t) = \rho_1(t)dt$ and $d\mu(t) = \rho_2(t)dt$, where dt denotes the Lebesgue measure on \mathbb{R} and

$$\mu(A) = \int_A \rho_1(t)dt$$
 for $\nu(A) = \rho_2(t)dt$ for $A \in \mathcal{N}$

From [14] $\mu, \nu \in \mathcal{M}$ satisfies Hypothesis (\mathbf{H}_4).

$$\lim_{\tau \to +\infty} \frac{\mu([-\tau, \tau])}{\nu([-\tau, \tau])} = \limsup_{\tau \to +\infty} \frac{\int_{-r}^{0} e^{t} dt + \int_{0}^{\tau} dt}{2 \int_{0}^{\tau} t dt} = \limsup_{\tau \to +\infty} \frac{1 + e^{-\tau} + \tau}{\tau^{2}} = 0 < \infty,$$

which implies that (\mathbf{H}_2) is satisfied.

For $t \in \mathbb{R}$, $-\frac{\pi}{2} \leq \arctan(\theta) \leq \frac{\pi}{2}$, therefore for all $\theta \in [t-r,t]$ $\arctan(t-r) \leq \arctan(t)$. It follows that $|\arctan\theta - \frac{\pi}{2}| = \frac{\pi}{2} - \arctan\theta \leq |\arctan(t-r) - \frac{\pi}{2}| = \frac{\pi}{2} - \arctan(t-r)$ which implies that $|\arctan\theta - \frac{\pi}{2}|^p \leq |\arctan(t-r) - \frac{\pi}{2}|^p$, hence, we have

$$\sup_{\theta \in [t-r,t]} \mathbb{E}|\arctan \theta - \frac{\pi}{2}|^p \le \mathbb{E}|\arctan(t-r) - \frac{\pi}{2}|^p.$$

On one hand, we have

$$\begin{split} \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \mathbb{E} \sup_{\theta \in [t-r,t]} \mathbb{E} |\arctan \theta - \frac{\pi}{2}|^p dt & \leq & \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \mathbb{E} |\arctan(t-r) - \frac{\pi}{2}|^p dt \\ & \leq & \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \mathbb{E} \left(\frac{\pi}{2} - \arctan(t-r)\right)^p dt \\ & \leq & \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \frac{\pi^p}{2^p} dt \\ & \leq & \frac{\pi^p}{2^{p+1}\tau} \to 0, \text{ as } \tau \to +\infty. \end{split}$$

On other hand, we have

$$\begin{split} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^0 \mathbb{E} \sup_{\theta \in [t-r,t]} \mathbb{E} |\arctan \theta - \frac{\pi}{2}|^p dt & \leq & \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^0 \frac{\pi^p}{2^p} e^t dt \\ & \leq & \frac{\pi^p (1-e^{-\tau})}{2^{p+1}\tau} \to 0, \text{ as } \tau \to +\infty. \end{split}$$

Consequently

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \sup_{\theta \in [t-r,t]} \mathbb{E} |\arctan \theta - \frac{\pi}{2}|^p d\mu(t) = 0.$$

It follows that $t \mapsto \arctan(t) - \frac{\pi}{2}$ is p-th mean (μ, ν) -ergodic of class r, consequently f is uniformly p-th mean (μ, ν) -pseudo almost automorphic of class r. Moreover L is bounded linear operator from \mathcal{C} to $L^2(\Omega, H)$.

Let k be the lipschitz constant of h. Then by using Hölder-inequality for every $\varphi_1, \ \varphi_2 \in \mathcal{C}$ and $t \geq 0$, we have

$$\begin{split} \mathbb{E}\|f(t,\varphi_1)(x) - f(t,\varphi_2)(x)\|^p &= \mathbb{E}\Big\|\int_{-r}^0 \Big(h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\Big)d\theta\Big\|^p \\ &\leq \Big[\int_{-r}^p \|h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\|d\theta\Big]^p \\ &\leq \mathbb{E}\Big[\Big(\int_{-r}^0 d\theta\Big)^{\frac{p-1}{p}} \times \Big(\int_{-r}^0 \|h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\|^p\Big)^{\frac{1}{p}}\Big]^p \\ &\leq r^{p-1}\int_{-r}^0 \mathbb{E}\|h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\|^p d\theta \\ &\leq r^{p-1}k\int_{-r}^0 \mathbb{E}\|\varphi_1(\theta)(x) - \varphi_2(\theta)(x)\|^p d\theta \\ &\leq r^p k \sup_{-r \leq \theta \leq 0} \mathbb{E}\|\varphi_1(\theta)(x) - \varphi_2(\theta)(x)\|^p \\ &\leq r^p k\alpha \sup_{-r \leq \theta \leq 0} \mathbb{E}\|\varphi_1(\theta)(x) - \varphi_2(x)\|^p \text{ for a certain } \alpha \in \mathbb{R}_+. \end{split}$$

Consequently, we conclude that f and g are Lipschitz continuous and $cl(\mu, \nu)$ -pseudo almost automorphic in p-th mean sense. Moreover, since h is stochastically bounded in p-th mean

sense, i.e $\mathbb{E}\|h(t,\phi(t))\|^p \leq \beta$. By Hölder inequality, we have

$$\mathbb{E}\|g(t,\varphi(x))\|^{p} = 1 + \frac{\pi}{2} + \mathbb{E}\left\|\int_{-r}^{0} h(\theta,\varphi(\theta)(x)) d\theta\right\|^{p}$$

$$\leq \frac{2+\pi}{2} + \left(\int_{-r}^{0} d\theta\right)^{p-1} \times \int_{-r}^{0} \mathbb{E}\|h(\theta,\varphi(\theta)(x))\|^{p} d\theta$$

$$\leq \frac{2+\pi}{2} + r^{p-1} \int_{-r}^{0} \beta d\theta$$

$$\leq \frac{2+\pi}{2} + r^{p} \beta$$

$$\leq \beta_{1}, \text{ with } \beta_{1} = \frac{2+\pi}{2} + r^{p} \beta,$$

which implies that g satisfies (\mathbf{H}_5) .

For hyperbolicity, we suppose that $(\mathbf{H}_8) \int_0^0 |G(\theta)| d\theta < 1.$

Proposition 5.1. [18] Assume that (\mathbf{H}_6) and (\mathbf{H}_7) hold. The the seùigroup $(\mathcal{U}(t))_{t\geq 0}$ is hyperbolic.

Then by Proposition 4.23, we deduce the following result

Theorem 5.2. Under above assumptions, if Lip(h) is small enough large, then equation (5.1) has unique p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic solution of class r.

Références

- 1. B. Amir, L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain, Annales Mathématiques Blaise Pascal, 6, (1), (1999), 1-11.
- 2. Bochner S., A new approach to ZAlmost Automorphy, Pro Natl Acad Sci USA 1962, 48, 2039-2043.
- 3. Bochner S., Continuous mapping of Almost Automorphic and Almost Periodic Functions in Abstract Space, Kluwer Acasemic Plenum Plushers, New York, 2001.
- 4. Cao J F, Yang Q G, Huang Z T., Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations Stochastics, 2011, 83: 259-275.
- 5. Fu M M, Liu Z X., Square-mean almost automorphic solutions for some stochastic differential equations, Proc Amer Math Soc, 2010, 138: 3689-3701.
- 6. J. Seidler and Da Prato-Zabczyk's, Maximal inequality revisited I, Math Bohem. 118 (1993) 67–106.
- 7. C. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal. Appl. 181(1) (1994),62-76.
- 8. C. Zhang, Pseudo almost periodic solutions of some differential equations II, J.Math. Anal. Appl. 192(2) (1995), 543-561.
- 9. G.M. N'Guérékata, Almost automorphic and almost periodic functions, Kluwer Academic Publishers, New York, (2001).
- 10. G.M. N'Guérékata, Topics in Almost Automorphy, Springer (2005).
- 11. I. Zabsonre, H. Toure, Pseudo-almost periodic and pseudo-almost automorphic solutions of class r under the light of measure theory, Afr. Diaspora J. Math. 19 (1) (2016) 58-86.
- 12. Jing C., Wenping R., Existence and stability of μ -pseudo almost automorphic solutions for stochastic evolution equations, Front. Math. China, 2019.
- 13. J. Blot, P. Cieutat, K. Ezzinbi Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Analysis (2012), 2426-2447.

- 14. J. Blot, P. Cieutat, K. Ezzinbi New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis (2013), 493-526.
- 15. J. Blot, P. Cieutat, G. N'Guérékata, and D. Pennequin, Superposition operators between various almost periodicfunction spaces and applications, Commun. Math. Anal. 6(1) (2008), 42-70.
- 16. J. Blot, P. Cieutat and K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis, 92(3) (2013), 493–526.
- 17. K. Ezzinbi, H. Toure, I. Zabsonre, Pseudo almost automorphic solutions of class r for some partial functional differential equations, Afrika Matematika, (2014), 25-41.
- 18. K. Ezzinbi, S. Fatajou, N'Guf'ekata, Pseudo almost automorphic solutions for dissipative differential equations in Banach spaces, J. Math. Anal. Appl. 351 (2009) 765–772.
- 19. K. Ezzinbi, S. Fatajou, G.M. N'Guérékata, C^n -almost automorphic solutions for partial neutral functional differential equations, Applicable Analysis, 86:9, (2007), 1127-1146.
- 20. MA. Diop, K. Ezzinbi and MM. Mbaye, Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion, Stochastics. 87(2015)1061–1093.
- 21. M. Adimy, A. Elazzouzi, K. Ezzimbi, Bohr-Neugebauer type theorem for some partial neutral functional differential equations, Nonlinear Analysis, Theory, Methods and Applications, 66, (5), (2007), 1145-1160.
- M. Adimy, K. Ezzinbi, Existence and linearized stability for partial neutral functional differential equations, Differential Equations Dynam. Systems 7 (1999) 371-417.
- 23. M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principle and dynamic behavoirs for a class of partial functional differential equations, Nonlinear Analysis, TMA, 71, (2009), 1709-17.
- 24. M. Adimy, K. Ezzinbi, M. Laklach, Spectral decomposition for partial neutral functional differential equations, Canadian Applied Mathematics Quarterly, (1), (2001), 1-34.
- 25. N. Belmabrouk, M. Damak and M. Miraoui Measure pseudo almost periodic solution for a class of Nonlinear delayed Stochastic evolution equations driven by Brownian motion, Published by Faculty of Sciences and Mathematics, University of Nis, Serbia 35:2 (2021), 515–534.
- 26. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer (1983).
- 27. T. Diagana, Weighted pseudo-almost periodic solutions to some differential equations, Nonlinear Anal. Theory Methods Appl. 68(8) (2008), 2250-2260.
- 28. T. Diagana, K. Ezzinbi and M. Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory, CUBO A Mathematical Journal,16, (02),(2014), 01-31.
- 29. W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Company, New York, 1986

p-th mean pseudo almost automorphic solutions of class r under the light of measure theory

Djendode MBAINADJI ¹ and Issa ZABSONRE²

1 Université de Ndjaména, Département de Mathématiques, BP 1117, Ndjaména Tchad 2 Université Joseph KI-ZERBO, Unité de Recherche et de Formation en Sciences Exactes et Appliquées, Département de Mathématiques B.P.7021 Ouaqadouqou 03, Burkina Faso

Abstract. The objective in this work is to present a new concept of p-th mean pseudo almost automorphic by use of the measure theory. We use the (μ, ν) -ergodic process to define the spaces of (μ, ν) -pseudo almost automorphic process of class r in the p-th sense. To do this, firstly we show some interesting results regarding the completeness and composition theorems. Secondly we study the existence, uniqueness of the p-th mean (μ, ν) -pseudo almost automorphic solution of class r for the stochastic evolution equation.

AMS Subject Classification: 60H15; 60G20; 34K30; 34K50; 43A60.

Keywords and phrases: Measure theory, ergodicity, (μ, ν) -pseudo almost automorphic function, evolution equations, partial functional differential equations, Stochastic processes, evolution equations.

1. Introduction

In this work, we study some properties of the p-th mean (μ, ν) -pseudo almost automorphic process using the measure theory and we use those results to study the following stochastic evolution equations in a Hilbert space H,

$$dx(t) = [Ax(t) + L(x_t) + f(t)]dt + g(t)dW(t), \text{ for } t \in \mathbb{R}$$
(1.1)

where $A:D(A)\subset H$ is the infinitesimal generator of a C_0 -semigroup $(T(t))_{t\geq 0}$ on H such that

$$||T(t)|| \leq Me^{-\omega t}$$
, for $t \geq 0$,

for some $M, \omega > 0$, $f : \mathbb{R} \to L^p(\Omega, H)$ and $g : \mathbb{R} \to L^p(\Omega, H)$ are appropriate functions specified later, and W(t) is a two-sided standard Brownian motion with values in H. $\mathcal{C} = C([-r, 0], L^p(\Omega, H))$ denotes the space of continuous functions from [-r, 0] to $L^p(\Omega, H)$ endowed with the uniform topology norm. For every $t \geq 0$, x_t denotes the history function of \mathcal{C} defined by $x_t(\theta) = x(t + \theta)$ for $-r \leq \theta \leq 0$.

We assume (H, ||, ||) is a real separable Hilbert space and $L^p(\Omega, H)$ is the space of all H-valued random variables x such that

$$\mathbb{E}\|x\|^p = \int_{\Omega} \|x\|^p dP < \infty.$$

The concept of almost automorphiy is a generalization of the clasical periodicity. It was indroduced in literrature by Bochner This work is an extension of [11] whose authors had studied equation (1.1) in the deterministic case. Some recent contributions concerning p-th mean pseudo

^{1.} To whom all correspondence should be sent : mbainadjidjendode@gmail.com

almost automorphic for abstract differential equations similar to equation (1.1) have been made. For example [12, 25] the authors studied equation (1.1) without operator L. They showed that equation has unique p-th mean μ -pseudo almost periodic and μ -pseudo almost automorphic solutions on \mathbb{R} when f g are p-th mean pseudo almost periodic or p-th mean pseudo almost automorphic functions.

This work is organized as follows, in section 2, we give the spectral decomposition of the phase space, in section 3, we study p-th mean (μ, ν) -ergodic process of class r, in section 4, we study p-th mean (μ, ν) -pseudo almost automorphic process and we discuss the existence and uniqueness of p-th mean (μ, ν) -pseudo almost automorphic solution of class r, the last section is devoted to application.

2. Spectral decomposition

To equation (1.1), associate the following initial value problem

$$\begin{cases}
du_t = [Au_t + Lu_t + f(t)]dt + g(t)dW(t) \text{ for } t \ge 0 \\
u_0 = \varphi \in C = C([-r, 0], L^p(\Omega, H)),
\end{cases}$$
(2.1)

where $f: \mathbb{R}^+ \to L^p(\Omega, H)$ and $g: \mathbb{R}^+ \to L^p(\Omega, H)$ are two stochastic processes continuous.

Definition 2.1. We say that a continuous function $u: [-r, +\infty[\to L^p(\Omega, H) \text{ is an integral solution of equation, if the following conditions hold:$

(1)
$$\int_0^t u(s)ds \in D(A)$$
 for $t \ge 0$,
(2) $u(t) + A \int_0^t u(s)ds + \int_0^t (L(u_s) + f(s))ds + \int_0^t g(s)dW(s)$ for $t \ge 0$,

If $\overline{D(A)} = L^p(\Omega, H)$, the integral solution coincide with the know mild solutions. One can se that if $\underline{u(t)}$ is an integral solution of equation (2.1), then $\underline{u(t)} \in \overline{D(A)}$ for all $\underline{t} \geq 0$, in particular $\varphi(0) \in \overline{D(A)}$. Let us introduce the part A_0 of the operator A which defined by

$$\begin{cases} D(A_0) = \{x \in D(A) : Ax \in \overline{D(A)}\} \\ A_0x = Ax \text{ for } x \in D(A_0). \end{cases}$$

We make the following assumption.

 \mathbf{H}_0 A satisfies the Hille-Yosida condition.

Proposition 2.2. A_0 generates a strongly continuous semigroup $(T_0(t))_{t\geq 0}$ on $\overline{D(A)}$. The phase C_0 of equation (2.1) is defined by

$$C_0 = \{ \varphi \in C : \varphi(0) \in \overline{D(A)} \}.$$

For each $t \geq 0$, we define the linear operator $\mathcal{U}(t)$ on C_0 by

$$\mathcal{U}(t) = v_t(.,\varphi),$$

where $v(.,\varphi)$ is the solution of the following homogeneous equation

$$\begin{cases} \frac{d}{dt}v(t) = Av(t) + L(v_t) \text{for } t \ge 0 \\ v_0 = \varphi \in \mathcal{C} \end{cases}$$

Proposition 2.3. $(\mathcal{U}(t))_{t\geq 0}$ is strongly continuous semigroup of linear operators on C_0 . Moreover $(\mathcal{U}(\sqcup))_{t\geq 0}$ satisfies for $t\geq 0$ and $\theta\in [-r,0]$ the following translation property

$$(\mathcal{U}(t))_{\geq 0} = \begin{cases} (\mathcal{U}(t+\theta)\varphi)(0) \text{ for } t+\theta \geq 0. \\ \varphi(t+\theta) \text{ for } t+\theta \leq 0. \end{cases}$$

Proposition 2.4. [23] Let $A_{\mathcal{U}}$ defined on C_0 by

$$\begin{cases} D(\mathcal{A}_{\mathcal{U}}) = \{ \varphi \in C^{1}([-r, 0]; X), \varphi(0) \in (D(A), \varphi(0)' \in \overline{D(A)} \text{ and } \varphi(0)' = A\varphi(0) + L(\varphi) \} \\ \mathcal{A}_{\mathcal{U}}\varphi = \varphi' \in D(\mathcal{A}_{\mathcal{U}}) \end{cases}$$

Then $\mathcal{A}_{\mathcal{U}}$ is the infinitesimal generator of the semigroup $(\mathcal{U}(t))_t \geq 0$ on C_0 . Let $\langle X_0 \rangle$ be the space defined by

$$\langle X_0 \rangle = \{ X_0 c : c \in X \},$$

where the function X_0c is defined by

$$(X_0c)(\theta) = \begin{cases} 0 \text{ if } \theta \in [-r, 0[\\ c \text{ if } \theta = 0. \end{cases}$$

The space $C_0 \oplus \langle X_0 \rangle$ equipped with the norm $|\phi + X_0 c|_{\mathcal{C}} = |\phi|_{\mathcal{C}} + |c|$ for $(\phi, c) \in C_0 \times X$ is a Banach space. Consider the extension $\widetilde{\mathcal{A}}_{\mathcal{U}}$ defined on $C_{\alpha} \oplus \langle X_0 \rangle$ by

$$\begin{cases} D(\widetilde{\mathcal{A}_{\mathcal{U}}}) = \left\{ \varphi \in C^{1}([-r,0],X) : \varphi(0) \in D(A) \text{ and } \varphi(0)' \in \overline{D(A)} \right\} \\ \widetilde{\mathcal{A}_{\mathcal{U}}}\varphi = X_{0}(A\varphi(0) + L(\varphi) - \varphi(0)'). \end{cases}$$

Lemma 2.5. [24] Assume that (\mathbf{H}_0) holds. Then, $\widetilde{\mathcal{A}}_{\mathcal{U}}$ satisfies the Hile-Yosida condition on $C_0 \oplus \left\langle X_0 \right\rangle$ there exist $\widetilde{M} \geq 0$, $\widetilde{\omega} \in \mathbb{R}$ such that $]\widetilde{\omega}, +\infty[\subset \rho(\widetilde{\mathcal{A}}_{\mathcal{U}})]$ and

$$|(\lambda I - \widetilde{\mathcal{A}}_{\mathcal{U}})^{-n}| \leq \frac{\widetilde{M}}{(\lambda - \widetilde{\omega})^n} \text{ for } n \in \mathbb{N} \text{ and } \lambda > \widetilde{\omega}.$$

Moreover, the part of $\widetilde{\mathcal{A}}_{\mathcal{U}}$ on $D(\widetilde{\mathcal{A}}_{\mathcal{U}}) = C_0$ is exactly the operator $\widetilde{\mathcal{A}}_{\mathcal{U}}$.

Definition 2.6. We say a semigroup, $(\mathcal{U}(t))_{t>0}$ is hyperbolic if

$$\sigma(\mathcal{A}_{\mathcal{U}}) \cap i\mathbb{R} = \emptyset.$$

For the sequel, we make the following assumption :

 (\mathbf{H}_1) $(T(t))_{\geq 0}$ is compact on D(A) for t > 0.

Proposition 2.7. Assume that (\mathbf{H}_0) and (\mathbf{H}_1) hold. Then the semigroup $(\mathcal{U}(t))_{t\geq 0}$ is compact for t>r.

We get the following result on the spectral decomposition of the phase space C_0 .

Proposition 2.8. Assume that (\mathbf{H}_0) and (\mathbf{H}_1) hold. If the semigroup $\mathcal{U}(t)_{t\geq 0}$ is hyperbolic, then the space C_0 is decomposed as a direct sum

$$C_0 = S \oplus U$$

of two U(t) invariant closed subspaces S and U such that the restriction of $(U(t))_{t\geq 0}$ on U is a group and there exist positive constants \overline{M} and ω such that

$$|\mathcal{U}(t)\varphi| \leq \overline{M}e^{-\omega t}|\varphi| \text{ for } t \geq 0 \text{ and } \varphi \in S,$$

$$|\mathcal{U}(t)\varphi| \leq \overline{M}e^{-\omega t}|\varphi| \text{ for } t \leq 0 \text{ and } \varphi \in U,$$

where S and U are called respectively the stable and unstable space, Π^s and Π^u denote respectively the projection operator on S and U.

3. (μ, ν) -ergodic process in p-th mean sense of class r

Let \mathcal{N} the Lebesgue σ -field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{N} satisfying $\mu(\mathbb{R}) = +\infty$ and $\mu([a,b]) < \infty$ for all $a,b \in \mathbb{R}$ $(a \leq b)$. Let $p \geq 2$. $L^p(\Omega,H)$ is a Hilbert space with the following norm

$$||x||_{L^p} = \Big(\int_{\Omega} ||x||^p dP\Big)^{\frac{1}{p}}$$

Definition 3.1. [20] Let $x : \mathbb{R} \to L^p(\Omega, H)$ be a stochastic process.

(1) x said to be stochastically bounded in p-th mean sense, if there exists M>0 such that

$$\mathbb{E}||x(t)||^p < M \text{ for all } t \in \mathbb{R}.$$

(2) x said to be stochastically continuous in p-th mean sense if

$$\lim_{t \to s} \mathbb{E} \|x(t) - x(s)\|^p \le M \text{ for all } t, s \in \mathbb{R}.$$

Let $BC(\mathbb{R}, L^p(\Omega, H))$ denote the space of all the stochastically bounded continuous processes.

Remark 3.2. [20] $(BC(\mathbb{R}, L^p(\Omega, H)), \|.\|_{\infty})$ is a Banach space, where

$$||x||_{\infty} = \sup_{t \in \mathbb{R}} (\mathbb{E}(||x(t)||^p))^{\frac{1}{p}}$$

Definition 3.3. Let $\mu, \nu \in \mathcal{M}$. A stochastic process f is said to be (μ, ν) -ergodic in p-th $(p \ge 2)$ mean sense, if $f \in BC(\mathbb{R}, L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t)\|^p d\mu(t) = 0.$$

We denote by $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu)$, the space of all such process.

Proposition 3.4. Let $\mu, \nu \in \mathcal{M}$. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu)$ is a Banach space with the supremum norm $\|.\|_{\infty}$.

Definition 3.5. Let $\mu, \nu \in \mathcal{M}$. A stochastic process f is said to be p-th mean (μ, ν) -ergodic of class r if $f \in BC(\mathbb{R}, L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p d\mu(t) = 0.$$

We denote by $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, the space of all such process.

For $\mu \in \mathcal{M}$ and $a \in \mathbb{R}$, we denote μ_a the positive measure on $(\mathbb{R}, \mathcal{N})$ defined by

$$\mu_a(A) = \mu([a+b:b \in A]) \text{ for } A \in \mathcal{N}$$
(3.1)

From $\mu, \nu \in \mathcal{M}$, we formulate the following hypotheses.

 (\mathbf{H}_2) Let $\mu,\nu\in\mathcal{M}$ be such that

$$\limsup_{\tau \to +\infty} \frac{\mu([-\tau, \tau])}{\nu([-\tau, \tau])} = \delta < \infty.$$

 (\mathbf{H}_3) For all a, b and $c \in \mathbb{R}$ such that $0 \le a < b < c$, there exist δ_0 and $\alpha_0 > 0$ such that

$$|\delta| \ge \delta_0 \Rightarrow \mu(a+\delta,b+\delta) \ge \alpha_0 \mu(\delta,c+\delta).$$

 (\mathbf{H}_4) For all $\tau \in \mathbb{R}$ there exist $\beta > 0$ and a bounded interval I such that

$$\mu(\{a+\tau:a\in A\}) \leq \beta\mu(A)$$
 when $A\in\mathcal{N}$ and satisfies $A\cap I=\varnothing$.

Proposition 3.6. Assume that (\mathbf{H}_2) holds. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is a Banach space with the norm $\|.\|_{\infty}$

Proof. We can see that $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is a vector subspace of $BC(\mathbb{R}, L^p(\Omega, H))$. To complete the proof is enough to prove that (\mathbf{H}_2) holds. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is closed in $BC(\mathbb{R}, L^p(\Omega, H))$. Let $(f_n)_n$ be a sequence in $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ such that $\lim_{n \to +\infty} f_n = f$ uniformly in $BC(\mathbb{R}, L^p(\Omega, H))$. From $\nu(\mathbb{R}) = +\infty$, it follows that $\nu([-\tau, \tau]) > 0$ for τ sufficiently large. Let $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $||f_n - f||_{\infty} < \varepsilon$. Let $n \geq n_0$, then we have

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f(t)\|^p \Big) d\mu(t) \leq \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t) - f(t)\|^p \Big) d\mu(t) \\
+ \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t)\|^p \Big) d\mu(t) \\
\leq \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t) - f(t)\|^p \Big) d\mu(t) \\
+ \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t)\|^p \Big) d\mu(t) \\
\leq 2^{p-1} \|f_n - f\|_{\infty}^p \frac{\mu([-\tau,\tau])}{\nu([-\tau,\tau])} + \frac{2^{p-1}}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-\tau,t]} \mathbb{E} \|f_n(t)\|^p \Big) d\mu(t).$$

We deduce that

$$\limsup_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{+\tau} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(t)\|^p \Big) d\mu(t) \leq 2^{p-1} \delta \varepsilon \text{ for any } \varepsilon > 0.$$

Next result is a characterisation of p-th mean (μ, ν) -ergodic processes of class r.

Theorem 3.7. Asume that (\mathbf{H}_2) holds and let $\mu, \nu \in \mathcal{M}$ and I be a bounded interval (eventually $I = \varnothing$). Assume that $f \in BC(\mathbb{R}, L^p(\Omega, H))$. The following assertions are equivalent

$$i) f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$$

$$ii) \ \lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau] \setminus I)} \int_{[-\tau,\tau] \setminus I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) = 0.$$

$$iii) \ \textit{For any } \varepsilon > 0, \ \lim_{\tau \to +\infty} \frac{\mu\Big(\{t \in [-\tau,\tau] \setminus I : \mathbb{E}\|f(\theta)\|^p > \varepsilon\}\Big)}{\nu([-\tau,\tau] \setminus I)} = 0$$

Proof. The proof uses the same arguments of the proof of Theorem 2.22 in [28].

$$i) \Leftrightarrow ii)$$
. Denote By $A = \mu(I)$ and $B = \int_{I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t)$.

Since the interval I is bounded and the process f is stochastically bounded continuous. Then A, B and C are finite.

For
$$\tau > 0$$
, such that $I \subset [-\tau, \tau]$ and $\nu([-\tau, \tau] \setminus I) > 0$, we have

$$\frac{1}{\nu([-\tau,\tau])\setminus I} \int_{[-\tau,\tau]\setminus I} \left(\sup_{\theta\in[t-r,t]} \mathbb{E}\|f(\theta\|^p) d\mu(t)\right) = \frac{1}{\nu([-\tau,\tau]-A} \left[\int_{[-\tau,\tau]} \left(\sup_{\theta\in[t-r,t]} \mathbb{E}\|f(\theta)\|^p\right) d\mu(t) - B\right]$$

$$= \frac{\nu([-\tau,\tau])}{\nu[-\tau,\tau]-A} \left[\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \left(\sup_{\theta\in[t-r,t]} \mathbb{E}|f(\theta)\|^p\right) d\mu(t)$$

$$-\frac{B}{\nu([-\tau,\tau])}\right]$$

From above equalities and the fact $\nu(\mathbb{R}) = +\infty$, we deduce ii) is equivalent to

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \left(\sup_{\theta \in [t-r, t]} \mathbb{E} \| f(\theta) \|^p \right) d\mu(t) = 0,$$

that i). iii) $\Rightarrow ii$) Denote by A^{ε}_{τ} and B^{ε}_{τ} the following sets

$$A^{\varepsilon}_{\tau} = \Big\{ t \in [-\tau, \tau] \setminus I : \sup_{\theta \in [t-r, t]} \mathbb{E} \| f(\theta) \|^p > \varepsilon \Big\} \text{ and } B^{\varepsilon}_{\tau} = \Big\{ t \in [-\tau, \tau] \setminus I : \sup_{\theta \in [t-r, t]} \mathbb{E} \| f(\theta) \|^p \le \varepsilon \Big\}.$$

Assume that ii) holds, that is

$$\lim_{\tau \to +\infty} \frac{\mu(A_{\tau}^{\varepsilon})}{\nu([-\tau, \tau]) \setminus I)} = 0. \tag{3.2}$$

From the equality

$$\begin{split} &\int_{[-\tau,\tau]\backslash I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) = \int_{A^\varepsilon_\tau} \Big(\sup_{\theta \in [t-r,t]} \|f(\theta)\|^p \Big) d\mu(t) + \int_{B^\varepsilon_\tau} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \\ &\text{we deduce that for } \tau \text{ sufficient large} \end{split}$$

$$\frac{1}{\nu([-\tau,\tau]\setminus I)}\int_{[-\tau,\tau]\setminus I}\Big(\sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^p\Big)d\mu(t) \quad \leq \quad \|f\|_{\infty}\times\frac{\mu(A^{\varepsilon}_{\tau})}{\nu([-\tau,\tau]\setminus I)}+\varepsilon\frac{\mu(B^{\varepsilon}_{\tau})}{\nu([-\tau,\tau]\setminus I)}$$

Since $\mu(\mathbb{R}) = \nu(\mathbb{R}) = \infty$ and by using (\mathbf{H}_2) then for all $\varepsilon > 0$ we have

$$\frac{1}{\nu([-\tau,\tau]\setminus I)}\int_{[-\tau,\tau]\setminus I} \Big(\sup_{\theta\in[t-r,t]} \mathbb{E}\|f(\theta)\|^p\Big) d\mu(t) \leq \delta\varepsilon$$

Consequently ii) holds.

 $ii) \Rightarrow iii)$

$$\begin{split} &\int_{[-\tau,\tau]\backslash I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \geq \int_{A^{\varepsilon}_{\tau}} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \\ &\frac{1}{\nu([-\tau,\tau] \setminus I)} \int_{[-\tau,\tau] \setminus I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \geq \varepsilon \frac{\mu(A^{\varepsilon}_{\tau})}{\nu([-\tau,\tau] \setminus I)} \\ &\frac{1}{\varepsilon \nu([-\tau,\tau] \setminus I)} \int_{[-\tau,\tau] \setminus I} \Big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \Big) d\mu(t) \geq \frac{\mu(A^{\varepsilon}_{\tau})}{\nu([-\tau,\tau] \setminus I)}, \end{split}$$

for τ sufficiently large, we obtain equation (3.2), that is *iii*).

Definition 3.8. Let $\mu, \nu \in \mathcal{M}$. A function $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be (μ, ν) ergodic in p-th mean sense in $t \in \mathbb{R}$ uniformly with the respect to $x \in \mathcal{K}$, if $f \in BC(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t,x)\|^p d\mu(t) = 0,$$

where $\mathcal{K} \subset L^p(\Omega, H)$ is compact.

We denote $\mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$ the set of all such functions.

Definition 3.9. Let $\mu, \nu \in \mathcal{M}$. A function $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be p-th mean (μ, ν) -ergodic of class r in $t \in \mathbb{R}$ uniformly with the respect to $x \in \mathcal{K}$, if $f \in BC(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and satisfies

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta,x)\|^p d\mu(t) = 0,$$

where $\mathcal{K} \subset L^p(\Omega, H)$ is compact.

We denote $\mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$ the set of all such functions.

Definition 3.10. Let $\mu_1, \mu_2 \in \mathcal{M}$. We say that μ_1 is equivalent to μ_2 , denoting this as $\mu_1 \sim \mu_2$ if there exist constants α and $\beta > 0$ and a bounded interval I (eventually $I = \varnothing$) such that $\alpha \mu_1(A) \leq \mu_2(A) \leq \beta \mu_1(A)$, when $A \in \mathcal{N}$ satisfies $A \cap I = \varnothing$.

Remark 3.11. The relation \sim is an equivalence relation on \mathcal{M} .

Theorem 3.12. Let $\mu_1, \nu_1, \mu_2, \nu_2 \in \mathcal{M}$. If $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2$, then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_1, \nu_1, r) = \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_2, \nu_2, r)$.

Proof. Since $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2$, there exists some constants $\alpha_1, \alpha_2, \beta_1, \beta_2 > 0$ and a bounded interval I (eventually $I = \emptyset$) such that $\alpha_1 \mu_1(A) \leq \mu_2(A) \leq \beta_1 \mu_2(A)$ and $\alpha_2 \nu_1(A) \leq \nu_2(A) \leq \beta_1 \nu_1(A)$ for each $A \in \mathcal{N}$ satisfies $A \cap I = \emptyset$, i.e

$$\frac{1}{\beta_2\nu_1(A)} \le \frac{1}{\nu_2(A)} \le \frac{1}{\alpha_2\nu_1(A)}$$

Since $\mu_1 \sim \mu_2$ and \mathcal{N} is the Lebesgue σ -field for τ sufficiently large,

$$\frac{\alpha_{1}\mu_{1}\Big(\{t\in[-\tau,\tau]\setminus I: \sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^{p}>\varepsilon\}\Big)}{\beta_{2}\mu_{2}([-\tau,\tau]\setminus I)} \leq \frac{\mu_{2}\Big(\{t\in[-\tau,\tau]\setminus I: \sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^{p}>\varepsilon\}\Big)}{\nu_{2}([-\tau,\tau]\setminus I)}$$

$$\leq \frac{\beta_{1}\mu_{1}\Big(\{t\in[-\tau,\tau]\setminus I: \sup_{\theta\in[t-r,t]}\mathbb{E}\|f(\theta)\|^{p}>\varepsilon\}\Big)}{\alpha_{2}\nu([-\tau,\tau]\setminus I)}.$$

By using Theorem 3.7, we deduce that $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_1, \nu_1, r) = \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_2, \nu_2, r)$.

Let $\mu, \nu \in \mathcal{M}$, we denote by

$$cl(\mu, \nu) = \left\{ \overline{\omega}_1, \overline{\omega}_2 \in \mathcal{M} : \mu_1 \sim \mu_2, \nu_1 \sim \nu_2 \right\}$$

Lemma 3.13. [14] Let $\mu \in \mathcal{M}$ satisfy (\mathbf{H}_4) . Then the measures μ and μ_{τ} are equivalent for all $\tau \in \mathbb{R}$.

Lemma 3.14. [14] (H_4) implies

for all
$$\sigma > 0$$
, $\limsup_{\tau \to +\infty} \frac{\mu([-\tau - \sigma, \tau + \sigma])}{\nu([-\tau, \tau])} < \infty$.

Theorem 3.15. Assume that (\mathbf{H}_4) holds. Then $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is invariant by translation.

Proof. The proof is inspired by Theorem 3.5 in [13].

Let $f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ and $a \in \mathbb{R}$. Since $\nu(\mathbb{R}) = +\infty$, there exists $a_0 > 0$ such that $\nu([-\tau - |a|, \tau + |a|]) > 0$ for $|a| > a_0$. Denote

$$M_a(\tau) = \frac{1}{\nu_a([\tau,\tau])} \int_{-\tau}^{\tau} \big(\sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p \big) d\mu_a(t) \ \, \forall \tau > 0 \text{ and } a \in \mathbb{R},$$

where ν_a is the positive measure define by equation (3.1) By using Lemma (3.13), it follows that ν and ν_a are equivalent, μ and μ_a are equivalent and by Theorem (3.12), we have $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_a, \nu_a, r) = \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, therefore $f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu_a, \nu_a, r)$ that is $\lim_{t \to +\infty} M_a(\tau) = 0$ for all $a \in \mathbb{R}$.

For all $A \in \mathcal{N}$, we denote χ_A the characteristic function of A. By using definition of the μ_a , we obtain that

$$\int_{[-\tau,\tau]} \chi_A(t) d\mu_a(t) = \int_{[-\tau,\tau]} \chi_A(t) d\mu_a(t+a) = \int_{[-\tau+a,\tau+a]} \chi_A(t) d\mu_a(t).$$

Since $t \mapsto \sup_{\theta \in [t-r,t]} \mathbb{E} ||f(\theta)||^p$ is the pointwise limit of an increasing sequence of function see([19,

Theorem 1.17, p.15]), we deduce that

$$\int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta)\|^p d\mu_a(t) = \int_{[-\tau+a,\tau+a]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t).$$

We denote by $a^+ = \max(a,0)$ and $a^- = \max(-a,0)$. Then we have $|a| + a = 2a^+$, $|a| - a = 2a^-$ and $[-\tau + a - |a|, \tau + a + |a|] = [-\tau - 2a^-, \tau + 2a^+]$. Therefore we obtain

$$M_a(\tau + |a|) = \frac{1}{\nu([-\tau - 2a^-, \tau + 2a^+])} \int_{[-\tau - 2a^-, \tau + 2a^+]} \sup_{\theta \in [t - a - r, t - a]} \mathbb{E} \|f(\theta)\|^p d\mu(t)$$
(3.3)

From (3.3) and the following inequality

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t) \le \frac{1}{\nu([-\tau,\tau])} \int_{[-\tau-2a^-,\tau+2a^+]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t),$$

we obtain

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t) \le \frac{\nu([-\tau-2a^-,\tau+2a^+])}{\nu([-\tau,\tau])} \times M_a(\tau+|a|).$$

This implies

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} \|f(\theta)\|^p d\mu(t) \le \frac{\nu([-\tau-2|a|,\tau+2|a|])}{\nu([-\tau,\tau])} \times M_a(\tau+|a|).$$
 (3.4)

From equation (3.3) and equation (3.4) and using Lemma 3.14, we deduce that

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-a-r,t-a]} \mathbb{E} ||f(\theta)||^p d\mu(t) = 0,$$

which equivalent to

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta - a)\|^p d\mu(t) = 0,$$

that is $f_a \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. We have proved that $f \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ then $f_{-a} \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ for all $a \in \mathbb{R}$, that is $\mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ invariant by translation

Proposition 3.16. The space $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is invariant by translation, that is for all $a \in \mathbb{R}$ and $f \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, $f_a \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

4. p-th mean (μ, ν) -pseudo almost automorphic processes

In this section, we define p-th mean (μ, ν) -pseudo almost automorphic and their properties.

Definition 4.1. [4] A continuous function stochastic process $f: \mathbb{R} \to L^p(\Omega, H)$ is said to be almost automorphic process in the p-th mean sense if for every sequence of real numbers $(s_m)_{m\in\mathbb{N}}$, there exists a subsequence $(s_n)_{n\in\mathbb{N}}$ and a stochastic process $g: \mathbb{R} \to L^p(\Omega, H)$ such that

$$\lim_{n \to \infty} \mathbb{E} \| f(t+s_n) - g(t) \|^p = 0$$

is well defined for each $t \in \mathbb{R}$ and

$$\lim_{n \to \infty} \mathbb{E} \|g(t - s_n) - f(t)\|^p = 0$$

for each $t \in \mathbb{R}$.

We denote the space of all such stochastic processes by $AA(\mathbb{R}, L^p(\Omega, H))$

Lemma 4.2. [4] The space $AA(\mathbb{R}, L^p(\Omega, H))$ of p-th mean almost automorphic stochastic processes equipped with the norm $\|.\|_{\infty}$ is a Banach space.

Definition 4.3. [4] A continuous function stochastic process $f: \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$, $(t,x) \mapsto f(t,x)$ is said to be almost automorphic process in the p-th mean sense in $t \in \mathbb{R}$ uniformly with respect to $x \in K$, if for every sequence of real numbers $(s_m)_{m \in \mathbb{N}}$, there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ and a stochastic process $g: \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ such that

$$\lim_{n \to \infty} \mathbb{E} \| f(t + s_n, x) - g(t, x) \|^p = 0$$

is well defined for each $t \in \mathbb{R}$ and

$$\lim_{n \to \infty} \mathbb{E} \|g(t - s_n, x) - f(t, x)\|^p = 0$$

for each $t \in \mathbb{R}$, where $K \subset L^p(\Omega, H)$ is compact.

We denote the space of all such stochastic processes by $AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$.

Lemma 4.4. [4] If x and y are two automorphic processes in p-th mean sense, then

- (1) x + y is almost automorphic in p-th mean sense;
- (2) for every scalar λ , λx is almost automorphic in p-th mean sense;
- (3) there exists a constant M > 0 such that

$$\sup_{t \in \mathbb{R}} \mathbb{E} ||x(t)||^p \le M,$$

that is, x is bounded in $L^p(\Omega, H)$.

We now introduce some new spaces used in the sequel.

Definition 4.5. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic in p-th mean sense, if it can decomposed as follows

$$f = g + \phi$$
,

where $g \in AA(\mathbb{R}, L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu)$.

We denote the space of all such stochastic processes by $PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$.

Definition 4.6. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic in p-th mean sense, if it can decomposed as follows

$$f = g + \phi$$
,

where $g \in AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$.

Proposition 4.7. [28] Assume that (\mathbf{H}_3) holds. Then the decomposition of (μ, ν) -pseudo almost automorphic function in the form $f = g + \phi$, where $g \in AA(\mathbb{R}, X)$ and $\phi \in \mathscr{E}(\mathbb{R}, X, \mu, \nu)$ is unique.

Remark 4.8. Let $X = L^p(\Omega, H)$. Then the Proposition 4.7 always holds.

Proposition 4.9. [11] Assume that (\mathbf{H}_3) holds. Then the decomposition of (μ, ν) -pseudo almost automorphic function of class r in the form $\phi = \phi_1 + \phi_2$, where $\phi_1 \in AA(\mathbb{R}, X)$ and $\phi_2 \in \mathscr{E}(\mathbb{R}, X, \mu, \nu, r)$ is unique.

We denote the space of all such stochastic processes by $PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu)$.

Definition 4.10. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic of class r in p-th mean sense, if it can decomposed as follows

$$f = q + \phi$$
,

where $g \in AA(\mathbb{R}, L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

We denote by $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ the space of all such stochastic processes.

Proposition 4.11. Assume that (\mathbf{H}_2) holds. Let $\mu, \nu \in \mathcal{M}$. The space $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ endowed with the uniform topology norm is a Banach space.

Proof. This Proposition is the consequence of Lemma 4.2 and Proposition 3.6 ■

Definition 4.12. Let μ , $\nu \in \mathcal{M}$. A bounded continuous stochastic process $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$ is said to be (μ, ν) -pseudo almost automorphic of class r in p-th mean sense, if it can decomposed as follows

$$f = g + \phi$$
,

where $g \in AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$ and $\phi \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

We denote the space of all such stochastic processes by $PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

Proposition 4.13. Let μ_1, μ_2, ν_1 and $\nu_2 \in \mathcal{M}$ if $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2$, then $PAA(\mathbb{R}, L^p(\Omega, H), \mu_1, \nu_1, r) = PAA(\mathbb{R}, L^p(\Omega, H), \mu_2, \nu_2, r)$.

This Proposition is just a consequence of Theorem 3.12.

Theorem 4.14. Assume that (\mathbf{H}_3) holds. Let $\mu, \nu \in \mathcal{M}$ and $\phi \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ then the function $t \to \phi_t$ belongs to $PAA((C[-r, 0], L^p(\Omega, H), \mu, \nu, r))$.

Proof. Assume that $\phi = g + h$, where $g \in AA(\mathbb{R}, L^p(\Omega, H))$ and $h \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. Then we cause that $\phi_t = g_t + h_t$ and g_t is p-th mean almost automorphic process. Let us denote

$$M_a = \frac{1}{\nu_a([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r, t]} \mathbb{E} \|h(\theta)\|^p d\mu_a(t),$$

where μ_a and ν_a are the positive measures defined by equation (3.1). By using Lemma 3.13 it follows that μ and μ_a are equivalent, ν and ν_a are equivalent by using theorem 3.12 $\mathscr{E}_p(\mathbb{R}L^p(\Omega, H), \mu, \nu, r) = \mathscr{E}_p(\mathbb{R}L^p(\Omega, H), \mu_a, \nu_a, r)$ therefore $f \in \mathscr{E}_p(\mathbb{R}L^p(\Omega, H), \mu_a, \nu_a, r)$ that is $\lim_{\tau \to \infty} M_a(\tau) = 0$ for all $a \in \mathbb{R}$.

On the other hand for $\tau > 0$, we have

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\sup_{\theta \in [-\tau,0]} \mathbb{E} \|h(\theta+\xi)\|^{p} a \right) d\mu(t) \leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-2r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-2r,t-r]} \mathbb{E} \|h(\theta)\|^{p} + \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \left(\sup_{\theta \in [t-2r,t-r]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau-r}^{\tau-r} \left(\sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} d\mu(t)$$

$$\leq \frac{1}{\nu([-\tau,\tau])} \int_{-\tau-r}^{\tau+r} \left(\sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t+r) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \|h(\theta)\|^{p} d\mu(t)$$

$$\leq \frac{\mu([-\tau-r,\tau+r])}{\nu([-\tau,\tau])} \left(\frac{1}{\mu([-\tau-r,\tau+r])} \int_{-\tau-r}^{\tau} \left(\sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} \right) d\mu(t+r) \right) + \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^{p} d\mu(t).$$

Consequently

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big(\sup_{\theta \in [-r,0]} \mathbb{E} \|h(\theta + \xi)\|^p \Big) d\mu(t) \leq \frac{\mu([-\tau - r, \tau + r])}{\nu([-\tau,\tau])} \times M_{\delta}(\tau + r) \\
+ \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|h(\theta)\|^p \Big) d\mu(t),$$

which shows usind Lemma 3.13 and Lemma 3.14 that ϕ_t belongs to $PAA(C[-r,0],\mu,\nu,r)$. Thus we obtain the desired result.

Next, we study the composition of (μ, ν) -pseudo almost automorphic process in p-th mean sense.

Theorem 4.15. [5] Let $f : \mathbb{R} \times L^p(\Omega, H) \to L^p(\Omega, H)$, $(t, x) \mapsto f(t, x)$ be almost automorphic in p-th sense in $t \in \mathbb{R}$, for each $x \in L^p(\Omega, H)$ and assume that f satisfies the lipschitz condition in the following sense

$$\mathbb{E}||f(t,x) - f(t,y)||^p \le L||x - y||^p \,\forall x, y \in L^p(\Omega, H),$$

where L is positive number. Then $t \mapsto f(t, x(t)) \in AA(\mathbb{R}, L^p(\Omega, H))$ for any $x \in AA(\mathbb{R}, L^p(\Omega, H))$.

Theorem 4.16. Let (\mathbf{H}_2) holds and $\mu, \nu \in \mathcal{M}$ satisfy (\mathbf{H}_4) . Suppose that $f \in PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$ satisfies the Lipschitz condition in the second variable that is, there exists a positive number L such that for any $x, y \in L^p(\Omega, H)$,

$$\mathbb{E}||f(t,x) - f(t,y)||^p \le L||x - y||^p, \ t \in \mathbb{R}.$$

Then $t \mapsto f(t, x(t)) \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ for any $x \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

Proof. Since $x \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, then we can decompose $x = x_1 + x_2$, where $x_1 \in AA(\mathbb{R}, L^p(\Omega, H))$ and $x_2 \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. Otherwise, since $f \in PAA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$

then $f = f_1 + f_2$, where $f_1 \in AA(\mathbb{R} \times L^p(\Omega, H))$ and $f_2 \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$. Then the function f can be decomposed as follows

$$f(t, x(t)) = f_1(t, x_1(t)) + [f(t, x(t)) - f(t, x_1)] + [f(t, x_1(t)) - f_1(t, x_1(t))]$$
$$= f_1(t, x_1(t)) + [f(t, x(t)) - f(t, x_1(t))] + f_2(t, x_1(t)).$$

Using Theorem4.15, we have $t \mapsto f_1(t, x_1) \in AA(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H))$. It remains to show that the both functions $t \mapsto [f(t, x_1(t)) - f_1(t, x_1(t))]$ and $t \mapsto +f_2(t, x_1(t))$ belong to $\mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

We have

$$\mathbb{E}||f(t,x(t)) - f(t,x_1(t))||^p \le L||x(t) - x_1(t)||^p$$

$$\sup_{\theta \in [t-r,t]} \mathbb{E} \| f(\theta, x(\theta)) - f(\theta, x_1(\theta)) \|^p \le L \sup_{\theta \in [t-r,t]} \| x(\theta) - x_1(\theta) \|^p.$$

It follows that

$$\frac{1}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f(\theta, x(\theta)) - f(\theta, x_1(\theta))\|^p d\mu(t) \leq \frac{L}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|x(\theta) - x_1(\theta)\|^p d\mu(t) \\
\leq \frac{L}{\nu([-\tau,\tau])} \int_{[-\tau,\tau]} \sup_{\theta \in [t-r,t]} \mathbb{E} \|x_2(\theta)\|^p d\mu(t)$$

Since $x_2 \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ then

$$\lim_{\tau \to +\infty} \frac{L}{\nu([-\tau, \tau])} \int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E} ||x_2(\theta)||^p d\mu(t) = 0.$$

We deduce that

$$\lim_{\tau \to +\infty} \sup_{\tau ([-\tau, \tau])} \frac{1}{\int_{[-\tau, \tau]} \sup_{\theta \in [t-r, t]} \mathbb{E} \|f(\theta, x(\theta)) - f(\theta, x_1(\theta))\|^p d\mu(t) = 0,$$

therefore $[f(t,x(t))-f(t,x_1(t))] \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega,H),L^p(\Omega,H),\mu,\nu,r)$. Now to complete the proof it is enough to prove that $t \mapsto f_2(t,x_1(t)) \in \mathscr{E}_p(\mathbb{R},L^p(\Omega,H),\mu,\nu,r)$

In fact for each $t \in \mathbb{R}$, we have

$$||f_2(t,x) - f_2(t,y)||^p = ||f(t,x) - f_1(t,x) - f_1(t,y) + f(t,y)||^p$$

$$\leq 2^{p-1} ||f(t,x) - f(t,y)||^p + 2^{p-1} ||f_1(t,x) - f_1(t,y)||^p.$$

By using the Lipschitz condition, we have

$$\mathbb{E}\|f_2(t,x) - f_2(t,y)\|^p \leq 2^{p-1}\mathbb{E}\|f(t,x) - f(t,y)\|^p + 2^{p-1}\mathbb{E}\|f_1(t,x) - f_1(t,y)\|^p$$

$$\leq 2^p\|x - y\|^p$$

Since $K = \overline{\{x_1(t) : t \in \mathbb{R}\}}$ is compact. Then for $\varepsilon > 0$, there exists a finite number x_1, \ldots, x_m such that

$$K \subset \bigcup_{i=1}^{m} B\left(x_i, \frac{\varepsilon}{2^{2p-1}L}\right),$$

where $B\left(x_i, \frac{\varepsilon}{2^{2p-1}L}\right) = \left\{x \in K, \|x_i - x\|^p \leq \frac{\varepsilon}{2^{2p-1}L}\right\}$. Its implies that

$$K \subset \bigcup_{i=1}^{m} \left\{ x \in K, \forall \ t \in \mathbb{R}, \|f_2(t,x) - f_2(t,x_i)\|^p \le \frac{\varepsilon}{2^{p-1}} \right\}$$

Let $t \in \mathbb{R}$ and $x \in K$, there exists $i_0 \in \{1, ..., m\}$ such that

$$\mathbb{E} \|f_2(t,x) - f_2(t,x_{i_0})\|^p \le \frac{\varepsilon}{2^{p-1}},$$

therefore

$$\mathbb{E}\|f_{2}(t,x_{1}(t))\|^{p} \leq 2^{p-1}\|f_{2}(t,x_{1}(t)) - f_{2}(t,x_{i_{o}}(t))\|^{p} + 2^{p-1}\mathbb{E}\|f_{2}(t,x_{i_{o}}(t))\|^{p}$$

$$\leq \varepsilon + 2^{p-1}\mathbb{E}\|f_{2}(t,x_{i_{o}}(t))\|^{p}$$

$$\leq \varepsilon + 2^{p-1}\sum_{i=1}^{m}\mathbb{E}\|f_{2}(t,x_{i_{o}}(t))\|^{p}.$$

It follows that

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f_2(\theta,x_1(\theta))\|^p d\mu(t) \leq \left(\frac{\varepsilon \mu([-\tau,\tau])}{\nu([-\tau,\tau])} + \sum_{i=1}^m \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f_2(\theta,x_i(\theta))\|^p d\mu(t)\right).$$

By the fact
$$\forall i \in \{1, ..., m\}, \lim_{\tau \to +\infty} \sum_{i=1}^{m} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r, t]} \mathbb{E} \|f_2(\theta, x_i(\theta))\|^p d\mu(t) = 0$$
, we

deduce that

$$\limsup_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \mathbb{E} \|f_2(\theta,x_1(\theta))\|^p d\mu(t) \le \varepsilon \delta.$$

Therefore $t \mapsto f_2(t, x_1(t)) \in \mathscr{E}_p(\mathbb{R} \times L^p(\Omega, H), L^p(\Omega, H), \mu, \nu, r)$.

Proposition 4.17. Assume that (\mathbf{H}_4) holds. Then the space $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ is invariant by translation, that is $f \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ implies $f_{\alpha} \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ for all $\alpha \in \mathbb{R}$.

Lemma 4.18. [6] Let $G:[0,T]\times\Omega\to\mathscr{L}(L^p(\Omega,H))$ be an \mathcal{F}_t -adapted measurable stochastic process satisfying

$$\int_0^T \mathbb{E} \|G(t)\|^2 < \infty$$

almost surely, where $\mathcal{L}(L^p(\Omega, H))$ denote the space of all linear operators from $L^p(\Omega, H)$ to itself. Then for any $p \geq 1$, there exists a constant $C_p > 0$ such that

$$\mathbb{E} \sup_{0 \le s \le T} \left\| \int_0^T G(s) dW(s) \right\|^p \le C_p \mathbb{E} \left(\int_0^T \|G(s)\|^2 ds \right)^{p/2}, T > 0.$$

We make the following assumption

 (\mathbf{H}_5) q is a stochastically bounded process in p-th mean sense.

Proposition 4.19. Assume that (\mathbf{H}_0) , (\mathbf{H}_1) and (\mathbf{H}_5) hold and the semigroup $(U(t))_{t\geq 0}$ is hyperbolic. If f is bounded on \mathbb{R} , then there exists a unique bounded solution u of equation (1.1) on \mathbb{R} , given by

$$u_{t} = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s)) ds$$
$$+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s)$$

where $\widetilde{B}_{\lambda} = \lambda(\lambda I - \mathcal{A}_{\mathcal{U}})^{-1}$ for $\lambda > \widetilde{\omega}$, Π^s and Π^u are projections of C_0 onto the stable and unstable subspaces respectively.

Proof. Let

$$u_t = v(t) + \lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_{\lambda} X_0 g(s)) dW(s),$$

where

$$v(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda} X_{0} f(s)) ds$$

Let us first prove that u_t exists. The existence of v(t) have proved by [23]. Now we show that the limit $\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 f(s)) ds$ exists.

For each $t \in \mathbb{R}$ and by Lemma 4.18, we have

$$\begin{split} \mathbb{E} \| \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s) \|^{p} & \leq C_{p} \mathbb{E} \Big(\int_{-\infty}^{t} \|\mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) \|^{2} ds \Big)^{p/2} \\ & \leq C_{p}(\overline{M}\widetilde{M}) |\Pi^{s}|)^{p} \mathbb{E} \Big(\int_{-\infty}^{t} e^{-2\omega(t-s)} \|g(s)\|^{2} ds \Big)^{p/2} \\ & \leq C_{p}(\overline{M}\widetilde{M}) |\Pi^{s}|)^{p} \sum_{n=1}^{+\infty} \mathbb{E} \Big(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} \|g(s)\|^{2} ds \Big)^{p/2} \\ & \leq C_{p}(\overline{M}\widetilde{M}) |\pi^{s}|)^{p} \sum_{n=1}^{+\infty} \mathbb{E} \Big(\int_{t-n}^{t-n+1} e^{-2(\frac{p-2}{p})\omega(t-s)} \\ & \times e^{-\frac{4}{p}\omega(t-s)} \|g(s)\|^{2} ds \Big)^{p/2}. \end{split}$$

By using Hölder inequality, we obtain

$$\mathbb{E} \| \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) \|^{p} \leq C_{p}(\overline{M} \widetilde{M}) |\Pi^{s}|^{p} \sum_{n=1}^{+\infty} \left[\left(\int_{t-n}^{t-n+1} \left(e^{-2(\frac{p-2}{p})\omega(t-s)} \right)^{\frac{p}{p-2}} ds \right)^{\frac{p}{p-2}} \right]^{p/2} \\
\times \mathbb{E} \left[\left(\int_{t-n}^{t-n+1} \left(e^{-\frac{4}{p}\omega(t-s)} \|g(s)\|^{2} \right)^{\frac{p}{2}} ds \right)^{\frac{2}{p}} \right]^{p/2} \\
\leq C_{p}(\overline{M} \widetilde{M}) |\Pi^{s}|^{p} \sum_{n=1}^{+\infty} \left(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} ds \right)^{\frac{p-2}{2}} \\
\times \left(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} \mathbb{E} \|g(s)\|^{p} ds \right).$$

Since g stochastic bounded process in p-th mean sense, then there exists, M>0 such that $\mathbb{E}\|g(s)\|^P\leq M$.

It follows that

$$\begin{split} \mathbb{E} \| \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) \|^{p} & \leq C_{p} M(\overline{M} \widetilde{M}) |\Pi^{s}|)^{p} \sum_{n=1}^{+\infty} \left(\int_{t-n}^{t-n+1} e^{-2\omega(t-s)} ds \right)^{p/2} \\ & \leq C_{p} M(\overline{M} \widetilde{M}) |\Pi^{s}|)^{p} \sum_{n=1}^{+\infty} \frac{1}{(2\omega)^{p/2}} (e^{2\omega} - 1)^{p/2} \times e^{-\omega p n} \\ & \leq C_{p} M(\overline{M} \widetilde{M}) |\Pi^{s}|)^{p} \frac{1}{(2\omega)^{p/2}} (e^{2\omega} - 1)^{p/2} \times \sum_{n=1}^{+\infty} e^{-\omega p n}. \end{split}$$

Since the serie
$$\sum_{n=1}^{+\infty} e^{-\omega pn} = 1 - \frac{1}{1 - e^{-\omega p}} = \frac{e^{-\omega p}}{1 - e^{-\omega p}} < \infty.$$

It follows that

$$\mathbb{E}\|\int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \leq \gamma, \tag{4.1}$$

where

$$\gamma = \frac{C_p M(\overline{M}M) |\Pi^s|^p}{(2\omega)^{p/2}} (e^{2\omega} - 1)^{p/2} \times \frac{e^{-\omega p}}{1 - e^{-\omega p}}.$$

Set

$$F(n,s,t) = \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0f(s)) \text{ for } n \in \mathbb{N} \text{ for } s \leq t.$$

For n is sufficiently large and $\sigma \leq t$, we have

$$\mathbb{E}\|\int_{-\infty}^{\sigma} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \leq C_{p}(\overline{M}\widetilde{M})|\Pi^{s}|)^{p}\sum_{n=1}^{+\infty}\left(\int_{\sigma-n}^{\sigma-n+1}e^{-2\omega(t-s)}ds\right)^{\frac{p-2}{2}}$$

$$\times\left(\int_{\sigma-n}^{\sigma-n+1}e^{-2\omega(t-s)}\mathbb{E}\|g(s)\|^{p}ds\right)$$

$$\leq C_{p}M(\overline{M}\widetilde{M})|\Pi^{s}|)^{p}\sum_{n=1}^{+\infty}\left(\int_{\sigma-n}^{\sigma-n+1}e^{-2\omega(t-s)}ds\right)^{p/2}$$

$$\leq C_{p}M(\overline{M}\widetilde{M})|\Pi^{s}|)^{p}\frac{1}{(2\omega)^{p/2}}(e^{2\omega}-1)^{p/2}e^{-\omega p(t-\sigma)}\times\sum_{n=1}^{+\infty}e^{-\omega pn}ds$$

$$\leq \gamma e^{-\omega p(t-\sigma)}.$$

It follow that for n and m sufficiently large and $\sigma \leq t$, we have

$$\begin{split} \mathbb{E} \Big\| \int_{-\infty}^t F(n,s,t) dW(s) - \int_{-\infty}^t F(m,s,t) dW(s) \Big\|^p & \leq & \mathbb{E} \Big\| \int_{-\infty}^\sigma F(n,s,t) dW(s) + \int_\sigma^t F(n,s,t) dW(s) \\ & - \int_{-\infty}^\sigma F(m,s,t) dW(s) - \int_\sigma^t F(m,s,t) dW(s) \Big\|^p \\ & \leq & 3^{p-1} \mathbb{E} \Big\| \int_{-\infty}^\sigma F(n,s,t) dW(s) \Big\|^p + 3^{p-1} \mathbb{E} \Big\| \int_{-\infty}^\sigma F(m,s,t) dW(s) \Big\|^p \\ & + 3^{p-1} \mathbb{E} \Big\| \int_\sigma^t F(n,s,t) dW(s) - \int_\sigma^t F(m,s,t) dW(s) \Big\|^p \\ & \leq & 2 \times 3^{p-1} \gamma e^{-\omega p(t-\sigma)} \\ & + 3^{p-1} \mathbb{E} \Big\| \int_\sigma^t F(n,s,t) dW(s) - \int_\sigma^t F(m,s,t) dW(s) \Big\|^p \end{split}$$

Since $\lim_{n\to+\infty} \mathbb{E} \left\| \int_{\sigma}^{t} F(n,s,t) dW(s) \right\|^{p}$ exists, then

$$\limsup_{n,m\to +\infty} \mathbb{E} \Big\| \int_{-\infty}^t F(n,s,t) dW(s) - \int_{-\infty}^t F(m,s,t) dW(s) \Big\|^p \leq 2 \times 3^{p-1} \gamma e^{-\omega p(t-\sigma)}.$$

If $\sigma \to -\infty$, then

$$\limsup_{n,m\to +\infty} \mathbb{E} \Big\| \int_{-\infty}^t F(n,s,t) dW(s) - \int_{-\infty}^t F(m,s,t) dW(s) \Big\|^p = 0.$$

We deduce that

$$\lim_{n\to\infty} \mathbb{E} \left\| \int_{-\infty}^t F(n,s,t) dW(s) \right\|^p = \lim_{n\to\infty} \mathbb{E} \left\| \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_n X_0 g(s)) dW(s) \right\|^p$$

exists.

Therefore the limit $\lim_{n\to+\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_nX_0g(s))dW(s)$ exists. In addition, one can see from the equation (4.1) that the function

$$\eta_1: t \to \lim_{n \to +\infty} \mathbb{E} \Big\| \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_n X_0 g(s)) dW(s) \Big\|^p$$

is bounded on \mathbb{R} . Similarly, we can show that the function

$$\eta_2: t \to \lim_{n \to +\infty} \mathbb{E} \Big\| \int_t^{+\infty} \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_n X_0 g(s)) dW(s) \Big\|^p$$

is well defined and bounded on \mathbb{R} .

Proposition 4.20. Assume that (\mathbf{H}_5) holds. Let $f, g \in AA(\mathbb{R}, X)$ and Γ be the mapping defined for $t \in \mathbb{R}$ by

$$\Gamma(f,g)(t) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\right](0).$$

Then $\Gamma(f,g) \in AA(\mathbb{R}, L^p(\Omega, H))$.

Proof. The proof of this Proposition will be in two steps.

Step 1: We will show that $\Gamma(f,g)$ is continuous. For $t_0 \in \mathbb{R}$, we have

$$\begin{split} \mathbb{E}\|\Gamma(f,g)(t) - \Gamma(f,g)(t_0)\|^p &= \mathbb{E}\Big\| \lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0f(s))ds \\ &+ \lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \\ &- \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0f(s))ds - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &\leq 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))ds - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0f(s))ds \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &+ 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s)\Pi^u(\tilde{B}_{\lambda}X_0g(s))dW(s) \Big\|^p \\ &= 4^{p-1}(I_1+I_2+I_3+I_4). \end{split}$$

We have

We have
$$I_1 = \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0f(s))ds - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s)\Pi^s(\widetilde{B}_{\lambda}X_0f(s))ds\|^p.$$

Let $\sigma = s - t + t_0$ and by Hölder inequality, we have

$$\begin{split} I_{1} &= \mathbb{E} \| \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0} - \sigma) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(\sigma + t - t_{0})) d\sigma - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0} - s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(s)) ds \|^{p} \\ &\leq \mathbb{E} \| \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0} - s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} [f(s + t - t_{0}) - f(s)]) ds \|^{p} \\ &\leq \mathbb{E} \left(\overline{M} \widetilde{M} \int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} |\Pi^{s}| \| f(s + t - t_{0}) - f(s) \| ds \right)^{p} \\ &\leq \mathbb{E} \left(\overline{M} \widetilde{M} |\Pi^{s}| \int_{-\infty}^{t_{0}} e^{-\frac{\omega(p - 1)(t_{0} - s)}{p}} \times e^{-\frac{\omega(t - s)}{p}} \| f(s + t - t_{0}) - f(s) \| ds \right)^{p} \\ &\leq (\overline{M} \widetilde{M} |\Pi^{s}|)^{p} \mathbb{E} \left[\left(\int_{-\infty}^{t} \left(e^{-\frac{\omega(p - 1)(t_{0} - s)}{p}} \right)^{\frac{p}{p - 1}} ds \right)^{\frac{p - 1}{p}} \times \left(\int_{-\infty}^{t} \left(e^{-\frac{\omega(t - s)}{p}} \| f(s + t - t_{0}) - f(s) \|^{p} ds \right)^{\frac{1}{p}} \right]^{p} \\ &\leq (\overline{M} \widetilde{M} |\Pi^{s}|)^{p} \left(\int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} ds \right)^{p - 1} \times \int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} \mathbb{E} \| f(s + t - t_{0}) - f(s) \|^{p} ds \\ &\leq \frac{(\overline{M} \widetilde{M} |\Pi^{s}|)^{p}}{\omega^{p - 1}} \times \int_{-\infty}^{t_{0}} e^{-\omega(t_{0} - s)} \mathbb{E} \| f(s + t - t_{0}) - f(s) \|^{p} ds. \end{split}$$

For an arbitrary sequence of real $\{t_n\}$ with $t_n \to t$ as $n \to +\infty$. By Lemma 4.4 and the defition of $AA(\mathbb{R}, L^p(\Omega, H))$ we deduce that $f \in BC(\mathbb{R}, L^p(\Omega, H))$. So

$$e^{-\omega(t_0-s)}\mathbb{E}||f(s+t_n-t_0)-f(s)||^p\to 0 \text{ as }, \to +\infty.$$

Hence

$$e^{-\omega(t_0-s)}\mathbb{E}\|f(s+t_n-t_0)-f(s)\|^p \leq 2^p e^{-\omega(t_0-s)}\|f\|_{\infty}^p$$

for every n sufficiently large. Note that

$$\int_{-\infty}^{t_0} 2^p e^{-\omega(t_0 - s)} ||f||_{\infty}^p ds < \infty.$$

Then according to Lebesgue dominated convergence theorem, we have

$$\lim_{n \to +\infty} \int_{-\infty}^{t_0} e^{-\omega(t_0 - s)} \mathbb{E} \|f(s + t - t_0) - f(s)\|^p ds = 0.$$

Since the arbitrariness of $\{t_n\}$, we deduce that

$$\lim_{t \to t_0} \int_{-\infty}^{t_0} e^{-\omega(t_0 - s)} \mathbb{E} \|f(s + t - t_0) - f(s)\|^p ds = 0,$$

which implies that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 f(s)) ds - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s) \Pi^s(\widetilde{B}_{\lambda} X_0 f(s)) ds \|^p = 0$$
(4.2)

Similarly, we can se that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_{\lambda} X_0 f(s)) ds - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s) \Pi^u(\widetilde{B}_{\lambda} X_0 f(s)) ds \|^p = 0.$$

$$(4.3)$$

Let $\widetilde{W}(\tau) = W(\tau + t - t_0) - W(t - t_0)$. One can see that \widetilde{W} is a Winner process and has the same distribution as W. Let $\tau = s - t + t_0$. Then by Lemma 4.18 and Hölder inequality, we have

$$\begin{split} I_{3} &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \\ &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(\tau+t-t_{0}))dW(\tau+t-t_{0}) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p} \\ &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(\tau+t-t_{0}))d\widetilde{W}(\tau) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))d\widetilde{W}(s)\|^{p} \\ &= & \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t_{0}} \mathcal{U}^{s}(t_{0}-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[g(s+t-t_{0})-g(s)])d\widetilde{W}(s) \\ &\leq & C_{p}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p} \Big(\int_{-\infty}^{t_{0}} e^{-2\omega(t_{0}-s)}ds\Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{t_{0}} e^{-2\omega(t_{0}-s)}\mathbb{E}\|g(s+t-t_{0})-g(s)\|^{p}ds. \end{split}$$

By the similar arguments as above, we obtain

$$\lim_{t \to t_0} \int_{-\infty}^{t_0} e^{-2\omega(t_0 - s)} \mathbb{E} \|g(s + t - t_0) - g(s)\|^p ds = 0,$$

which implies that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s) \Pi^s(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) - \lim_{\lambda \to +\infty} \int_{-\infty}^{t_0} \mathcal{U}^s(t_0-s) \Pi^s(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) \|^p = 0.$$

$$(4.4)$$

Similarly, we can see that

$$\lim_{t \to t_0} \mathbb{E} \|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s) \Pi^u(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) - \lim_{\lambda \to +\infty} \int_{+\infty}^{t_0} \mathcal{U}^u(t_0-s) \Pi^u(\widetilde{B}_{\lambda} X_0 g(s)) dW(s) \|^p = 0.$$

$$(4.5)$$

From equations (4.2), (4.3), (4.4) and (4.5), we deduce that

$$\lim_{t \to t_0} \mathbb{E} \|\Gamma(f, g)(t) - \Gamma(f, g)(t_0)\|^p = 0$$

and yield the continuity of $\Gamma(f,g)$.

Step 2: Since $f, g \in AA(\mathbb{R}, L^p(\Omega, H))$. Thus, for every sequence of real numbers $(s_m)m \in \mathbb{N}$, there exists a subsequence $(s_n)n \in \mathbb{N}$ and stochastic processes $\widetilde{f}, \widetilde{g} : \mathbb{R} \to L^p(\Omega, H)$ which each $t \in \mathbb{R}$ such that

$$\lim_{n \to \infty} \mathbb{E} \| f(t+s_n) - \widetilde{f}(t) \|^p = 0, \quad \lim_{n \to \infty} \mathbb{E} \| \widetilde{f}(t-s_n) - f(t) \|^p = 0$$

and

$$\lim_{n \to \infty} \mathbb{E} \|g(t+s_n) - \widetilde{g}(t)\|^p = 0, \quad \lim_{n \to \infty} \mathbb{E} \|\widetilde{g}(t-s_n) - g(t)\|^p = 0.$$

Let

$$w(t+s_n) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0 f(s+s_s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0 f(s+s_n)) ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0 g(s+s_n)) dW(s+s_n) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0 g(s+s_n)) dW(s+s_n)\right]$$

and

$$\widetilde{w}(t) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda} X_{0} f(s)) ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda} X_{0} g(s)) dW(s) \right].$$

Then we have

$$\mathbb{E}\|w(t+s_n) - \widetilde{w}(t)\|^p \leq 4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0[f(s+s_n) - f(s)]ds\|^p$$

$$+4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0[f(s+s_n) - f(s)]ds\|^p$$

$$4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^t \mathcal{U}^s(t-s)\Pi^s(\widetilde{B}_{\lambda}X_0[g(s+s_n) - g(s)]d\widetilde{W}(s)\|^p$$

$$+4^{p-1}\mathbb{E}\|\lim_{\lambda \to +\infty} \int_{+\infty}^t \mathcal{U}^u(t-s)\Pi^u(\widetilde{B}_{\lambda}X_0[g(s+s_n) - g(s)]d\widetilde{W}(s)\|^p,$$

where $\widetilde{W}(s) = W(s+s_n) - W(s)$. Note that W and \widetilde{W} are two Wiener processes and have the same distribution. Then we have

$$\mathbb{E}\|w(t+s_{n})-\widetilde{w}(t)\|^{p} \leq 4^{p-1}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p} \Big(\int_{-\infty}^{t} e^{-\omega(t-s)} ds\Big)^{p-1} \times \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E}\|f(s+s_{n})-f(s)\|^{p} ds$$

$$+4^{p-1}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p} \Big(\int_{+\infty}^{t} e^{\omega(t-s)} ds\Big)^{p-1} \times \int_{+\infty}^{t} e^{-\omega(t-s)} \mathbb{E}\|f(s+s_{n})-f(s)\|^{p} ds$$

$$+4^{p-1}C_{p}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p} \Big(\int_{-\infty}^{t} e^{-2\omega(t-s)} ds\Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{t} e^{-2\omega(t-s)} \mathbb{E}\|g(s+s_{n})-g(s)\|^{p} ds$$

$$+4^{p-1}C_{p}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p} \Big(\int_{-\infty}^{t} e^{2\omega(t-s)} ds\Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{t} e^{2\omega(t-s)} \mathbb{E}\|g(s+s_{n})-g(s)\|^{p} ds.$$

By similarly arguments as above, we have

$$\lim_{n \to +\infty} \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s+s_n) - f(s)\|^p ds = 0, \quad \lim_{n \to +\infty} \int_{+\infty}^{t} e^{\omega(t-s)} \mathbb{E} \|f(s+s_n) - f(s)\|^p ds = 0,$$

$$\lim_{n \to +\infty} \int_{-\infty}^{t} e^{-2\omega(t-s)} \mathbb{E} \|g(s+s_n) - g(s)\|^p ds = 0 \text{ and } \lim_{n \to +\infty} \int_{+\infty}^{t} e^{2\omega(t-s)} \mathbb{E} \|g(s+s_n) - g(s)\|^p ds = 0.$$

Thus

$$\lim_{n \to +\infty} \mathbb{E} \| w(t + s_n) - \widetilde{w}(t) \|^p = 0.$$

Similarly, we have

$$\lim_{n \to +\infty} \mathbb{E} \|\widetilde{w}(t - s_n) - w(t)\|^p = 0.$$

Therefore by **Steps 1** and **2**, we proved that $\Gamma(f,g) \in AA(\mathbb{R}, L^p(\Omega, H))$.

Theorem 4.21. Assume that (\mathbf{H}_3) and (\mathbf{H}_5) hold. Let $f, g \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, then $\Gamma(f, g) \in \mathscr{E}_p(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$.

Proof. We have

$$\Gamma(f,g)(t) = \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s)) ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s)) ds$$
$$+ \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{t} \mathcal{U}^{u}(t-s) \Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s)) dW(s).$$

It follows that

$$\mathbb{E}\|\Gamma(f,g)(\theta)\|^{p} = \mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s) + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\right\|^{p}.$$

Then for $\tau > 0$, using Lemma 4.18 we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\mathbb{E} \| \Gamma(f,g)(\theta) \|^{p} \right) d\mu(t) \leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} \mathbb{E} \left(\overline{M} \widetilde{M} \int_{-\infty}^{\theta} e^{-\omega(\theta-s)} |\Pi^{s}| \| f(s) \| ds \right)^{p} d\mu(t) \\
+ \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} \mathbb{E} \left(\overline{M} \widetilde{M} \int_{+\infty}^{\theta} e^{\omega(\theta-s)} |\Pi^{u}| \| f(s) \| ds \right)^{p} d\mu(t) \\
+ \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} C_{p} \mathbb{E} \left(\overline{M}^{2} \widetilde{M}^{2} \int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} |\Pi^{s}|^{2} \| g(s) \|^{2} ds \right)^{p/2} d\mu(t) \\
+ \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} 4^{p-1} C_{p} \mathbb{E} \left(\overline{M}^{2} \widetilde{M}^{2} \int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} |\Pi^{u}|^{2} \| g(s) \|^{2} ds \right)^{p/2} d\mu(t)$$

By using Höder inequality, we obtain

$$\mathbb{E}\|\Gamma(f,g)(\theta)\|^{p} = \mathbb{E}\|\lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s))ds + \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}f(s))ds$$

$$+ \lim_{\lambda \to +\infty} \int_{-\infty}^{\theta} \mathcal{U}^{s}(\theta - s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)$$

$$+ \lim_{\lambda \to +\infty} \int_{+\infty}^{\theta} \mathcal{U}^{u}(\theta - s)\Pi^{u}(\widetilde{B}_{\lambda}X_{0}g(s))dW(s)\|^{p}.vspace * 0.25cm$$

Then for $\tau > 0$, using Lemma 4.18 again, we have

$$\begin{split} &\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big(\mathbb{E} \| \Gamma(f,g)(\theta) \|^p \Big) d\mu(t) \\ &\leq & 4^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{-\infty}^{\theta} e^{-\omega(\theta-s)} ds \Big)^{p-1} \times \int_{-\infty}^{\theta} e^{-\omega(\theta-s)} \mathbb{E} \| f(s) \|^p ds \Big] d\mu(t) \\ & + 4^{p-1} (\overline{M}\widetilde{M}|\Pi^u|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{+\infty}^{\theta} e^{\omega(\theta-s)} ds \Big)^{p-1} \times \int_{+\infty}^{\theta} e^{\omega(\theta-s)} \mathbb{E} \| f(s) \|^p ds \Big] d\mu(t) \\ & + 4^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} ds \Big)^{\frac{p-2}{2}} \times \int_{-\infty}^{\theta} e^{-2\omega(\theta-s)} \mathbb{E} \| g(s) \|^p ds \Big] d\mu(t) \\ & + 4^{p-1} (\overline{M}\widetilde{M}|\Pi^u|)^p \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \Big[\Big(\int_{+\infty}^{\theta} e^{2\omega(\theta-s)} ds \Big)^{\frac{p-2}{2}} \times \int_{+\infty}^{\theta} e^{2\omega(\theta-s)} \mathbb{E} \| g(s) \|^p ds \Big] d\mu(t). \end{split}$$

Thus, we have

$$\frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\mathbb{E} \| \Gamma(f,g)(\theta) \|^{p} \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p}}{\omega^{p-1}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{\omega r} \int_{-\infty}^{\theta} e^{-\omega(t-s)} \mathbb{E} \| f(s) \|^{p} ds \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p}}{\omega^{p-1}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{\omega(t-s)} \mathbb{E} \| f(s) \|^{p} ds \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{s}|)^{p}}{(2\omega)^{\frac{p-2}{2}}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{2\omega r} \int_{-\infty}^{\theta} e^{-2\omega(t-s)} \mathbb{E} \| g(s) \|^{p} ds \right) d\mu(t)$$

$$\leq \frac{4^{p-1}(\overline{M}\widetilde{M}|\Pi^{u}|)^{p}}{(2\omega)^{\frac{p-2}{2}}} \times \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{2\omega(t-s)} \mathbb{E} \| g(s) \|^{p} ds \right) d\mu(t)$$

On the one hand using Fubini's theorem, we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{\omega r} \int_{-\infty}^{\theta} e^{-\omega(t-s)} \mathbb{E} \|f(s)\|^p ds \right) d\mu(t) \leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(e^{\omega r} \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s)\|^p ds \right) d\mu(t) \\
\leq e^{\omega r} \int_{-\tau}^{\tau} \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s)\|^p ds d\mu(t) \\
\leq e^{\omega r} \int_{-\tau}^{\tau} \int_{0}^{\infty} e^{-\omega s} \mathbb{E} \|f(t-s)\|^p ds d\mu(t) \\
\leq e^{\omega r} \int_{0}^{\tau} e^{-\omega s} \int_{-\tau}^{\tau} \mathbb{E} \|f(t-s)\|^p d\mu(t) ds.$$

By Theorem 3.15, we deduce that

$$\lim_{\tau \to +\infty} \frac{e^{-\omega s}}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t - s)\|^p d\mu(t) \to 0 \text{ for all } s \in \mathbb{R}_+$$

and

$$\frac{e^{-\omega s}}{\nu([-\tau,\tau])}\int_{-\tau}^{\tau}\mathbb{E}\|f(t-s)\|^pd\mu(t)\leq \frac{e^{-\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|f\|_{\infty}^p.$$

Similarly, we have

$$\lim_{\tau \to +\infty} \frac{e^{-2\omega s}}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|g(t-s)\|^p d\mu(t) \to 0 \text{ for all } s \in \mathbb{R}_+$$

and

$$\frac{e^{-2\omega s}}{\nu([-\tau,\tau])}\int_{-\tau}^{\tau}\mathbb{E}\|f(t-s)\|^pd\mu(t)\leq \frac{e^{-\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|g\|_{\infty}^p.$$

Since f and g are two bounded functions, then the functions $s \mapsto \frac{e^{-\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|f\|_{\infty}^p$ and $s \mapsto \frac{e^{-2\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])}\|g\|_{\infty}^p$ belong to $L^1(]0,\infty[)$ in view of the Lebesgue dominated convergence theorem, it follows that

$$e^{\omega r} \lim_{\tau \to +\infty} \int_0^{+\infty} \frac{e^{-\omega s}}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t - s)\|^p d\mu(t) ds = 0$$

and

$$e^{2\omega r}\lim_{\tau\to+\infty}\int_0^{+\infty}\frac{e^{-2\omega s}}{\nu([-\tau,\tau])}\int_{-\tau}^{\tau}\mathbb{E}\|g(t-s)\|^pd\mu(t)ds=0.$$

On the other hand, we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{\omega(\theta-s)} \mathbb{E} \|f(s)\|^{p} ds \right) d\mu(t) \leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{t-r}^{+\infty} e^{\omega(\theta-s)} \mathbb{E} \|f(s)\|^{p} ds \right) d\mu(t) \\
\leq \int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{t-r}^{+\infty} e^{\omega(t-s)} \mathbb{E} \|f(s)\|^{p} ds \right) d\mu(t) \\
\leq \int_{-\tau}^{\tau} \int_{-\infty}^{r} e^{\omega(\theta-s)} \mathbb{E} \|f(s)\|^{p} ds d\mu(t) \\
\leq \int_{0}^{+\infty} e^{\omega s} \int_{-\tau}^{\tau} \mathbb{E} \|f(t-s)\|^{p} d\mu(t) ds$$

By the same arguments, we have

$$\int_{-\tau}^{\tau} \sup_{\theta \in [t-r,t]} \left(\int_{\theta}^{+\infty} e^{2\omega(\theta-s)} \mathbb{E} \|f(s)\|^p ds \right) d\mu(t) \leq \int_{0}^{+\infty} e^{2\omega s} \int_{-\tau}^{\tau} \mathbb{E} \|g(t-s)\|^p d\mu(t) ds$$

Similarly as above, we have the functions $s \mapsto \frac{e^{\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])} \|f\|_{\infty}^p$ and $s \mapsto \frac{e^{2\omega s}\nu([(\tau,\tau)])}{\nu([-\tau,\tau])} \|g\|_{\infty}^p$ belong to $L^1(]0,\infty[)$ in view of the Lebesgue dominated convergence theorem, it follows that

$$\lim_{\tau \to +\infty} \int_{-\infty}^{r} \frac{e^{\omega s}}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|f(t-s)\|^{p} d\mu(t) ds = 0$$

and

$$\lim_{\tau \to +\infty} \int_{-\infty}^{\tau} \frac{e^{2\omega s}}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \|g(t-s)\|^p d\mu(t) ds = 0.$$

Consequently

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau, \tau])} \int_{-\tau}^{\tau} \sup_{\theta \in [t-r, t]} \left(\mathbb{E} \|\Gamma(f, g)(\theta)\|^p \right) d\mu(t) = 0.$$

Thus, we obtain the desired result. ■

Our next objective is to show the existence of p-th $(p \ge 2)$ mean (μ, ν) -pseudo almost automorphic solution of class r for the following problem

$$dx(t) = [Ax(t) + L(x_t) + f(t, x_t)]dt + g(t, x_t)dW(t), \text{ for } t \in \mathbb{R},$$
(4.6)

where $f: \mathbb{R} \times \mathcal{C} \to L^p(\Omega, H)$ and $g: \mathbb{R} \times \mathcal{C} \to L^p(\Omega, H)$ are two processes. For the sequel we make the following assumptions.

 (\mathbf{H}_6) Let $\mu, \nu \in \mathcal{M}$ and $f: \mathbb{R} \times C(([-r, 0], L^p(\Omega, H)) \to L^p(\Omega, H)$ p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic of class r such that there exists a positive constant L_f such that

$$\mathbb{E}\|f(t,\phi_1) - f(t,\Phi_2)\|^p \le L_f \mathbb{E}\|\phi_1 - \phi_2\|^p \text{ for all } t \in \mathbb{R} \text{ and } \phi_1,\phi_2 \in C(([-r,0],L^p(\Omega,H)).$$

 (\mathbf{H}_7) Let $\mu, \nu \in \mathcal{M}$ and $g : \mathbb{R} \times C(([-r, 0], L^p(\Omega, H)) \to L^p(\Omega, H)$ p-th mean $cl(\mu, \nu)$ pseudo almost automorphic of class r such that there exists a positive constant L_g such that

$$\mathbb{E}\|g(t,\phi_1) - g(t,\Phi_2)\|^p \le L_g \mathbb{E}\|\phi_1 - \phi_2\|^p \text{ for all } t \in \mathbb{R} \text{ and } \phi_1, \phi_2 \in C(([-r,0],L^p(\Omega,H)).$$

 (\mathbf{H}_8) The instable space $U \equiv \{0\}$.

Theorem 4.22. Let $p \ge 2$, assume that (H_0) , (H_1) , (H_4) , (H_6) (H_7) and (H_8) hold. If

$$(\overline{M}\widetilde{M}|\Pi|^s)^p \Big[\frac{L_f}{\omega^p} + \frac{L_g C_p}{(2\omega)^{\frac{p}{2}}} \Big] < \frac{1}{2^{p-1}},$$

then equation (4.6) has a unique p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic solution of class r.

Proof. Let x be a function in $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. From Theorem 4.14 the function $t \to x_t$ belongs to $PAA(C([-r, 0]); L^p(\Omega, H), \mu, \nu, r)$. Hence Theorem 4.16 implies that g(.) = f(., x) is in $PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$. Since the unstable space $U \equiv \{0\}$, then $\Pi^u \equiv 0$. Consider the following mapping $H : PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r) \to PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$ defined for $t \in \mathbb{R}$ by

$$(\mathcal{H}x)(t) = \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}f(s,x_{s}))ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}g(s,x_{s}))dW(s)\right](0).$$

Let $x_1, x_2 \in PAA(\mathbb{R}, L^p(\Omega, H), \mu, \nu, r)$, we have

$$\mathbb{E}\|(\mathcal{H}x_{1})(t) - (\mathcal{H}x_{2})(t)\|^{p} = \mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[f(s,x_{1s}) - f(s,x_{2s})])ds + \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[g(s,x_{1s}) - g(s,x_{2s})])dW(s)\right\|^{p}$$

$$\leq 2^{p-1}\mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[f(s,x_{1s}) - f(s,x_{2s})])ds\right\|$$

$$+2^{p-1}\mathbb{E}\left\|\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s)\Pi^{s}(\widetilde{B}_{\lambda}X_{0}[g(s,x_{1s}) - g(s,x_{2s})])dW(s)\right\|^{p}$$

$$\leq 2^{p-1}(I_{1} + I_{2}).$$

By Hölder inequality, it follows that

$$I_{1} = \mathbb{E} \left\| \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0}[f(s,x_{1s}) - f(s,x_{2s})]) ds \right\|$$

$$\leq \mathbb{E} \left[(\overline{M}\widetilde{M}|\Pi|^{s})^{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)^{p-1} \times \int_{-\infty}^{t} e^{-\omega(t-s)} \|f(s,x_{1s}) - f(s,x_{2s})\|^{p} \right]$$

$$\leq (\overline{M}\widetilde{M}|\Pi|^{s})^{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)^{p-1} \times \int_{-\infty}^{t} e^{-\omega(t-s)} \mathbb{E} \|f(s,x_{1s}) - f(s,x_{2s})\|^{p} ds$$

$$\leq \frac{(\overline{M}\widetilde{M}|\Pi|^{s})^{p}}{\omega^{p-1}} \int_{-\infty}^{t} e^{-\omega(t-s)} L_{f} \mathbb{E} \|x_{1s} - x_{2s}\|^{p} ds$$

$$\leq \frac{(\overline{M}\widetilde{M}|\Pi|^{s})^{p}}{\omega^{p-1}} L_{f} \sup_{t \in \mathbb{R}} \|x_{1}(t) - x_{2}(t)\|^{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)$$

$$\leq \frac{(\overline{M}\widetilde{M}|\Pi|^{s})^{p}}{\omega^{p}} L_{f} \|x_{1} - x_{2}\|_{\infty}^{p}.$$

By Hölder inequality and by Lemma 4.18, we have

$$I_{2} = \mathbb{E} \left\| \lim_{\lambda \to +\infty} \int_{-\infty}^{t} \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0}[g(s,x_{1s}) - g(s,x_{2s})]) dW(s) \right\|^{p}$$

$$\leq C_{p} \mathbb{E} \left[\lim_{\lambda \to +\infty} \int_{-\infty}^{t} \left\| \mathcal{U}^{s}(t-s) \Pi^{s}(\widetilde{B}_{\lambda} X_{0}[g(s,x_{1s}) - g(s,x_{2s})]) \right\|^{2} ds \right]^{p/2}$$

$$\leq (\overline{M} \widetilde{M} |\Pi|^{s})^{p} C_{p} \left(\int_{-\infty}^{t} e^{-\omega(t-s)} ds \right)^{\frac{p-2}{2}} \times \int_{-\infty}^{t} e^{-2\omega(t-s)} \mathbb{E} \|g(s,x_{1s}) - g(s,x_{2s})\|^{p} ds$$

$$\leq \frac{C_{p} (\overline{M} \widetilde{M} |\Pi|^{s})^{p}}{(2\omega)^{\frac{p-2}{2}}} \int_{-\infty}^{t} e^{-2\omega(t-s)} L_{g} \mathbb{E} \|x_{1s} - x_{2s}\|^{p} ds$$

$$\leq \frac{C_{p} (\overline{M} \widetilde{M} |\Pi|^{s})^{p}}{(2\omega)^{\frac{p-2}{2}}} L_{g} \sup_{t \in \mathbb{R}} \mathbb{E} \|x_{1}(t) - x_{2}(t)\|^{p} \left(\int_{-\infty}^{t} e^{-2\omega(t-s)} ds \right)$$

$$\leq \frac{C_{p} (\overline{M} \widetilde{M} |\Pi|^{s})^{p}}{(2\omega)^{\frac{p-2}{2}}} L_{g} \|x_{1} - x_{2}\|_{\infty}^{p}.$$

Thus we have

$$\mathbb{E}\|(\mathcal{H}x_1)(t) - (\mathcal{H}x_2)(t)\|^p \leq 2^{p-1} (\overline{M}\widetilde{M}|\Pi|^s)^p \Big[\frac{L_f}{\omega^p} + \frac{L_g C_p}{(2\omega)^{\frac{p}{2}}}\Big] \|x_1 - x_2\|_{\infty}^p$$

This means that \mathcal{H} is a strict contraction. Thus by Banach's fixed point theorem, \mathcal{H} has a unique fixed point u in $PAA(\mathbb{R}; L^p(\Omega, H), \mu, \nu, r)$. We conclude that equation (4.6), has one and only one p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic solution of class r.

Proposition 4.23. Let $p \ge 2$, assume that (\mathbf{H}_0) , (\mathbf{H}_1) and (\mathbf{H}_4) hold, f, g are lipschitz continuous with respect the second argument. If

$$Lip(f) = Lip(g) < \frac{1}{2^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \left[\frac{1}{\omega^p} + \frac{1}{(2\omega)^{\frac{p}{2}}}\right]},$$

then (4.6) has a unique p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic of class r, where Lip(f) and Lip(g) are respectively the lipschitz constants of f and g.

Proof. Let us pose k = Lip(f) = Lip(g), we have

$$\mathbb{E}\|(\mathcal{H}x_1)(t) - (\mathcal{H}x_2)(t)\|^p \leq 2^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p \left[\frac{k}{\omega^p} + \frac{k}{(2\omega)^{\frac{p}{2}}}\right] \sup_{t \in \mathbb{R}} \mathbb{E}\|x_1(t) - x_2(t)\|^p$$

$$\leq 2^{p-1} (\overline{M}\widetilde{M}|\Pi^s|)^p k \left[\frac{1}{\omega^p} + \frac{1}{(2\omega)^{\frac{p}{2}}}\right] \sup_{t \in \mathbb{R}} \mathbb{E}\|x_1(t) - x_2(t)\|^p$$

Consequently \mathcal{H} is a strict contraction if

$$k < \frac{1}{2^{p-1}(\overline{M}\widetilde{M}|\Pi^s|)^p \left[\frac{1}{\omega^p} + \frac{1}{(2\omega)^{\frac{p}{2}}}\right]}$$

5. Application

For illustration, we propose to study the existence of solutions for the following model

$$\begin{cases}
dz(t,x) = -\frac{\partial^2}{\partial x^2} z(t,x) dt + \left[\int_{-r}^0 G(\theta) z(t+\theta,x) d\theta + \sin\left(\frac{1}{2+\cos t + \cos\sqrt{2}t}\right) + \arctan(t) + \int_{-r}^0 h(\theta,z(t+\theta,x)) d\theta \right] dt \\
+ \left[\sin\left(\frac{1}{2+\cos t + \cos\sqrt{3}t}\right) + \arctan(t) + \int_{-r}^0 h(\theta,z(t+\theta,x)) d\theta \right] dW(t) \text{ for } t \in \mathbb{R}, \text{ and } x \in [0,\pi], \\
z(t,0) = z(t,\pi) = 0 \text{ for } t \in \mathbb{R}, \text{ and } x \in [0,\pi],
\end{cases}$$
(5.1)

where $G: [-r, 0] \to \mathbb{R}$ is continuous function and $h: [-r, 0] \to \mathbb{R}$ is lipschitz continuous with the respect of the second argument. W(t) is a two-sided standard Brownian motion with values in separable Hilbert space H. To rewrite equation (5.1) in abstract form, we introduce the space $H = L^2((0,\pi))$. Let $A: D(A) \to L^2((0,\pi))$ defined by

$$\begin{cases} D(A)=H^2(0,\pi)\cap H^1(0,\pi)\\ \\ Ay(t)=y''(t) \text{ for } t\in (0,\pi) \text{ and } y\in D(A). \end{cases}$$

Then A generates a C_0 -semigroup $(\mathcal{U}(t))_{\geq 0}$ on $L^2((0,\pi))$ given by

$$(\mathcal{U}(t)x)(r) = \sum_{n=1}^{+\infty} e^{-n^2\pi^2t} < x, e_n >_{L^2} e_n(r),$$

where $e_n(r) = \sqrt{2}\sin(n\pi r)$ for $n = 1, 2 \dots$ and $\|\mathcal{U}(t)\| \leq e^{-\pi^2 t}$ for all $t \geq 0$. Thus $\overline{M} = 1$ and $\omega = \pi^2$. Then A satisfies the Hille-Yosida conditions in $L^2(0, \pi)$. Moreover the part A_0 of A in $\overline{D(A)}$ is the generator of compact semigroup. It follows that (\mathbf{H}_0) and (\mathbf{H}_1) are satisfied. We define $f: \mathbb{R} \times \mathcal{C} \to L^2((0, \pi))$ and $L: \mathcal{C} \to L^2(\Omega, H)$ as follows

$$f(t,\phi)(x) = \sin\left(\frac{1}{2 + \cos t + \cos\sqrt{2}t}\right) + \arctan(t) + \int_{-r}^{0} h(\theta,\phi(\theta)(x))d\theta \text{ for } x \in (0,\pi) \text{ and } t \in \mathbb{R},$$

$$g(t,\phi)(x) = \sin\left(\frac{1}{2 + \cos t + \cos\sqrt{3}t}\right) + \arctan(t) + \int_{-r}^{0} h(\theta,\phi(\theta)(x))d\theta \text{ for } x \in (0,\pi) \text{ and } t \in \mathbb{R},$$

and

$$L(\phi)(x) = \int_{-r}^{0} G(\theta)(\phi(\theta)(x) \text{ for } -r \le \theta \text{ and } x \in (0, \phi).$$

Let us pose v(t) = z(t, x). Then equation (5.1) takes the following abstract form

$$dv(t) = [Av(t) + L(v_t) + f(t, v_t)]dt + g(t, v_t)dW(t) \text{ for } t \in \mathbb{R}.$$
 (5.2)

Consider the measure μ and ν where its Randon-Nikodym derivates are respectively ρ_1 and ρ_2

$$\rho_1(t) = \begin{cases} 1 & \text{for } t > 0 \\ e^t & \text{for } t \le 0 \end{cases}$$

and

$$\rho_2(t) = |t| \text{ for } t \in \mathbb{R}$$

i.e $d\mu(t) = \rho_1(t)dt$ and $d\mu(t) = \rho_2(t)dt$, where dt denotes the Lebesgue measure on \mathbb{R} and

$$\mu(A) = \int_A \rho_1(t)dt$$
 for $\nu(A) = \rho_2(t)dt$ for $A \in \mathcal{N}$

From [14] $\mu, \nu \in \mathcal{M}$ satisfies Hypothesis (\mathbf{H}_4).

$$\lim_{\tau \to +\infty} \frac{\mu([-\tau, \tau])}{\nu([-\tau, \tau])} = \limsup_{\tau \to +\infty} \frac{\int_{-r}^{0} e^{t} dt + \int_{0}^{\tau} dt}{2 \int_{0}^{\tau} t dt} = \limsup_{\tau \to +\infty} \frac{1 + e^{-\tau} + \tau}{\tau^{2}} = 0 < \infty,$$

which implies that (\mathbf{H}_2) is satisfied.

For $t \in \mathbb{R}$, $-\frac{\pi}{2} \leq \arctan(\theta) \leq \frac{\pi}{2}$, therefore for all $\theta \in [t-r,t]$ $\arctan(t-r) \leq \arctan(t)$. It follows that $|\arctan\theta - \frac{\pi}{2}| = \frac{\pi}{2} - \arctan\theta \leq |\arctan(t-r) - \frac{\pi}{2}| = \frac{\pi}{2} - \arctan(t-r)$ which implies that $|\arctan\theta - \frac{\pi}{2}|^p \leq |\arctan(t-r) - \frac{\pi}{2}|^p$, hence, we have

$$\sup_{\theta \in [t-r,t]} \mathbb{E}|\arctan \theta - \frac{\pi}{2}|^p \le \mathbb{E}|\arctan(t-r) - \frac{\pi}{2}|^p.$$

On one hand, we have

$$\begin{split} \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \mathbb{E} \sup_{\theta \in [t-r,t]} \mathbb{E} |\arctan \theta - \frac{\pi}{2}|^p dt & \leq & \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \mathbb{E} |\arctan(t-r) - \frac{\pi}{2}|^p dt \\ & \leq & \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \mathbb{E} \left(\frac{\pi}{2} - \arctan(t-r)\right)^p dt \\ & \leq & \frac{1}{\nu([-\tau,\tau])} \int_0^\tau \frac{\pi^p}{2^p} dt \\ & \leq & \frac{\pi^p}{2^{p+1}\tau} \to 0, \text{ as } \tau \to +\infty. \end{split}$$

On other hand, we have

$$\begin{split} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^0 \mathbb{E} \sup_{\theta \in [t-r,t]} \mathbb{E} |\arctan \theta - \frac{\pi}{2}|^p dt & \leq & \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^0 \frac{\pi^p}{2^p} e^t dt \\ & \leq & \frac{\pi^p (1-e^{-\tau})}{2^{p+1}\tau} \to 0, \text{ as } \tau \to +\infty. \end{split}$$

Consequently

$$\lim_{\tau \to +\infty} \frac{1}{\nu([-\tau,\tau])} \int_{-\tau}^{\tau} \mathbb{E} \sup_{\theta \in [t-r,t]} \mathbb{E} |\arctan \theta - \frac{\pi}{2}|^p d\mu(t) = 0.$$

It follows that $t \mapsto \arctan(t) - \frac{\pi}{2}$ is p-th mean (μ, ν) -ergodic of class r, consequently f is uniformly p-th mean (μ, ν) -pseudo almost automorphic of class r. Moreover L is bounded linear operator from \mathcal{C} to $L^2(\Omega, H)$.

Let k be the lipschitz constant of h. Then by using Hölder-inequality for every $\varphi_1, \ \varphi_2 \in \mathcal{C}$ and $t \geq 0$, we have

$$\begin{split} \mathbb{E}\|f(t,\varphi_1)(x) - f(t,\varphi_2)(x)\|^p &= \mathbb{E}\Big\|\int_{-r}^0 \Big(h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\Big)d\theta\Big\|^p \\ &\leq \Big[\int_{-r}^p \|h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\|d\theta\Big]^p \\ &\leq \mathbb{E}\Big[\Big(\int_{-r}^0 d\theta\Big)^{\frac{p-1}{p}} \times \Big(\int_{-r}^0 \|h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\|^p\Big)^{\frac{1}{p}}\Big]^p \\ &\leq r^{p-1}\int_{-r}^0 \mathbb{E}\|h(\theta,\varphi_1(\theta)(x)) - h(\theta,\varphi_2(\theta)(x))\|^p d\theta \\ &\leq r^{p-1}k\int_{-r}^0 \mathbb{E}\|\varphi_1(\theta)(x) - \varphi_2(\theta)(x)\|^p d\theta \\ &\leq r^p k \sup_{-r \leq \theta \leq 0} \mathbb{E}\|\varphi_1(\theta)(x) - \varphi_2(\theta)(x)\|^p \\ &\leq r^p k\alpha \sup_{-r \leq \theta \leq 0} \mathbb{E}\|\varphi_1(\theta)(x) - \varphi_2(x)\|^p \text{ for a certain } \alpha \in \mathbb{R}_+. \end{split}$$

Consequently, we conclude that f and g are Lipschitz continuous and $cl(\mu, \nu)$ -pseudo almost automorphic in p-th mean sense. Moreover, since h is stochastically bounded in p-th mean

sense, i.e $\mathbb{E}\|h(t,\phi(t))\|^p \leq \beta$. By Hölder inequality, we have

$$\mathbb{E}\|g(t,\varphi(x))\|^{p} = 1 + \frac{\pi}{2} + \mathbb{E}\left\|\int_{-r}^{0} h(\theta,\varphi(\theta)(x)) d\theta\right\|^{p}$$

$$\leq \frac{2+\pi}{2} + \left(\int_{-r}^{0} d\theta\right)^{p-1} \times \int_{-r}^{0} \mathbb{E}\|h(\theta,\varphi(\theta)(x))\|^{p} d\theta$$

$$\leq \frac{2+\pi}{2} + r^{p-1} \int_{-r}^{0} \beta d\theta$$

$$\leq \frac{2+\pi}{2} + r^{p} \beta$$

$$\leq \beta_{1}, \text{ with } \beta_{1} = \frac{2+\pi}{2} + r^{p} \beta,$$

which implies that g satisfies (\mathbf{H}_5) .

For hyperbolicity, we suppose that $(\mathbf{H}_8) \int_0^0 |G(\theta)| d\theta < 1.$

Proposition 5.1. [18] Assume that (\mathbf{H}_6) and (\mathbf{H}_7) hold. The the seùigroup $(\mathcal{U}(t))_{t\geq 0}$ is hyperbolic.

Then by Proposition 4.23, we deduce the following result

Theorem 5.2. Under above assumptions, if Lip(h) is small enough large, then equation (5.1) has unique p-th mean $cl(\mu, \nu)$ -pseudo almost automorphic solution of class r.

Références

- 1. B. Amir, L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain, Annales Mathématiques Blaise Pascal, 6, (1), (1999), 1-11.
- 2. Bochner S., A new approach to ZAlmost Automorphy, Pro Natl Acad Sci USA 1962, 48, 2039-2043.
- 3. Bochner S., Continuous mapping of Almost Automorphic and Almost Periodic Functions in Abstract Space, Kluwer Acasemic Plenum Plushers, New York, 2001.
- 4. Cao J F, Yang Q G, Huang Z T., Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations Stochastics, 2011, 83: 259-275.
- 5. Fu M M, Liu Z X., Square-mean almost automorphic solutions for some stochastic differential equations, Proc Amer Math Soc, 2010, 138: 3689-3701.
- 6. J. Seidler and Da Prato-Zabczyk's, Maximal inequality revisited I, Math Bohem. 118 (1993) 67–106.
- 7. C. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal. Appl. 181(1) (1994),62-76.
- 8. C. Zhang, Pseudo almost periodic solutions of some differential equations II, J.Math. Anal. Appl. 192(2) (1995), 543-561.
- 9. G.M. N'Guérékata, Almost automorphic and almost periodic functions, Kluwer Academic Publishers, New York, (2001).
- 10. G.M. N'Guérékata, Topics in Almost Automorphy, Springer (2005).
- 11. I. Zabsonre, H. Toure, Pseudo-almost periodic and pseudo-almost automorphic solutions of class r under the light of measure theory, Afr. Diaspora J. Math. 19 (1) (2016) 58-86.
- 12. Jing C., Wenping R., Existence and stability of μ -pseudo almost automorphic solutions for stochastic evolution equations, Front. Math. China, 2019.
- 13. J. Blot, P. Cieutat, K. Ezzinbi Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Analysis (2012), 2426-2447.

- 14. J. Blot, P. Cieutat, K. Ezzinbi New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis (2013), 493-526.
- 15. J. Blot, P. Cieutat, G. N'Guérékata, and D. Pennequin, Superposition operators between various almost periodicfunction spaces and applications, Commun. Math. Anal. 6(1) (2008), 42-70.
- 16. J. Blot, P. Cieutat and K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis, 92(3) (2013), 493–526.
- 17. K. Ezzinbi, H. Toure, I. Zabsonre, Pseudo almost automorphic solutions of class r for some partial functional differential equations, Afrika Matematika, (2014), 25-41.
- 18. K. Ezzinbi, S. Fatajou, N'Guf'ekata, Pseudo almost automorphic solutions for dissipative differential equations in Banach spaces, J. Math. Anal. Appl. 351 (2009) 765–772.
- 19. K. Ezzinbi, S. Fatajou, G.M. N'Guérékata, C^n -almost automorphic solutions for partial neutral functional differential equations, Applicable Analysis, 86:9, (2007), 1127-1146.
- 20. MA. Diop, K. Ezzinbi and MM. Mbaye, Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion, Stochastics. 87(2015)1061–1093.
- 21. M. Adimy, A. Elazzouzi, K. Ezzimbi, Bohr-Neugebauer type theorem for some partial neutral functional differential equations, Nonlinear Analysis, Theory, Methods and Applications, 66, (5), (2007), 1145-1160.
- M. Adimy, K. Ezzinbi, Existence and linearized stability for partial neutral functional differential equations, Differential Equations Dynam. Systems 7 (1999) 371-417.
- 23. M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principle and dynamic behavoirs for a class of partial functional differential equations, Nonlinear Analysis, TMA, 71, (2009), 1709-17.
- 24. M. Adimy, K. Ezzinbi, M. Laklach, Spectral decomposition for partial neutral functional differential equations, Canadian Applied Mathematics Quarterly, (1), (2001), 1-34.
- 25. N. Belmabrouk, M. Damak and M. Miraoui Measure pseudo almost periodic solution for a class of Nonlinear delayed Stochastic evolution equations driven by Brownian motion, Published by Faculty of Sciences and Mathematics, University of Nis, Serbia 35:2 (2021), 515–534.
- 26. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer (1983).
- 27. T. Diagana, Weighted pseudo-almost periodic solutions to some differential equations, Nonlinear Anal. Theory Methods Appl. 68(8) (2008), 2250-2260.
- 28. T. Diagana, K. Ezzinbi and M. Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory, CUBO A Mathematical Journal,16, (02),(2014), 01-31.
- 29. W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Company, New York, 1986