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Abstract

The extreme power output scenarios of renewable energy sources (RES) proposed new challenges to the safe and stable operation

of the power system. Transmission expansion planning (TEP) with large-scale RES grid integration needs considering the risk of

extreme scenarios. In this paper, an adaptive decision-making approach for the TEP problem based on planning-risk assessment-

replanning iterative process is proposed. The method obtains massive temporal and spatial correlated wind-photovoltaic (PV)

power output scenarios by generalizing the historical data to describe the uncertainties. A data-driven load loss risk assessment

model (RAM) based on the power system’s actual operating state is built, referring to the degree of extreme scenario risks on

the balance of supply and demand, and the probability of extreme scenario occurrence. The planning decision is progressively

revised according to the risk assessment result. The Garver’s 6-bus system and the IEEE RTS 24-bus system are adopted as

simulation cases. The results show that the optimal expansion plans achieve a balance between the economy and robustness,

which verifies the effectiveness of the proposed method.
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Abstract: The extreme power output scenarios of renewable energy sources (RES) proposed new challenges to the safe and 
stable operation of the power system. Transmission expansion planning (TEP) with large-scale RES grid integration needs 
considering the risk of extreme scenarios. In this paper, an adaptive decision-making approach for the TEP problem based on 
planning-risk assessment-replanning iterative process is proposed. The method obtains massive temporal and spatial 
correlated wind-photovoltaic (PV) power output scenarios by generalizing the historical data to describe the uncertainties. A 
data-driven load loss risk assessment model (RAM) based on the power system's actual operating state is built, referring to 
the degree of extreme scenario risks on the balance of supply and demand, and the probability of extreme scenario 
occurrence. The planning decision is progressively revised according to the risk assessment result. The Garver’s 6-bus system 
and the IEEE RTS 24-bus system are adopted as simulation cases. The results show that the optimal expansion plans achieve 
a balance between the economy and robustness, which verifies the effectiveness of the proposed method. 
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1. Introduction 

The rapid development of renewable energy plays a 

crucial role in the energy transition and carbon reduction. 

According to statistics from the International Renewable 

Energy Agency (IRENA), renewable energy sources (RES), 

mainly wind and photovoltaic (PV) power, accounted for 40% 

of global installed power capacity by the end of 2022 [1]. 

However, the large-scale integration of RES has posed new 

challenges to the transmission expansion planning (TEP) 

problem, due to the inherent intermittent of wind and PV 

generation [2-3]. Specifically, the insufficient power output 

of RES in extreme scenarios will lead to serious energy 

shortages [4-5], characterized as low-probability and high-

impact (HPLI) events [6]. Hence, it is essential to consider 

the risks of extreme power output scenarios in addressing the 

TEP problem with large-scale RES grid integration. 

The extreme power output of most RES is heavily 

dependent on specific meteorological conditions, especially 

for wind and PV power, which are associated with variable 

wind speed and illumination intensity [7]. This means that the 

decision-making process for the TEP problem requires an 

efficient way to deal with uncertainties in RES output. 

Depending on the methods to describe uncertainties, TEP 

models can be categorized into robust optimization (RO), 

distributionally robust optimization (DRO), and stochastic 

optimization (SO) [8]. These optimization models evaluate 

extreme output scenarios differently. It is worth noting that 

ensuring complete resilience of the power system to the risks 

of load loss in all extreme scenarios will massively increase 

planning costs. The optimal solution must balance the trade-

off between the economy and robustness while reducing the 

risks of extreme scenarios. 

RO analyzes the worst-case scenario within a given 

bounded uncertainty set without requiring the exact 

information of probability distribution [9-10]. In contrast, 

DRO uses fuzzy sets of probability distribution to make 

decisions based on the worst-case probability distribution 

[11-12]. As RO only uses the boundary information of 

uncertainties and ignores or simplifies the spatio-temporal 

correlation between variables, the optimal solution tends to 

be overly conservative and the worst-case scenario is difficult 

to emerge in practice [13]. DRO reduces conservatism 

compared to RO but relies on subjective experience to preset 

the fuzzy sets [14].  

SO assumes that the probability distribution is known 

completely and uses discrete scenarios to handle the 

uncertainties [15], including chance-constrained [16-17] and 

scenario-based [18-19] methods. Among these, scenario-

based SO is preferred due to its ability to characterize the 

time-series correlation of uncertainties [20]. However, 

scenario reduction methods used to ease the computational 

burden often exclude low-probability extreme scenarios, 

leading to insufficient robustness of the optimal solution [18]. 

To improve the robustness of the optimal solution, reference 

[21] introduced conditional value at risk (CVaR) in the 

objective function. But the formulation of CVaR is still based 

on the given typical scenario set, which has limitations in 

assessing the risks of uncertainties over the whole range of 

RES output variability. Reference [22] includes the extreme 

historical days of the net load as representative scenarios, but 

ignores the load loss risks related to transmission congestion.  

In recent years, with the application of information and 

measurement technologies in power systems, several studies 

have proposed data-driven adaptive or posteriori optimization 

methods using historical operation data of RES. Reference 

[23] proposed a data-adaptive RO method to reduce 

conservativeness by replacing the uncertainty set with several 

extreme scenarios selected from historical data. Reference 

[24-25] proposed an iteration method between a planning 

model and an operation model to identify the maximum 

cumulative lost load or the highest lost load cost scenario, 

thus finding the optimal solution that ensures the feasibility 

of all historical scenarios. These adaptive methods are 

essentially RO models based on historical data, with the 

weakness of being overly conservative or possibly infeasible. 

mailto:sunyy@ncepu.edu.cn
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Meanwhile, due to the generally short operating time of RES 

plants, the limited scale of historical data cannot cover all 

possible extreme scenarios in the future.  

To address the problem of insufficient historical data, 

generative networks [26-27], which allow for implicit 

modeling of the correlation of uncertainties by fitting joint 

probability distributions based on deep neural networks, have 

been proposed. By generating massive time-series correlated 

RES output scenarios, generative networks provide an 

effective identification target for extreme scenario analysis. 

The difficulty in applying this method to the TEP problem is 

achieving an acceptable computational burden while making 

use of as much of the generated scene information as possible. 

This study proposes an adaptive decision-making 

approach to address the above-mentioned issues related to the 

TEP problem. Accordingly, the present work provides the 

following three main contributions:  

(1) The generative network based on deep neural 

networks is used to obtain massive power output scenarios in 

order to cover the range of RES output variability and to 

improve the accuracy of the optimal solution. Compared to 

historical data, the generated scenarios include more HPLI 

extreme scenarios. 

(2) The data-driven load loss risk assessment model and 

the adaptive decision-making framework for the TEP 

problem are proposed. Effective identification of extreme 

scenarios can only be achieved by assessing the risks of the 

power system's actual operating state under given boundary 

conditions. 

(3) The corresponding practical algorithm of the 

planning-risk assessment-replanning iterative process is 

proposed to solve the adaptive TEP problem. The lowest-risk 

extreme scenario is identified to affect the decision-making 

process. The proposed algorithm achieves a balance between 

economy and robustness with acceptable computationally 

expensive. 

The rest of this paper is structured as follows. The 

adaptive decision-making framework for the TEP problem is 

presented in Section 2. Section 3 develops the corresponding 

algorithm for the proposed method. Section 4 presents the 

case studies. Section 5 draws conclusions. 

2. The adaptive decision-making framework 

 

2.1. The iterative process of the adaptive decision-
making framework 

 
This paper presents an adaptive decision-making 

framework for the TEP problem that considers the risks of 

insufficient supply in extreme scenarios of RES output, as 

illustrated in Figure 1. Initially, the generative network is 

utilized to establish a probability model of the uncertainties 

in RES. The model is trained with historical operation data 

Shist, and generates massive discrete time-series RES output 

scenarios, which compose the full-space scenario set SRES. 
These scenarios include more extreme events than historical 

data, and thus they enable us to better assess the risks 

associated with insufficient output. The typical scenario set 

STYP is derived from the full-space scenario set SRES by using 

the scenario reduction method. The typical scenario set STYP 

at the subsequent iterations only includes several 

representative scenarios, thus reducing the computational 

burden for optimization problems. Then, a scenario-based 

stochastic TEP model based on the set STYP is established to 

determine expansion plans, which are feasible for all the 

typical scenarios. Finally, a data-driven load loss risk 

assessment model (RAM) based on the set SRES is developed. 

RAM identifies extreme scenarios and enhances the 

robustness of TEP decisions in the next iteration stage by 

modifying the typical scenario set. 

Generative network
Input historical   
data set SHIST

Full-space 
scenario set

Typical 
scenario set  

Expansion 

plans Φk

Uncertainty modeling

Adaptive decision making

Scenario-based 

TEP model

Data-driven risk 

assessment model

(in parallel)

Prdata(Pj)

Prmod el(Pj; w)

Sampling

SRESTYPS

Scenario reduction

( )n
jP

LPHIPr ( )kk   S

LL,
ntP 

Extreme scenario 

identification

Selected the lowest-risk   

  extreme scenario    
*
k

if ?
 

Fig. 1  Adaptive decision-making framework of the TEP 

problem 

The adaptive decision-making framework works 

iteratively in two steps: determining expansion plans 

followed by an extreme risk assessment for the determined 

plans. As the iteration index k increases, the typical scenario 

set is revised by the selected lowest-risk extreme scenario. 

And extreme load loss risks caused by transmission 

congestion can be gradually reduced. The proposed approach 

allows the optimal expansion plans Φ* to achieve a balance 

between economy and robustness. 

 

2.2. Generative network-based modeling of the 
uncertainties in RES 

 
The large-scale RES integration power system is still in 

the developmental stage. As a result, many wind and PV 

plants have been in operation for a short duration, which 

limits the amount of historical data available. The data may 

not include or only include a small proportion of the extreme 

insufficient scenarios of RES power output. The transmission 

expansion plans solely based on historical data (e.g., 

reference [23-25]) can be problematic as it fails to account for 

the future possible range of RES output. Moreover, due to the 

temporal and spatial correlations of wind-PV output 

uncertainties, it is challenging to develop an explicit density 

model that accurately captures a joint probability distribution 

of the uncertainties. 

The uncertainties in RES output can be classified as 

aleatory uncertainty and epistemic uncertainty [28]. The 

methods of uncertainty modeling aim to reduce epistemic 

uncertainty, which is caused by people's limited knowledge 

of the system [29]. The time-series correlated output of RES 

containing multiple wind and PV plants is a time-varying, 

non-stationary, high-dimensional stochastic process that can 

be represented in a simplified way as an unknown complex 

high-dimensional joint probability distribution.  

Let a series of stochastic processes Pj=(pj1, pj2,…, pjT), 
represent the temporal and spatial correlated power output 
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scenario sets of multiple RES plants, where T denotes the 

time horizon and RESj . That is, for each RES plant j at 

time t, pjt is a random variable. The truth joint probability 

distribution is written as Prtruth(Pj), which is unknown and 

also difficult to describe with an explicit density model. 

Therefore, if the joint probability distribution is known, a 

series of discrete time-series samples can be obtained by 

sampling Prtruth(Pj) for modeling the TEP problem.  

In this paper, a generative network based on deep neural 

networks is used as a probability model to approximately 

match the empirical joint probability distribution Prdata(Pj) of 

the historical data SHIST, also as the fitted probability 

distribution to Prtruth(Pj). The training of the generative 

network with historical data allows the extraction of temporal 

and spatial correlations of RES power output. The essence of 

the generative network is to construct a mapping function g(~) 

between the known probability distribution Pr(z) and the 

unknown probability distributions Prmodel(Pj; w), as shown in 

(1). 

 model )P ) (r ( ; P ( ),rj g=w zP w  (1) 

where w denotes the training parameters of the generative 

network. The training objective is to maximize the likelihood 

of the fitted probability distribution Prmodel(Pj; w) over the 

empirical probability distribution Prdata(Pj), as shown in (2). 

 data~ ( ) modelPrarg min [log ( )]Pr ;
jj j= P

w
Pw P w  (2) 

By developing an implicit density model of RES 

uncertainties using the generative network, a discrete time-

series scenario set of RES output is generated by sampling 

Prmodel(Pj; w), referred to as the full-space scenario set SRES. 

When the size of the set SRES is sufficiently large, the discrete 

probability distribution of the samples can be assumed to fit 

the truth joint probability distribution Prtruth(Pj). The 

generated scenario set SRES is the generalization of historical 

data. Compared to limited historical data, the generated 

scenarios includes more extreme events of RES insufficient 

output, which can provide valid samples for subsequent 

extreme scenario risk assessment. The nth generated scenario 

in SRES can be written as: 

 
( ) ( ) ( )( )

T1 1( , ,..., )
n n nn

j jj jp p p=P  (3) 

As the generated scenario set SRES includes massive 

scenarios, applying to the TEP problem would result in an 

unacceptable computational burden. Therefore, the typical 

scenario set STYP is obtained by applying scenario reduction 

methods to select representative scenarios. The size of the 

typical scenario set STYP is much smaller than the size of the 

generated scenario set SRES, with less computational burden. 

The objective of the scenario reduction problem is to find the 

reduced probability scenarios that approximately match the 

generated probability scenarios while minimizing the 

distance measure between the reduced and generated 

scenarios [30]. Scenario reduction problem can be stated as: 

 ,

, ,

, ,

        min

. . Pr ;  0

s s

s s s s

s
s s s ss

d

s t




 



 

 
= 




 (4) 

The scenario generation method and scenario reduction 

method proposed in this paper are not limited to specific types 

of methods. With a reasonable configuration of various 

methods, the generalization of historical data and the reduced 

scenarios can be achieved. 

 

2.3. Scenario-based TEP model 
 

In this section, a scenario-based TEP model based on the 

typical scenario set STYP is established to generate expansion 

plans Φ, as a basis for the subsequent risk assessment process. 

As the scenario reduction process typically excludes low-

probability extreme scenarios, the optimal results of the TEP 

model demonstrate superior economic performance, but 

insufficient robustness. The TEP model proposed in this 

section is strictly subject to the power system security 

constraints for all scenarios in the typical scenario set STYP. 

And in subsequent iterations, the typical scenario set is 

adjusted according to the results of the extreme risk 

assessment, thereby enhancing the robustness of the 

expansion plans. 

The objective of the proposed TEP model is to minimize 

the total annual costs, as presented in Equation (5), which is 

the sum of annualized investment cost, generation cost, and 

the penalty cost of RES power curtailment. Each component 

of the objective function is represented by Equations (6)-(8). 

 TEP
inv gen curmin  C C C C= + +  (5) 

where 

 
line

line

L+

inv line(1 )

(1 ) 1
l

T

T l

l

C c
r r

r
x



+

+
=

−



 (6) 

 
TYP G

gen 2Pr [ ( ) ]s s s
i it i it i

s t i

C a P b P c

 

= + + 
S

 (7) 

 
TYP RES

cur cur cur,Prs s
j jt

s t j

C c P

 

=   
S 

 (8) 

s.t. 

 L+{0,1},  lx l=   (9) 

 L L+1,  \lx l=    (10) 

 
G RES L

d ,  , ,

n n n

s s s
it jt lt nt

i j l

P P P P n t s

  

+ + =   
  

 (11) 

 min max ,  , ,s
i it iP P P i t s    (12) 

 
down up

( 1) ,  , ,s s
i i t it iR P P R i t s+−  −    (13) 

 
fore,0 ,  , ,s s

jt jtP P j t s    (14) 

 
cur, fore, , ,s s s
jt jt jtP P P j t s= − ，  (15) 

 ( ), ( ),( ),  , ,s s s
lt l l l i t l j tP x b l t s = −   (16) 

 
max ,  , ,s

lt l lP x P l t s    (17) 

 
G N RES

max d fore,
d res( ) , ,s s

i it nt jt

i n j

P P r P r P t s

  

−  +   
  

(18) 

 0,  s
ref s =   (19) 

 
min max

, ,  , ,s
n n t n n t s      (20) 

Equation (6) describes the annualized investment cost of 

transmission lines. The generation cost, represented by 

Equation (7), is the expected fuel cost of thermal generators 

and is modeled as a quadratic function of power generation. 

Additionally, Equation (8) sets the expected penalty cost for 

RES power curtailment, which promotes the consumption of 

RES. It is important to note that the generation cost and 

penalty cost are dependent on the representative scenarios 

included in the typical scenario set STYP. The probability of 
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occurrence of these typical scenarios determines their 

respective weight in the model. 

The constraints of the proposed scenario-based TEP 

model are discussed below. Constraints (9)-(10) specify the 

construction status of the candidate and existing transmission 

lines. Constraints (11)-(20) are related to the RES scenarios. 

Specifically, constraint (11) enforces the strict power balance 

for each bus without any unserved load demand term. 

Constraints (12)-(13) represent the operating constraints of 

thermal generators. Constraint (12) provides the lower and 

upper limits of power output, and constraint (13) sets the 

ramping rate limit. Constraints (14)-(15) determine the output 

bounds of RES. The sum of RES consumption and 

curtailment must be equal to the forecast power output for the 

scenario. Constraint (16) defines direct current (DC) power 

flow for transmission lines, including the candidate and 

existing lines. Transmission capacity limits are stated by 

constraint (17). The spinning reserve constraint, served by 

thermal generators, is defined in constraint (18). Constraints 

(19)-(20) specify the voltage angle bounds of the slack bus 

and the rest buses, respectively. 

In addition, since constraint (16) is non-linear due to the 

product of continuous and binary variables, it can be easily 

linearised by constraint (21) through the Big-M method. 

 ( ), ( ),( ) (1 ), , ,s s s
lt l l i t l j t lP b M x l t s − −   −   (21) 

In conclusion, The TEP model proposed in this study is a 

scenario-based stochastic optimization problem, which 

belongs to the mixed-integer linear programming (MILP) 

problem category. The model has remarkable solution 

efficiency, especially when dealing with a limited number of 

typical scenarios. 

 

2.4. Data-driven RAM  
 

In this section, based on the planning results of the TEP 

model in the previous section, the data-driven RAM is 

proposed to assess the feasibility of RES scenarios in the full-

space scenario set SRES. The risk assessment results depend 

on operational simulations under specific power system 

boundary conditions. The network structure associated with 

TEP decisions is fixed in this model. The RAM aims to 

minimize the penalty cost for load losses by optimizing 

generators’ output and transmission power flow, achieving a 

quantification of the load loss risks under a single RES 

scenario. 

By traversing the full-space set SRES, the RAM delivers 

the amount of system load loss in every generated scenario, 

serving as the basis for following identifying extreme 

scenarios. The RAM belongs to the category of linear 

programming (LP) problems, which are computationally 

efficient and amenable to parallel processing. 

For any scenario RES S   of RES power output, the 

RAM is formulated as follows: 

 
N

LL LL,
RAMmin  n nt

t n

C c P



=  


 (22) 

s.t. 

 
G RES L

d LL, ,  ,

n n n

it jt nt ntlt

i j l

P P P P P n t   

  

+ + = −   
  

 (23) 

 LL, d ,  ,nt ntP P n t    (24) 

 min max ,  ,i it iP P P i t    (25) 

 
down up

( 1) ,  ,i it ii tR P P R i t 
+−  −    (26) 

 
fore,0 ,  ,s

jt jtP P j t    (27) 

 ( ), ( ),( ),  ,llt l i t l j tP b l t   = −   (28) 

 
max ,  ,lltP P l t    (29) 

 
G N RES

max d fore,
d res( ) ,i it nt jt

i n j

P P r P r P t 

  

−  +   
  

 (30) 

 0ref
 =  (31) 

 
min max

, ,  ,n t n t      (32) 

The constraints of the RAM are similar to the operation 

constraints of the TEP model described earlier. In particular, 

the power balance constraints for each bus, defined by 

constraint (23), are augmented with load loss variables LL,
ntP  , 

which permit the power system to shed loads during severe 

supply shortages, maintaining operational safety and ensuring 

the feasibility of the RAM. The upper load-shedding bounds 

are stated in constraint (24). The method for identifying 

extreme scenarios of RES output through load loss results is 

described below. 

 

2.5. Method of extreme scenario identification 
 

It is widely recognized that extreme scenarios of RES 

output are primarily driven by low-probability extreme 

weather and climate events, including extreme cold and heat, 

which have characteristics of "low-probability and high-

impact", commonly referred to as LPHI scenarios. In contrast, 

conventional scenarios are characterized by "high-probability 

and low-impact" features, also known as HPLI scenarios [6]. 

In order to identify extreme scenarios, it is necessary to assess 

both the potential impact on the supply-demand balance and 

the probability of occurrence. This section proposes a method 

for identifying extreme scenarios that are likely to cause high 

risks of unserved power demand. 

The risk indicators are proposed to measure the degree of 

imbalance between system supply and demand for a 

particular RES scenario. These are defined as the proportion 

of the hourly maximum load losses and daily cumulative load 

losses to the total system load. While the load losses for the 

proposed expansion plans Φ and the RES scenario ξ are 

determined by solving the RAM, the hourly load loss factor 

(h-LLF) and the daily load loss factor (d-LLF) are given by 

Equations (33)-(34). 

 

LL,

| d
max ,0

nt

n

t
nt

n

P

h LLF
P



 

 
 

=  
 


−






 (33) 

 

LL,

| d

nt

t n

nt

t n

P

d LLF
P



  =−




 (34) 

The thresholds for acceptable hourly and daily load losses, 

named h  and d  respectively, can be given based on 

manual experience or specific circumstances. Hence, an 

LPHI scenario is identified when either condition (35) or (36) 

is satisfied, while the opposite is regarded as an HPLI 
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scenario. The initial identification of LPHI scenarios is 

achieved by traversing the full-space scenario set SRES. 

 | hh LLF  −   (35) 

 | dd LLF  −   (36) 

Furthermore, when the size of the set SRES is large enough, 

the probability of occurrence of extreme scenarios can be 

evaluated by calculating the proportion of the sample size of 

the LPHI scenario set N(SLPHI) to the sample size of the 

generated scenario set N(SRES), as shown in Equation (37), 

which is related to the proposed expansion plans Φ. 

 
LPHI

LPHI
RES

( )
Pr ( )

( )

N

N

   
S

S
S

 (37) 

Assuming that the occurrence of extreme scenarios is a 

small probability event for a given level of significance α, in 

which case the risks of extreme scenarios can be disregarded 

during the power system planning process. Hence, the 

optimal expansion plans are obtained. The probability of 

occurrence of extreme scenarios related to expansion plans Φ 

should satisfy the condition as follows: 

 LPHIPr ( )   S  (38) 

3. Solution algorithm of the adaptive decision-
making approach for the TEP problem 

This section presents an adaptive decision-making 

approach for the TEP problem with the risk assessment of 

extreme RES output scenarios. The proposed method is based 

on a planning-risk assessment-replanning iterative process. 

This approach achieves a balance between economy and 

robustness through a progressive iterative revision of the 

expansion plans, which is based on the identification of 

extreme scenarios.  

The iteration index k is initialized to 1. The solution 

algorithm of the proposed adaptive decision-making 

approach for the TEP problem follows the steps outlined 

below and is presented in Algorithm 1. The initial typical 

scenario set 
1
TYPS is determined based on the full-space 

scenario set SRES. 

Step 1: Solve the TEP model to determine expansion 

plans. The TEP model proposed in Section 2.3 is solved based 

on the typical scenario set TYP
k

S  to determine the expansion 

plans Φk at iteration k. As the number of iterations increases, 

the size of the typical scenario set TYP
k

S  gradually increases, 

improving the robustness of the planning results. 

Step 2: Identify extreme scenarios by solving RAM in 

parallel. Based on the expansion plans Φk in Step 1, the RAM 

is solved in parallel for each generated scenario RES S  to 

achieve the load losses 
LL,

ntP   at each bus n. Risk indicators, 

| k
h LLF −  and | k

d LLF − , are obtained for every scenario 

according to Conditions (33) and (34), respectively. LPHI 

scenarios are identified according to Equation (35) or (36), 

and the probability of occurrence of extreme scenarios 

LPHIPr ( )k   S  is evaluated by Equation (37). The 

termination criterion is checked referring to Condition (38). 

If it is satisfied, the optimal expansion plans Φ* are obtained 

and the iteration is terminated. If not, the process proceeds to 

Step 3. 

 Step 3: Adjust the typical scenario set. In order to 

gradually improve the robustness of planning results while 

maintaining superior economics, select the lowest-risk 

scenario *
k  in the LPHI scenario set LPHI

k
S , and add this 

scenario to the set TYP

k
S  as a new typical scenario set.  The 

revised set 
1

TYP

k+
S at the next iteration k+1 is shown as follows: 

 
*

| | LPHIarg min{ , } , 
k k

k
k h LLF d LLF     − −= S  (39) 

 1 *
TYP TYP { }k k

k
+ =S S  (40) 

The weight of the lowest-risk scenario *
k  in the TEP 

model is considered as zero because the probability of 

occurrence of any single scenario is very low when the 

sample size of generated scenarios is sufficiently large. In 

other words, the planning decisions only need to satisfy the 

security constraints in this scenario and disregard its impact 

on the generation cost and the curtailment penalty cost.  

The adaptive decision-making process for the TEP 

problem is repeated by setting k=k+1 and returning to Step 1. 

4. Case studies 

In this section, the modified Garver’s 6-bus system [31] 

and the IEEE RTS 24-bus system [32] are studied to validate 

the superiority of the proposed TEP adaptive decision-

making approach. All cases are simulated on a personal 

computer with CPU i9-10920X and 128G RAM, and 

implemented by a developed Python 3.9 based package using 

Gurobi 9.5.0 as the MILP/LP solver. 

 

4.1. Scenario generalization based on generative 
network 

 
The historical RES power generation data was received 

from January 1, 2019 to October 31, 2020 at a wind-PV field 

station in northwest China, with a 1-hour data interval, 668 

sets of valid historical scenarios, including one wind plant 

and two PV plants, named WD, PV1, and PV2, respectively. 

A Generative Adversarial Network (GAN) [26] is used to 

generalize the historical data for the three plants considering 

spatio-temporal correlation. The generator and discriminator 

Algorithm 1: Adaptive decision-making approach for the TEP problem 

 Initialization: Initialize Φ*, α, h , d  , and set k=1 

1 Scenario Generation: Determine RESS by generalizing historical data 

2 Scenario Reduction: Determine 1
TYPS based on RESS  

3 repeat 

4 Initialize LPHI
k =S  

5 Determine Φk by solving the TEP problem based on TYP
k

S   

6 for RES in  S  do (in parallel) 

7 Determine LL,
ntP   by solving RAM 

8 | k
h LLF − , | k

d LLF −  Equations (33)-(34) 

9 if  Condition (35) or (36) do 

10 LPHI LPHI { }k k S S  

11 end for 

12 LPHIPr ( )k k   S  Equation (37) 

13 
*

| | LPHIarg min{ , } for  in 
k k

kd LLh F FLL    − −= S   

14 
1 *

TYP TYP { }k k
k

+ S S  

15 1k k +  
16 until LPHIPr ( )k k   S  

17 return Φ* 
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network structures of GAN are shown in Figure 2. In this 

paper,  10,000 sets of wind-PV scenarios are generated based 

on GAN to form the full-space scenario set RESS , and five 

sets of representative scenarios with corresponding 

probabilities are given based on the reduction network [30] to 

form the initial typical scenario set 1
TYPS  at the first iteration. 

Noise 
input z
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Fig. 2  Network structure diagram of GAN 
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Fig. 3  CDF curve of historical data and generated data 

The cumulative distribution function (CDF) of the 

generated scenarios is compared with the historical data to 

verify the effectiveness of GAN in scenario generalization, as 

shown in Figure 3. As can be seen from the figure, the CDF 

curve of the generated data is highly consistent with the 

historical data. Therefore, the generated scenarios are able to 

effectively cover the range of RES output variability for the 

risk assessment of the TEP problem. 

 
4.2. Garver’s 6-bus system  
 

The Garver’s 6-bus system has 6 buses and 15 rights-of-

way, each with four parallel lines that can be added. The 

initial topology of the test system is illustrated in Figure 4. 

The thermal generator capacity and peak load are both 

760MW. One 400MW wind plant is connected to Bus 6, and 

two 100MW PV plants are connected to Bus 1 and 2, 

respectively. In this study, it is assumed that the annual 

discount rate is 8% and the lifetime of the transmission line is 

20 years. The spinning reserve capacity factors for load and 

RES are 1.5% and 2% respectively. The acceptable hourly 

and daily load losses thresholds h  and d  are set to 1% and 

0.05% respectively. The significance level α for the LPHI 

scenario to be considered a small probability event is assumed 

to be 1%. 

To illustrate the superiority of the proposed adaptive 

decision-making approach, three cases are presented in this 

study:  

Case 1: A one-step scenario-based TEP model is built. 

The typical scenario set is obtained from historical data using 

the same scenario reduction method; 

Case 2: Using the same one-step TEP model as Case 1, 

the typical scenario set is obtained from the generated 

scenarios based on GAN instead; 

Case 3: Combining both the generalization of historical 

data and the iterative adaptive decision-making approach, the 

proposed method is used to solve the TEP problem in Case 3; 
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Fig. 4  Modified Garver’s 6-bus system 

Tab.1  Results comparison of Garver’s 6-bus system 

Case Case 1 Case 2 Case 3 

Num of new lines 4 4 5 

Expansion plans 

(new lines) 
3-5, 2-6, 4-6(2) 3-5, 2-6, 4-6(2) 2-3, 3-5, 4-6(3) 

Investment cost (106$) 10.30 10.30 12.18 

Total annual cost (106$) 47.35 47.86 48.25 

TYP( )N S  5 5 6 

LPHI( )N S  443 443 28 

LPHIPr ( ) 


S  4.43% 4.43% 0.28% 

Lowest risk scenario No. 817 817 5065 

Table 1 shows the simulation results of Cases 1-3. Case 1 

and Case 2 obtain the same expansion plans, further 

validating the effectiveness of the method of historical data 

generalization based on GAN. The planning results of Cases 

1 and 2 are more economical, with an investment cost of 

10.30×106$ and 4 new lines added, and have lower 

investment costs and total annual costs compared to Case 3, 

the method proposed in this paper. This is because the 

scenario reduction process excludes low-probability extreme 

events, the typical scenario set represents the HPLI scenarios. 

The range of wind and PV output has been estimated too 

optimistically, resulting in a low level of redundancy in 

expansion plans. In addition, by traversing the generated 

scenario set RESS  and solving the RAM model based on the 

results of Cases 1 and 2, the LPHI scenarios satisfying 

Condition (31) or (32) can be identified. The sample sizes of 

the LPHI scenarios of these cases are 443 and the probability 

of occurrence of extreme scenarios is 4.43%, both above the 

significance level α. At this point, the occurrence of extreme 

scenarios cannot be considered as a small probability event, 

which could lead to serious power system outages.  

The iterative process of Case 3 satisfies the termination 

criterion after two iterations. The optimal expansion plans of 

Case 3 require 5 new lines (n2-3=1, n3-5=1, n4-6=3), one more 

line than in Cases 1 and 2, with the total annual cost 

increasing from 47.86×106 $ to 48.59×106 $. However, the 

risk assessment results show that the sample size of LPHI 

scenarios is reduced to 28. The cumulative daily load loss 

ranges from 7.89 MW to 41.36 MW. The probability of 

occurrence of LPHI scenarios is lower than the significance 

level α. That means that the occurrence of extreme scenarios 
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can be considered as a small probability event. It can be seen 

that the results of Case 3 effectively enhance the ability of the 

power system to withstand extreme wind and PV output 

scenarios by increasing the structural redundancy of 

transmission lines. The optimal expansion plans obtained by 

the method proposed in this paper balance economy and 

robustness, demonstrating the superiority of the adaptive 

decision-making approach. 

To further illustrate the necessity for generalization to 

historical data, the risk of load loss for the planning results of 

Case 3 is evaluated based on the historical data set, and the 

results show that all are HPLI scenarios. The results ensure 

full feasibility for the historical RES scenarios, achieving the 

same robustness results as traditional data-driven robust 

optimization methods based on historical data. Moreover, 

The TEP model is infeasible when all of the identified 

extreme scenarios are added to the typical scenario set.  It is 

further shown that the generated scenario set includes more 

LPHI extreme scenario events and is able to cover a wider 

range of RES output variability. And the risk of supply-

demand imbalances cannot be completely eliminated by 

reducing transmission congestion. 

 
Fig. 5  Net load curves of LPHI scenarios 

Tab. 2  Comparison of Pearson correlation coefficient 

 LPHIS  TYPS  RESS  

PCC -0.0941 0.3232 0.2508 

The net load curves for all LPHI scenarios for the results 

of Case 3 are shown in Figure 5, which shows the 

insignificant peak effect of RES output on peak loads in 

extreme scenarios. Table 2 shows the correlation between 

each scenario set and load using the Pearson Correlation 

Coefficient (PCC). The PCC for the typical scenario set with 

load is significantly greater than the PCC for the LPHI 

scenario set with load, as is the case for the generation 

scenario set. This result indicates that the wind-PV output of 

the LPHI scenario has a weak correlation with load variations 

and is weakly supported in the peak load interval, thus leading 

to a supply-demand imbalance. The results demonstrate the 

necessity of identifying extreme RES output scenarios based 

on the actual operating conditions of the power system. 

 

4.3. IEEE RTS 24-bus system  
 

The modified IEEE RTS 24-bus system topology is 

shown in Figure 6, with a total peak load of 8 550 MW and 

41 rights-of-way. It is assumed that up to 3 lines can be added 

to each corridor. One 2500MW wind plant is connected to 

Bus 23, and two 750MW PV plants are connected to Bus 8 

and 13, respectively. The acceptable hourly and daily load 

losses thresholds h  and d  are set to 0.5% and 0.025% 

respectively. The remaining parameters in this case study are 

set to the same values as in Section 4.2. The significance level 

α is also assumed to be 1%. Using the adaptive decision-

making method proposed in this paper to solve the TEP 

problem, the optimization results are shown in Table 3. 
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Fig. 6  IEEE RTS 24-bus system 

Tab. 3  Results comparison of each iteration for IEEE RTS 

24-bus system 

Iteration index k 1 2 3 4 

Num of new lines 6 7 6 7 

Expansion plans 
(new lines) 

6-10, 7-8(2), 

10-12, 11-13, 

20-23 

1-5, 6-10, 

7-8(2), 11-

13(2), 20-23 

7-8(2), 

11-13(2), 20-

23, 6-7 

6-10, 7-8(2), 

10-12, 20-23, 

13-14(2) 

Investment cost (106$) 18.17 21.73 22.86 23.61 

Total annual cost (106$) 558.84 562.46 563.64 564.45 

TYP( )N S  5 6 7 8 

LPHIPr ( ) 


S  7.53% 4.07% 1.65% 0.95% 

Lowest risk scenario No. 6277 4756 1075 1131 

As shown in Table 3, the optimal expansion plans are 

obtained after four iterations for the 24-bus system (n6-10=1, 

n7-8=2, n10-12=1, n20-23=1, n13-14=2). The LPHI scenario 

probability is 0.95%, which satisfies the given significance 

level α*. The extreme RES output scenarios occur as a small 

probability event. As the number of iteration index k increases, 

the investment cost and total annual cost sequentially increase, 

with investment cost increasing from 18.17×106 $ to 

23.61×106 $ and total annual cost increasing from 558.84×106 

$ to 564.45×106 $. The economy becomes worse while the 

robustness gradually improves. The LPHI scenario 

probability is reduced from 7.53% to 0.95%, achieving the 

goal of progressive iterative optimization of the TEP adaptive 

decision-making approach. By optimizing the new line 

decision, the optimal planning results better meet the system 

supply-demand balance for most wind-PV output fluctuations 

compared to planning results based on the typical scenario set 

(i.e., at k=1). The same conclusions as for the Garver’s 6-bus 

system further validate the effectiveness of the method 

proposed in this paper. 

The TEP model is a MILP problem and the solution time 

increases rapidly as the size of the typical scenario set 

increases, while the solution complexity is low when the size 

of the scenario set is small. The running time results of each 

iteration are shown in Table 4. The RAM is an LP problem, 

and the risk checks for different scenarios are independent of 

each other and can be run in parallel, and the traversal time 

for 10,000 sets of scenarios is between 856s and 880s, which 

is a manageable solution time. The method in this paper 

makes full use of the extreme information of the massive 

scenario set while avoiding the dimensional catastrophe 
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problem of the traditional expectation value model in the face 

of large-scale scenarios, and is more practical. 
Tab. 4  Running time of each iteration for IEEE RTS-24 bus 

system 

Iteration index 

k 

1 2 3 4 

TEP RAM TEP RAM TEP RAM TEP RAM 

Time (s) 55.0 860.1 50.4 860.3 137.4 879.2 168.4 856.6 

5. Conclusion 

In this paper, we propose an iterative TEP adaptive 

decision-making approach to solve the TEP problem with the 

risk assessment of extreme RES output scenarios, and achieve 

progressive iterative optimization of the planning decision by 

identifying the lowest-risk extreme scenario for the given 

expansion plans. Compared with the traditional scenario-

based planning method, the proposed method examines 

massive extreme scenarios included in the generated scenario 

set and achieves the quantitative analysis of the load loss risks 

of extreme scenarios, effectively balancing the economy and 

robustness of TEP results and enhancing the system's ability 

to resist the risks of extreme scenarios. The risk assessment 

of extreme scenarios can accurately reflect the power 

system’s actual operating state in terms of supply and demand 

balance. 

It should be noted that the optimal transmission expansion 

plans only address the extreme risks due to transmission 

congestion, which has certain limitations and cannot 

completely address the system loss of load due to insufficient 

RES output. Considering the increasing importance of 

flexible resources such as energy storage in the future power 

system, the role of energy storage in resisting extreme 

scenarios of RES output can be analyzed in subsequent 

studies to further improve the safe and stable operation of the 

power system.  

Nomenclature 

A. Indices and Sets 

Ll  
where l denotes a transmission line and L  

is the set of transmission lines. 

Gi  
where i denotes a thermal generator and 

G  is the set of thermal generators. 

RESj  where j denotes a RES plant and RES  is 

the set of RES plants. 

Nn  where n denotes a bus and N  is the set of 

buses. 

L+ L    Subset of candidate transmission lines. 

L
Ln    Subset of transmission lines connected to 

bus n. 

G
Gn    

Subset of thermal generators connected to 

bus n. 
RES

RESn    Subset of RES plants connected to bus n. 

HISTS  Set of historical scenarios. 

TYPsS  

where s denotes a typical scenario and 

TYPS  is the set of reduced typical 

scenarios. 

RES S  

where ξ denotes a generated scenario and  

RESS  is the set of full-space generated 

scenarios. 

t Index of time periods. 

k Index of iteration. 

B. Probability and distribution 

Pj 
Stochastic process of the power output of 

RES plant j. 

Pr(z) Probability distribution of variable z. 

Prtruth(Pj) Truth joint probability distribution. 

Prdata(Pj) Empirical joint probability distribution. 

Prmodel(Pj; w) 
Fitted joint probability distribution based 

on generative network with parameters w. 

g(~) Mapping function. 

Prs  
Probability of occurrence of typical 

scenario s. 

Pr  
Probability of occurrence of extreme 

scenarios related to expansion plans Φ 
( )n
jP  The nth generated scenario in the set SRES. 

,s sd   
Distance measure between scenario s and 

scenario s’. 

,s s   
Probability of transport from scenario s to 

scenario s’. 

 Expected value 

C. Parameters 
T Time horizon. 

w 
Training parameters of the generative 

network. 

r  Discount rate. 

lineT  Life cycle of transmission lines [yr]. 

line
lc  

Investment cost of candidate transmission 

line l [$/MW]. 

ai, bi, ci 
Fuel cost coefficients of thermal generator i 

[$/MW]. 

cur
jc  

Penalty cost of curtailed power of RES plant j 

[$/MW]. 

LL
nc

 Penalty cost of unserved load demand of bus 

n [$/MW]. 
d

ntP  Power demand of bus n at hour t [MW]. 

min
iP / max

iP  
Minimum/maximum power output of thermal 

generator i [MW]. 

down
iR  / up

iR  
Ramp up/down limit of thermal generator i 

[$/MW]. 

fore,s
jtP  

Forecast power output of RES plant j at hour 

t, and scenario s [MW]. 

lb  Susceptance of transmission line l [S]. 
max

lP  Capacity limit of transmission line l [MW]. 

dr / resr  
Spinning reserve coefficient of demand/ RES 

output [%]. 

min
n / max

n  
Minimum/maximum voltage angle bound 

[rad]. 

h / d  
Threshold for acceptable hourly/daily load 

losses [%]. 

α Given level of significance [%]. 

M  Big number serving as an upper bound for 

constraints of special purpose, M=10000. 

D. Variables 

lx  
Binary variable indicating the installation of 

transmission line l (1 if installed, otherwise 0). 
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s
itP  Power output of thermal generator i at hour t, 

and scenario s [MW]. 

s
jtP  Power output of RES plant j at hour t, and 

scenario s [MW]. 

cur,s
jtP  

Curtailed power of RES plant j at hour t, and 

scenario s [MW]. 

s
ltP  

Power flow through transmission line l at hour 

t, and scenario s [MW]. 

LL,
ntP   

Unserved load demand of bus n at hour t, and 

scenario ξ [MW]. 

( ),
s
l i t  

voltage angle of transmission lines l on the 

side of bus i at hour t, and scenario s [rad]. 

s
ref  

Phase angle of the slack bus at scenario s 

[rad]. 

Φ, Φ*
 Expansion plans and the optimal expansion 

plans. 

|h LLF −  
Hourly load loss factor of expansion plans Φ 

at scenario ξ [%] 

|d LLF −  
Daily load loss factor of expansion plans Φ at 

scenario ξ [%] 

N(S) Sample size of scenario set S. 
*
k

 
The lowest-risk scenario of the kth iteration. 
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