
P
os
te
d
on

1
J
u
n
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
56
46
16
.6
81
76
70
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Improved cooperative Ant Colony Optimization for the solution of

binary combinatorial optimization applications

Roberto Prado-Rodŕıguez1, Patricia González1, Julio R. Banga2, and Ramón Doallo1

1Universidade da Coruna
2Fundacion General CSIC

June 1, 2023

Abstract

Binary combinatorial optimization plays a crucial role in various scientific and engineering fields. While deterministic approaches

have traditionally been used to solve these problems, stochastic methods, particularly metaheuristics, have gained popularity

in recent years for efficiently handling large problem instances. Ant Colony Optimization (ACO) is among the most successful

metaheuristics and is frequently employed in non-binary combinatorial problems due to its adaptability. Although for binary

combinatorial problems ACO can suffer from issues such as rapid convergence to local minima, its eminently parallel structure

means that it can be exploited to solve large and complex problems also in this field. In order to provide a versatile ACO im-

plementation that achieves competitive results across a wide array of binary combinatorial optimization problems, we introduce

a parallel multicolony strategy with an improved cooperation scheme to maintain search diversity. We evaluate our proposal

(Binary Parallel Cooperative ACO, BiPCACO) using a comprehensive benchmark framework, showcasing its performance and,

most importantly, its flexibility as a successful all-purpose solver for binary combinatorial problems.

1



Improved cooperative Ant Colony Optimization for the

solution of binary combinatorial optimization

applications

Roberto Prado-Rodŕıgueza, Patricia Gonzáleza, Julio R. Bangab, Ramón
Doalloa

Email addresses: roberto.prado@udc.es, patricia.gonzalez@udc.es, j.r.banga@csic.es,
ramon.doallo@udc.es

aCITIC, Computer Arquitecture Group, University of A Coruña, Spain,
bComputational Biology Lab, MBG-CSIC, Spanish National Research Council,

Pontevedra, Spain,

Abstract

Binary combinatorial optimization plays a crucial role in various scientific
and engineering fields. While deterministic approaches have traditionally
been used to solve these problems, stochastic methods, particularly meta-
heuristics, have gained popularity in recent years for efficiently handling
large problem instances. Ant Colony Optimization (ACO) is among the most
successful metaheuristics and is frequently employed in non-binary combina-
torial problems due to its adaptability. Although for binary combinatorial
problems ACO can suffer from issues such as rapid convergence to local min-
ima, its eminently parallel structure means that it can be exploited to solve
large and complex problems also in this field. In order to provide a versatile
ACO implementation that achieves competitive results across a wide array
of binary combinatorial optimization problems, we introduce a parallel mul-
ticolony strategy with an improved cooperation scheme to maintain search
diversity. We evaluate our proposal (Binary Parallel Cooperative ACO, BiP-
CACO) using a comprehensive benchmark framework, showcasing its perfor-
mance and, most importantly, its flexibility as a successful all-purpose solver
for binary combinatorial problems.

Keywords: Binary Combinatorial Optimization, Metaheuristic, Ant Colony
Optimization, Parallel strategies

Preprint submitted to XXXX May 31, 2023



1. Introduction

To optimize means to find the best solution among several conflicting de-
mands subject to predefined requirements. The key elements of these prob-
lems are the decision variables, the objective function, and the constraints
that must be met. Of the whole space solution, those that satisfy the con-
straints form the set of feasible solutions. If the set of solutions is finite,
problems belongs to combinatorial optimization. Specifically, if the decision
variables are boolean, we will refer to them as binary combinatorial problems.

Binary combinatorial optimization problems appear in numerous applica-
tion areas, such as feature selection [1], dimensionality reduction [2, 3], unit
commitment [4, 5], manufacturing [6], computational biology [7, 8, 9, 10, 11,
12], and medicine [13, 14] among many others. The quadratic binary opti-
mization problem (QUBO) is a versatile subclass with diverse applications in
areas from operations research and finance to physics, quantum computing
and engineering design [15].

Although in general these problems are NP-hard, a number of deter-
ministic approaches have been developed for their resolution [16]. Among
the advantages of these techniques are their theoretical properties and exact
nature for small and medium size problems. However, their disadvantages
quickly arise when the dimension of the problems increases, generally re-
quiring excessive execution times and, in many cases, prohibitive memory
requirements. Therefore, other stochastic methods, and especially meta-
heuristics, have gained popularity in recent years [17, 18, 19]. Examples of
recent papers exploting metaheuristics to solve problems from the classes
listed above include [20], [21], [22] and [23] for feature selection, [24] for di-
mensionality reduction, [25] for unit commitment, [26] for manufacturing cell
formation, or [27] for cell signaling networks.

There are many different metaheuristics used for general combinatorial
optimization problems [28, 29, 25, 24, 30, 31]. One of the most popular is
Ant Colony Optimization (ACO) [32]. It is inspired by the social behavior of
ant colonies, specifically in the deposition of pheromones along the explored
paths during the search for food sources. ACO has been found to be robust
and easily tailored to a wide range of optimization problems, and it has been
applied to a number of binary combinatorial instances [33, 34, 35, 36].

The basic ACO is a general-purpose algorithm, easy to understand and
implement. ACO achieves good results in unimodal problems, that is, those
defined by the fact that all solutions are guided towards the same optimal

2



result without local minima. However, when tackling problems in which
local minima abound, its convergence quickly suffers, easily stagnating in
one of the local solutions. This fact has driven most recent proposals in the
literature to highly adapted solutions to the problem at hand, and therefore,
loosing its all-purpose feature.

In this work we present an extension of ACO to handle challenging bi-
nary combinatorial problems. Our main objective has been to improve its
performance, especially for large and difficult instances, without losing its
features as a general solver that can be applied to a wide range of problems.
To achieve this goal, the improvement of the cooperative scheme in a paral-
lel multicolony implementation previously proposed by the authors [37] have
been explored.

The structure of the paper is as follows. Section 2 presents the related
work. Section 3 describes the proposed ACO algorithm adapted to handle
binary combinatorial problems. In Section 4 the cooperative parallel scheme
proposed is explained. In section 5, we present the experiments carried out
and discuss the results. Finally, in Section 6 we summarize the conclusions
from this study.

2. Related Work

The parallelization of the ACO has been studied before in a number of pre-
vious works illustrating the use different paradigms, programming languages
and parallel infrastructures [38, 39, 40, 41, 42]. A taxonomy of the different
parallel models can be found in [43]. In this paper we adopt a multicolony
model, where several colonies explore the search space isolately but including
cooperation steps where information is exchanged among them. Other au-
thors have previously explored this model for the parallelization of the ACO
algorithm [44, 45, 46, 37]. All of these works confirm that a compromise be-
tween exploration within each colony and cooperation through information
exchange is required to achieve accurate results and good performance.

We have extensive experience in the parallelization of different meta-
heuristics using different strategies [47, 48, 49, 50, 51, 52, 53, 54]. Based
on this previous experience, we have proposed in [27] a parallel ACO algo-
rithm adapted to a particular binary combinatorial problem, the signaling
of cellular networks. The most notable features of the proposed algorithm
were decentralization, since a coordination process is not needed to organize
and control the algorithm, and the use of an asynchronous communication

3



protocol between processes. However, while that proposal initially proved
efficient for the specific problem at hand, it encountered convergence issues
when extended to a wider range of problems. Therefore, one of the objectives
of the work presented in this paper is to improve the efficiency of the par-
allel multi-colony algorithm through a self-tuned smart cooperation between
colonies.

3. Ant Colony Optimization for Binary Combinatorial Problems

The ACO algorithm is based on the observation of the behavior of real
ants. In nature, ants follow the trail of pheromones left by the others when
looking for food sources. In this algorithm, the artificial ants in a colony
build the solutions in each iteration and deposit pheromones in a matrix
that guides them through subsequent iterations [55, 56].

Figure 1 shows a simple scheme of ACO. A basic ACO has three main pro-
cedures: ConstructAntsSolutions, UpdatePheromones, and DaemonActions.
ConstructAntsSolutions manages a colony of artificial ants that incremen-
tally build solutions to the optimization problem by means of stochastic lo-
cal decisions based on pheromone trails and heuristic information. Then, the
UpdatePheromones procedure modifies the pheromone trails based both on
the evaluation of the new solutions and on a pheromone evaporation mech-
anism. Finally, a DaemonActions procedure performs problem specific or
centralized actions, which cannot be performed by single ants.

ACO is often used for problems that can be reduced to finding routes in
graphs, such as the Traveling Salesman Problem (TSP) [57]. This problem
is based on discovering the best route for a traveller who has to visit many
cities. In a classical TSP problem, the objective is to visit all the cities and
return to the origin covering the shortest possible distance. When it comes
to binary combinatorial problems, this can be reduced to finding the optimal
path that goes from one node to another by choosing between two possible
paths: 0 or 1 (see Figure 2). Pheromones will be deposited on paths 0 or 1
in each of the N steps. Ants in the subsequent iterations will be influenced
by the previously deposited pheromones.

To decide the new path, each artificial ant applies the following proba-
bilistic transition rule, that depends on pheromone values:

pij =
τij

τi0 + τi1
(1)

4



Figure 1: Basic scheme of the ACO algorithm

Figure 2: In a binary combinatorial problem, ants choose path 0 or path 1 at each step.

5



where, τij represents the desirability of using the path j to cross edge i
given by the pheromone trails, that is, whether to follow path 0 (τi0) or path
1 (τi1).

After the construction of a new solution by each ant, the pheromone trails
are updated, increasing their values when ants deposit pheromone on promis-
ing paths to guide other ants in constructing new solutions, or decreasing
their values due to pheromone evaporation. An evaporation process avoid
unlimited accumulation of pheromone trails and also to allow bad choices
to be forgotten, preventing the algorithm from premature convergence to
suboptimal regions and from getting stuck in a local optimum. The evapo-
ration procedure is implemented by decreasing τ by a constant rate ρ (the
pheromone evaporation rate):

τij ← (1− ρ)τij (2)

Then, ants deposit pheromone on the paths they have crossed in their
construction:

τij ← τij +∆(τij) (3)

As shown in the transition rule (Equation 1), the possibility for an ant to
cross a path increases with the pheromone trail. Therefore, it is in this step
where most of the variants of the ACO algorithm differ. In this work, the
MAX−MIN Ant System (MMAS) variant [58] has been used. This variant
strongly exploits the best paths found, since only the iteration-best ant, that
is, the ant that constructed the best solution in the current iteration, or the
best-so-far ant, that is, the ant that constructed the best solution so far,
deposits pheromones in each iteration:

∆(τij)
best =

{
1/f(Sbest), if path j for edge i belongs to Sbest

0, otherwise
(4)

where f(Sbest) is the function score of the solution Sbest found by the iteration-
best ant or the best-so-far ant.

In most general implementations of the MMAS algorithm, the use of
iteration-best solution and the best-so-far solution alternates. The choice of
the relative frequency with which the two pheromone update rules are applied
has an impact in the search: when pheromone updates are always performed
by the best-so-far ant, the search focuses very quickly around the best-so-far
solution, whereas when the iteration-best ant updates pheromones the search

6



is less directed. Experimental results indicate that for small problems it may
be better to use only iteration-best pheromone updates, while for large ones
the best performance is obtained by giving an increasingly stronger emphasis
to the best-so-far solution. This can be achieved by gradually increasing the
frequency with which the best-so-far ant updates the pheromone trails. For
more details on the particular implementation took as a basis in this work,
the reader is referred to [27].

In ACO, when the algorithm gets stagnated, i.e. after a certain number
of iterations without improving the best solution, a restart is executed. In
addition to re-initialising the pheromone matrix, the fitness of the best-so-far
ant is assigned the worst possible score. This ensures that in the next step,
in all probability, the best-so-far ant is replaced by the best-iteration ant. As
the pheromone matrix is reset and all the paths have the same probability
to be chosen, the best-iteration ant is completely random, thus achieving
a complete restart. Each time a restart is done, new paths are explored,
avoiding repeating deficient solutions.

As mentioned before, ACO offers good results for solving unimodal prob-
lems. However, when it comes to solving difficult problems, especially those
with many local minima, the ACO tends to get stuck easily. To avoid prema-
ture convergence to local minima and, thus, the stagnation of metaheuristics,
previous studies indicate the need of increasing the diversity in the search.
A good way to achieve this is the use of parallel strategies. This is especially
effective if it is accomplished using a parallel infrastructure, which will speed
up the execution time. The following section describes the solution used in
this work and the enhancement introduced in the cooperation strategy to
improve its performance.

4. Parallel ACO

The fact that the ConstructAntsSolutions procedure consists of tasks that
can be performed independently by each ant, facilitates the implementation
of parallel ACO approaches. These parallel proposals are especially appeal-
ing for solving problems with a large computational cost, since they may
lead to shorten the execution time significantly. However, the ACO parallel
proposals can not only shorten the execution time by performing tasks in
parallel, but could also modify the systemic properties of the algorithm and
enhance its convergence.

7



Different parallel strategies can be applied to metaheuristics in general [59],
and ACO in particular [37]. Most of them can be classified into fine-grained
and coarse-grained strategies. A fined-grained parallelization attempts to
find parallelism in the sequential algorithm. In the case of the ACO meta-
heuristic, finding the parallelism in the sequential algorithm is straightfor-
ward, since most of the time-consuming operations are placed in loops that
can be performed in parallel within the ConstructAntsSolutions procedure.
However, in fined-grained approaches the parallel algorithm maintains the
sequential behavior in terms of convergence.

A different solution is a coarse-grained approach, which involves looking
for a parallel variant of the sequential algorithm. The most popular coarse-
grained solution consists of implementing an island-based model. In these
models, different distributed colonies exist where the original algorithm is
executed in isolation and, from time to time, these colonies exchange infor-
mation that allow them update their results with the information received
from the rest. This parallel implementation is usually known as multicolony
model. A schematic representation can be seen in Figure 3.

Multicolony approaches aim to take advantage of distributed resources
to extend the search for solutions. The most trivial multicolony solution
consists of a parallel search on multiple non-cooperating colonies. Although
this solution was found to yield good results, results ususally stand out for
approaches that include colony cooperation.

The cooperative approach proposed in this work is based on the model
proposed in [37], adapted to a binary combinatorial problem in [27]. In order
to improve the efficiency of the algorithm in common multimodal problems,
we propose an improvement of the cooperative strategy.

4.1. Cooperative scheme

When designing a parallel multicolony ACO approach, some key issues
must be addressed, such as what information is exchanged between colonies,
which of them are involved in the communication process, when and how
this process is carried out, and how the information received in each colony
is used. In this work, the multicolony approach proposed in [37] have been
followed. The exchange of information between colonies is driven by the
quality of the solutions, that is, when a colony finds a promising solution,
it broadcasts it to other colonies. For this, an asynchronous communication
protocol is used, thus avoiding some colonies remaining inoperative while

8



Figure 3: Scheme of a multiconolony implementation

waiting for information from other colonies. In the cooperative scheme pro-
posed in [37], when a promising new solution arrives at a colony and improves
the best-solution-so-far, the latter is always replaced by the former. However,
although that scheme performs well for some problems, it may not be effec-
tive in many cases. Foremost, the goal of the parallel cooperative schemes is
that promissing colonies help those that are stuck in local minima. But in
practice, the opposite outcome often occurs: a colony that receives a better
solution is diverted from its own search. All colonies converge to the same
local solution, reinforcing the same path, and eventually getting stuck at the
same local minimum. In short, a full cooperation strategy can often lead to
the loss of the diversity that the multicolony parallel strategy claims for.

In this work an efficient selective cooperative scheme is presented. The
proposal maintains the all-purpose property and the key features of the for-
mer, namely: a cooperation driven by the quality of the solutions and a
completely asynchronous implementation. When a colony obtains a promis-

9



ing solution, this solution is spread to the rest and all processes receive
the promising solutions. However, to avoid the problem mentioned, only
a few processes introduce these solutions into their colony, modifying the
pheromone matrix. To determine if a solution that has just arrived in a
process should be included in the colony, two aspects are taken into account.

First, although all the colonies cooperate by spreading their promising
solutions, some colonies keep their execution outside the influence of the
rest, for which they never use the solutions received from outside the colony.
This ensures the desired diversity in the ACO progression. The number of
colonies that remain independent depends on an integer parameter called
cfreq. It could be set from cfreq = 1 (full cooperation since 1 out 1 colonies
-all of them- use the incoming solutions) to cfreq → ∞ (no-cooperation
between colonies).

Second, to further avoid the danger of premature convergence due to
early cooperation, the processes will only use the solutions received from
other colonies once they have been stalled for a certain number of iterations.
This number of iterations are defined by the cstall parameter. This ensures
that, even the processes that use the incoming solutions, introduce them in
the colony when their execution is stalled.

By introducing these two parameters, the tier of cooperation required
can be controlled. This cooperation depends on the size of the problem,
its hardness, and the resources available to address the problem at hand.
The pseudocode of the proposal, called Binary Parallel Cooperative ACO
(BiPCACO), is shown in Algorithm 1.

As a general rule, it is very complicated to know the optimal level of
cooperation for a problem before dealing with it. To address this situation,
a self-adaptive approach to automatically determine the tier of cooperation
is also proposed in this paper. To do this, the size of the problem and the
number of resources to be used are taken as a basis, and the parameters are
tuned at runtime. Note that the hardness of the problem, which also influ-
ences the level of cooperation, is impossible to determine beforehand. Let us
call cooperation-index to the ratio between the size of the problem and the
number of processes to be used. The higher this index is, the more intensive
the cooperation between the colonies should be. Ranges of this index are
established to set an upper limit to the cstall parameter. The minimum
cstall is always 0 (full cooperation). Algorithm 2 shows a pseudocode of
the proposal. At the start of the execution, cstall takes its maximum value,
according to the cooperation-index of the problem. The cooperation at the

10



Algorithm 1: BiPCACO pseudocode.

// Initialize each colony and MPI environment

1 MPI Init
2 Initialize colony parameters
3 Initialize colony pheromone trails

// Prepare a reception buffer for asynchronous communications in

each colony

4 MPI IRecv(promising-solution,request)
5 while termination condition not met do

// Each colony constructs a set of new solutions isolately

6 ConstructSolutions
// When a new local best solution is found, it is spread

asynchronously to the colonies

7 if local-best-solution-so-far < global-best-solution-so-far then
8 MPI ISend(local-best-solution-so-far)

// Each colony check the reception of foreign promising

solutions

9 repeat
// MPI check asynchronous reception

10 MPI Test(request, recvflag)
11 if recvflag then

// Only some colonies include foreign solutions to their

search

12 if promising-solution < global-best-solution-so-far &&
process id%cfreq == 0 && stall iters >= cstall then

13 global-best-solution-so-far ← promising solution

// Prepare a new reception buffer for next receptions

14 MPI IRecv(promising-solution,request)

15 until (!recvflag)
// Each colony updates its pheromone matrix

16 UpdatePheromones
17 DaemonActions

11



Algorithm 2: Establishing initial maximum cooperation.

1 coop-index ← problem size/NPROC
// Note that min cstall ← 0 means full cooperation.

2 min cstall ← 0
3 if coop− index > 200 then
4 max cstall ← 10% restart iters

5 else if coop− index > 150 then
6 max cstall ← 20% restart iters

7 else if coop− index > 100 then
8 max cstall ← 30% restart iters

9 else if coop− index > 50 then
10 max cstall ← 40% restart iters

11 else
12 max cstall ← 50% restart iters

13 cstall ← max cstall;

begining of the execution is, then, scarce. Thus, the algoritm pursues for
the diversity of multiple colonies. However, each time the algorithm gets
stuck and a restart is triggered, cstall is reduced by 10% of restart-iterations
size, so the algorithm increases their rely on incoming solutions after be-
ing reinitialized. If reboots continue to occur, the cstall will continue to
drop and, thus, the algorithm increases the cooperation between colonies.
When the minimum cstall is reached (0 iterations), the algorithm returns to
the maximum value. In this way, even in multimodal problems, where the
characteristics can change as the execution goes through the different search
spaces, different cooperation degrees are explored in a round-robin fashion.

5. Experimental results

In this section a series of experiments are shown to assess the value of the
strategies proposed in this work.

5.1. Testbed

All the benchmarks used to carry out the experiments reported in this
paper are obtained from the W-Model [60]. The W-Model is a tunable black-

12



Table 1: W-Model parameters for benchmarks 20 to 25.

Benchmark Problem size Neutrality Epistasis Ruggedness/Deceptiveness
20 640 4 130 (81%) 10000 (78%)
21 720 4 150 (83%) 12000 (75%)
22 1000 4 200 (80%) 25000 (80%)
23 640 4 130 (81%) 0
24 720 4 150 (83%) 0
25 1000 4 200 (80%) 0

box discrete optimization benchmarking problem (BB-DOB) that uses a bit-
string representation of the data. The W-Model framework creates different
benchmarks by means of different input parameters that modulate different
features for the problems.

In [60] a set of 19 diverse benchmarks was selected as a representative
pool because they exhibit very different features, hardness and algorithm
performance. In this work, the same set of benchmarks have been used, in
order to be able to compare the results with that outstanding work. These
benchmarks are labeled as 1 to 19 in the following.

Six additional challenging benchmarks labeled as 20 to 25 have been de-
fined too. The W-model parameters used to define these challenging prob-
lems can be seen in Table 1. The reader can consult the parameters for the
original 19 benchmarks in [60].

Table 2 summarizes the features of this set of benchmarks, classified as:

• neutrality : when a search operation applied to a solution candidate
yields no change in objective value.

• epistasis : when the contribution of some decision variables to the ob-
jective value depends on the value of other decision variables.

• ruggedness : when small changes in a solution cause large changes in its
fitness.

• deceptiveness : when a move to a gradient descend leads the search away
from the global optimum.

All the experiments were performed at the Galicia Supercomputing Cen-
ter (CESGA) using the FinisTerrae-III supercomputer. Each FinisTerrae-III
node is composed of two Intel Xeon Ice Lake 8352Y CPUs running at 2.2

13



Table 2: Features of the W-Model benchmarks used in this section.

Benchmark Problem size Neutrality Epistasis Ruggedness/Deceptiveness
1 20 low medium low
2 20 low medium medium
3 16 - low medium
4 48 medium medium medium
5 25 - high medium
6 32 - - high
7 128 high low -
8 128 high medium -
9 128 high low low
10 50 - high low
11 100 low medium low
12 150 medium low medium
13 128 low medium low
14 192 medium low very low
15 192 medium low low
16 192 medium low low
17 256 high high very low
18 75 - high very low
19 150 low medium very low
20 640 high high high
21 720 high high high
22 1000 high high high
23 640 high high -
24 720 high high -
25 1000 high high -

14



Table 3: BiPCACO parameters used in the experiments of this section.

Parameter Value Description
population 200 Number of solutions per iteration
evaporation rate 0.05 Percentage of pheromone reduced per iteration
restart 50,100 Iterations with no improvement that trigger a restart

50 for sequential algorithm and 100 for parallel one
cfreq 1,2 Frequency of colonies receiving solutions if stagnated.

Here we try 1 of 1 and 1 of 2 colonies.
cstall 0-∞ Receive other colonies solutions after cstall

iterations of stagnation.

GHz, with 32 cores per processor (64 cores per node), and 256 GB of RAM.
The nodes are connected using an Mellanox InfiniBand HDR 100 Gbps in-
terconnect using a fat-tree topology.

5.2. Methodology and reproducibility

To allow the reproducibility of the experiments shown in this paper,
authors make public available the code of the BiPCACO algorithm in the
https://gitlab.com/RobertoPradoRodriguez/bipcaco repository.

Different tests have been carried out in this work. Experiments have been
performed using as stopping criteria both a maximum effort (in execution
time) or a quality objective (that is, achieving the optimum value in each
experiment, which in the case of the W-Model benchmarks is the value 0).

The user-defined parameters of the proposed BiPCACO algorithm are
shown in Table 3, where n is the problem size.

For the generation of random numbers, the MT19937 variant of the
Mersenne Twister algorithm [61] is used. A four-digit number is used as
the initial seed.

Given the stochastic nature of these methods, a total of 100 executions
have been carried out for each experiment, and a statistical study has been
carried out on the reported data.

5.3. Assessment of BiPCACO proposal

To assess the cooperative scheme, the results of seven different configu-
rations have been compared, from no cooperation to intensive cooperation.

• M1: cfreq →∞, that is, a configuration without cooperation between
colonies.

15



• M2: cfreq → 2, that is, only one out of two (50%) of the colonies
incorporate foreigner solutions to their search; and cstall = n/25, that
is, the foreigner solutions are incorporated only when the number of
stagnate iterations is n/25.

• M3: cfreq → 1, that is, all the colonies incorporate foreigner solutions
to their search; and cstall = n/10, that is, the foreigner solutions
are incorporated only when the number of stagnate iterations is large
(n/10).

• M4: cfreq → 1 and cstall = n/25, that is, all the colonies incorpo-
rate foreigner solutions to their search when the number of stagnate
iterations is n/25.

• M5: cfreq → 1 and cstall = n/50, that is, all the colonies incorpo-
rate foreigner solutions to their search when the number of stagnate
iterations is small (n/50).

• M6: cfreq → 1 and cstall = 0, that is, all the colonies incorporate
foreigner solutions everytime they received it. This is the most intensive
cooperative configuration.

• M7: self-adapted, that is, the degree of cooperation is dynamically
adjusted in execution time.

Figure 4 summarizes the results obtained for experiments using the opti-
mum value as stopping criterium. This figure displays the average of the ex-
ecution time in seconds, and attempts to compare different cooperative con-
figurations using the most challenging benchmark problems of the testbed.
These challenging benchmarks are not only large, but also three of them (20
to 22) exhibit features that make them very difficult to solve. They are mul-
timodal and are defined by having large number of local minima. In those
instances, the cooperation between colonies favors the convergence rate of
the algorithm.

Problems 23, 24 and 25 are unimodal, i.e. the search is oriented smoothly
to the global minimum. Since the algorithm does not get stuck, it does not
need cooperation, and therefore in problems 23 and 24 there is hardly any
difference in times among all methods. In practice, all behave in a non-
cooperative fashion. Problem 25, although unimodal, is too large in size and
cooperation becomes necessary.

16



Figure 4: Comparison of different cooperative configurations in BiPCACO. Average time
(in seconds) achieved in 100 runs of experiments using optimum value as stopping cri-
terium, for the most challenging benchmarks using 4, 8, 12, 24 and 64 processes.

Certain conclusions can be drawn from the results in Figure 4. A mid co-
operation scheme, for example the M4 configuration, outperforms the other
configurations for 4, 8, 24 and 64 colonies in terms of average time for bench-
mark 20. In benchmark 21, tougher that benchmark 20, there is a need for
increasing the cooperation, and results obtained for M5 configuration outper-
form the rest when few processes are involved. This situation is reaffirmed
in problem 22, larger and more difficult than benchmark 21. The degree of
cooperation that achieves the best performance is M6. That is, the larger
and more difficult to solve the problem, the larger the need for cooperation
between the colonies.

17



Results in Figure 4 also demonstrate that an intensive cooperation (M6
configuration) is effective when using few processes to solve very difficult
problems. In those experiments, the opportunities of finding a good solution
are low, so the need to share promising solutions as soon as possible is high
in order to accelarate the progress of the search. However, when the number
of processes increases, the chances for one of them to find a good solution
on its own increases, and cooperation can interfere with this search and
harm diversity. If a colony frequently accepts external solutions, the process
deviates from their own search and ends up converging towards the same
local minimum as the rest of the colonies. This behavior is more accentuated
the more processes exist.

Based on previous experiments, it can be concluded that there are essen-
tially three features of the problem at hand that will determine the degree
of cooperation that benefits BiPCACO execution:

• (1) Amount of processes: the smaller the number of processes, the
higher the cooperation between colonies should be.

• (2) Multimodality: The higher the bias towards the multimodal land-
scape, the larger the probability that the algorithm will get stuck when
there is an excess of cooperation.

• (3) Problem size: the larger the problem, the greater the need for
cooperation.

The problem of the previous conclusions is the difficulty for the user to
know the features of the problem in advance, and therefore the difficulty
of adjusting the configuration parameters before the execution. It is at this
point where the self-tuned approach is especially attractive. Moreover, results
of Figure 4 evidence that it is also competitive when compared with the
solution obtained with the best configuration in each problem.

Results in previous figures were obtained from 100 independent runs of
each experiment. However, displaying only the average execution time does
not give a clear view of the behavior of the algorithm according to the level of
cooperation introduced with the different configurations. To illustrate this,
logarithmic scale plots for benchmarks 20 and 22 are shown in Figure 5,
Figure 6, Figure 7 and Figure 8. Those figures show the cumulative prob-
ability of reaching the optimum related to the execution time, for the 100
runs of each experiment. We choose benchmarks 20 and 22 to show how,

18



Figure 5: Cumulative probability of reaching the optimum in benchmark 20 using 4 pro-
cesses, where M1-7 indicates different cooperation schemes as explained in section 5.3.

Figure 6: Cumulative probability of reaching the optimum in benchmark 20 using 64
processes, where M1-7 indicates different cooperation schemes as explained in section 5.3.

despite being both large and difficult problems, in one case cooperation is
more beneficial than in the other, however, this is somewhat difficult to know
beforehand.

As it can be seen, for benchmark 20, a configuration with no cooperation
(M1) is better than an intensive cooperation (M6). However, a self-tuned co-
operation (M7) adapts during runtime and offers a competitive result versus
the non-cooperation solution.

On the other hand, for benchmark 22, the best solution turns out to
be a configuration with an intensive cooperation (M6) compared to lack of
cooperation (M1) for 4 processes. And, on the contrary, the absence of
cooperation (M1) is better compared to an intense cooperation (M6) for 64
processes. Besides, the self-tuned solution (M7) is always competitive when
compared with the best solution in each situation.

19



Figure 7: Cumulative probability of reaching the optimum in benchmark 22 using 4 pro-
cesses, where M1-7 indicates different cooperation schemes as explained in section 5.3.

Figure 8: Cumulative probability of reaching the optimum in benchmark 22 using 64
processes, where M1-7 indicates different cooperation schemes as explained in section 5.3.

These previous results show that the self-tuned solution, although it may
not improve the superior configuration, allows the user to get rid of the
responsibility of choosing the most appropriate parameters, making the al-
gorithm reconfigure itself, at execution time, depending on the progress of
the search. Results of the self-tuned solution stands out as a competitive
alternative.

Finally, Figure 9 shows the beanplots of the previous executions, to graph-
ically illustrate the distribution of the results. Note that the bean of the
self-tuned execution always achieves competitive results versus the best of
the other configurations.

20



(a) (b)

(c) (d)

Figure 9: Beanplots with the distribution of the execution time for (a) benchmark 20 using
4 processes, (b) benchmark 20 using 64 processes, (c) benchmark 22 using 4 processes and
(d) benchmark 22 using 64 processes, where M1-7 indicates different cooperation schemes
as explained in section 5.3.

21



5.4. Comprehensive assessment

To perform comprehensive assessment of the proposed BiPCACO algo-
rithm, a comparison has been carried out with the results presented in [60]
for 17 different algorithms, solving the 19 benchmarks described in 5.1. To
perform a fair comparison, the same metric as in [60] was used, the ERT
(Expected Run Time). ERT allows to decouple the runtime results from the
infrastructure on which the experiments are executed. This metric is calcu-
lated using the same procedure described in [60], aggregating the number of
evaluations of all the runs in a experiment and dividing by the number of
those runs that found the optimum. The base 2 logarithm is applied and
rounded off. For each run the number of evaluations included in the ERT
calculation is:

• the number of evaluations of the colony that achieves it, when the
optimum is reached.

• 220 evaluations, when the optimum is not reached.

Figure 10 shows a table with the ERT of the 17 algorithms that were
compared in [60] together with the results of the sequential ACO described
in Section 3 and BiPCACO proposal.

In these results it can be seen that the sequential ACO outperforms the
rest of the algorithms in 9 of the 19 problems (specifically in the most difficult
and large ones). BiPCACO with the self-tuned configuration outperforms
most of them, even using only 4 colonies. The more colonies used in the
BiPCACO proposal, the better. Note that getting a small improvement
on the ERT result means a significant amount of execution time, given the
definition of the metric.

6. Conclusions

This paper introduces an improved multicolony ACO for binary combina-
torial problems. This novel method aims to overcome the main handicap of
such algorithm, i.e., its tendency to get stuck in local minima. We introduce
a cooperative parallel ACO strategy in which colonies share promising solu-
tions with each other, but only incorporate them into their search if certain
conditions are met. This approach maintains diversity, making it easier to
move out of local minima. Based on tests with different cooperative config-
urations, a self-tuned version was developed that adjusts the parameters of

22



Figure 10: Comparison of ERT achieved by ACO and BiPCACO with other 17 algorithms
reported in [60], where ACO stands for sequential ACO and BiPCACO(N) for BiPCACO
algorithm with N colonies.

the cooperative algorithm at runtime. This allows finding a good solution for
each problem without the need to know a priori the features of the problem
at hand.

The design and implementation of this proposal was guided by the goal of
preserving the versatility of the original ACO algorithm. We strove to create
an implementation that is easy to understand, configurable, and applica-
ble to a wide range of binary problems, avoiding ad hoc solutions tailored
exclusively to specific problem types.

To evaluate the approach, we used a set of benchmarks from the W-
Model framework, which allows us to evaluate algorithms on a wide range
of problem sets. The new cooperative strategy has significantly reduced the
average time on all tests, especially on large-scale, complex problems similar
to those encountered in real-world scenarios.

Acknowledgments

This work was supported by the Ministry of Science and Innovation of
Spain (PID2019-104184RB-I00 / AEI / 10.13039/501100011033), and by

23



Xunta de Galicia and FEDER funds of the EU (Centro de Investigación
de Galicia accreditation 2019–2022, ref. ED431G 2019/01; Consolidation
Program of Competitive Reference Groups, ref. ED431C 2021/30). JRB
acknowledges funding from the Ministry of Science and Innovation of Spain
MCIN / AEI / 10.13039/501100011033 through grant PID2020-117271RB-
C22 (BIODYNAMICS). Authors also acknowledge the Galician Supercom-
puting Center (CESGA) for the access to its facilities.

References

[1] Yun Li, Tao Li, and Huan Liu, “Recent advances in feature selection
and its applications,” Knowledge and Information Systems, vol. 53, no.
3, pp. 551–577, 2017.

[2] Miguel A Carreira-Perpinán, “A review of dimension reduction tech-
niques,” Department of Computer Science. University of Sheffield. Tech.
Rep. CS-96-09, vol. 9, pp. 1–69, 1997.

[3] Avishek Pal and Jhareswar Maiti, “Development of a hybrid methodol-
ogy for dimensionality reduction in mahalanobis–taguchi system using
mahalanobis distance and binary particle swarm optimization,” Expert
Systems with Applications, vol. 37, no. 2, pp. 1286–1293, 2010.

[4] Ross Baldick, “The generalized unit commitment problem,” IEEE
Transactions on Power Systems, vol. 10, no. 1, pp. 465–475, 1995.

[5] Xiaohui Yuan, Hao Nie, Anjun Su, Liang Wang, and Yanbin Yuan,
“An improved binary particle swarm optimization for unit commitment
problem,” Expert Systems with applications, vol. 36, no. 4, pp. 8049–
8055, 2009.

[6] Grammatoula Papaioannou and John M Wilson, “The evolution of
cell formation problem methodologies based on recent studies (1997–
2008): Review and directions for future research,” European journal of
operational research, vol. 206, no. 3, pp. 509–521, 2010.

[7] Melody K Morris, Julio Saez-Rodriguez, Peter K Sorger, and Douglas A
Lauffenburger, “Logic-based models for the analysis of cell signaling
networks,” Biochemistry, vol. 49, no. 15, pp. 3216–3224, 2010.

24



[8] Julio R Banga, “Optimization in computational systems biology,” BMC
systems biology, vol. 2, no. 1, pp. 1–7, 2008.

[9] Matthew B Biggs and Jason A Papin, “Managing uncertainty in
metabolic network structure and improving predictions using ensem-
blefba,” PLoS computational biology, vol. 13, no. 3, pp. e1005413, 2017.

[10] Jose M Jimenez-Guardeño, Ana Maria Ortega-Prieto, Borja Menen-
dez Moreno, Thomas JAMaguire, Adam Richardson, Juan Ignacio Diaz-
Hernandez, Javier Diez Perez, Mark Zuckerman, Albert Mercadal Playa,
Carlos Cordero Deline, et al., “Drug repurposing based on a quantum-
inspired method versus classical fingerprinting uncovers potential antivi-
rals against sars-cov-2,” PLoS computational biology, vol. 18, no. 7, pp.
e1010330, 2022.

[11] Somayeh Bakhteh, Alireza Ghaffari-Hadigheh, and Nader Chaparzadeh,
“Identification of minimum set of master regulatory genes in gene regu-
latory networks,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 17, no. 3, pp. 999–1009, 2018.

[12] Mark W Lewis, Amit Verma, and Todd T Eckdahl, “Qfold: a new
modeling paradigm for the rna folding problem,” Journal of Heuristics,
vol. 27, no. 4, pp. 695–717, 2021.

[13] Stefan Weber, Antal Nagy, Thomas Schüle, Christoph Schnörr, and At-
tila Kuba, “A benchmark evaluation of large-scale optimization ap-
proaches to binary tomography,” in International Conference on Dis-
crete Geometry for Computer Imagery. Springer, 2006, pp. 146–156.

[14] Danila Potyagaylo, Elisenda Gil Cortés, Walther HW Schulze, and Olaf
Dössel, “Binary optimization for source localization in the inverse prob-
lem of ECG,” Medical & biological engineering & computing, vol. 52,
no. 9, pp. 717–728, 2014.

[15] Abraham P Punnen, “The quadratic unconstrained binary optimization
problem,” Tech. Rep., Springer, 2022.

[16] Abraham P Punnen and Renata Sotirov, “Mathematical programming
models and exact algorithms,” in The Quadratic Unconstrained Binary
Optimization Problem, pp. 139–185. Springer, 2022.

25



[17] Zhipeng Lü, Fred Glover, and Jin-Kao Hao, “A hybrid metaheuristic ap-
proach to solving the ubqp problem,” European Journal of Operational
Research, vol. 207, no. 3, pp. 1254–1262, 2010.

[18] Kenneth Sörensen and Fred Glover, “Metaheuristics,” Encyclopedia of
operations research and management science, vol. 62, pp. 960–970, 2013.

[19] Prachi Agrawal, Hattan F Abutarboush, Talari Ganesh, and Ali Wagdy
Mohamed, “Metaheuristic algorithms on feature selection: A survey of
one decade of research (2009-2019),” IEEE Access, vol. 9, pp. 26766–
26791, 2021.

[20] Majdi Mafarja, Ibrahim Aljarah, Ali Asghar Heidari, Hossam Faris,
Philippe Fournier-Viger, Xiaodong Li, and Seyedali Mirjalili, “Binary
dragonfly optimization for feature selection using time-varying transfer
functions,” Knowledge-Based Systems, vol. 161, pp. 185–204, 2018.

[21] Qasem Al-Tashi, Said Jadid Abdul Kadir, Helmi Md Rais, Seyedali
Mirjalili, and Hitham Alhussian, “Binary optimization using hybrid
grey wolf optimization for feature selection,” Ieee Access, vol. 7, pp.
39496–39508, 2019.

[22] Shokooh Taghian and Mohammad H Nadimi-Shahraki, “A binary meta-
heuristic algorithm for wrapper feature selection,” Int. J. Comput. Sci.
Eng.(IJCSE), vol. 8, pp. 168–172, 2019.

[23] Sankalap Arora and Priyanka Anand, “Binary butterfly optimization
approaches for feature selection,” Expert Systems with Applications,
vol. 116, pp. 147–160, 2019.

[24] Abdelazim G Hussien, Diego Oliva, Essam H Houssein, Angel A Juan,
and Xu Yu, “Binary whale optimization algorithm for dimensionality
reduction,” Mathematics, vol. 8, no. 10, pp. 1821, 2020.

[25] Srikanth Reddy K, Lokesh Panwar, BK Panigrahi, and Rajesh Kumar,
“Binary whale optimization algorithm: a new metaheuristic approach
for profit-based unit commitment problems in competitive electricity
markets,” Engineering Optimization, vol. 51, no. 3, pp. 369–389, 2019.

26



[26] Jeng-Shyang Pan, Pei Hu, and Shu-Chuan Chu, “Binary fish migra-
tion optimization for solving unit commitment,” Energy, vol. 226, pp.
120329, 2021.

[27] Patricia González, Roberto Prado-Rodriguez, Attila Gábor, Julio Saez-
Rodriguez, Julio R Banga, and Ramón Doallo, “Parallel ant colony
optimization for the training of cell signaling networks,” Expert Systems
with Applications, p. 118199, 2022.

[28] Broderick Crawford, Ricardo Soto, Gino Astorga, José Garćıa, Carlos
Castro, and Fernando Paredes, “Putting continuous metaheuristics to
work in binary search spaces,” Complexity, vol. 2017, 2017.

[29] Manuel Lozano and Carlos Garćıa-Mart́ınez, “Hybrid metaheuristics
with evolutionary algorithms specializing in intensification and diver-
sification: Overview and progress report,” Computers & Operations
Research, vol. 37, no. 3, pp. 481–497, 2010.

[30] Zakaria Abd El Moiz Dahi, Chaker Mezioud, and Amer Draa, “Bi-
nary bat algorithm: On the efficiency of mapping functions when han-
dling binary problems using continuous-variable-based metaheuristics,”
in IFIP International Conference on Computer Science and its Applica-
tions. Springer, 2015, pp. 3–14.

[31] Shokooh Taghian, Mohammad H Nadimi-Shahraki, and Hoda Zamani,
“Comparative analysis of transfer function-based binary metaheuristic
algorithms for feature selection,” in 2018 International Conference on
Artificial Intelligence and Data Processing (IDAP). IEEE, 2018, pp. 1–6.

[32] Marco Dorigo and Thomas Stützle, “Ant colony optimization: overview
and recent advances,” Handbook of metaheuristics, pp. 311–351, 2019.

[33] Min Kong and Peng Tian, “A binary ant colony optimization for the
unconstrained function optimization problem,” in International Con-
ference on Computational and Information Science. Springer, 2005, pp.
682–687.

[34] Ahmed Al-Ani, “Feature subset selection using ant colony optimiza-
tion,” International journal of computational intelligence, 2005.

27



[35] Se-Hwan Jang, Jae-Hyung Roh, Wook Kim, Tenzi Sherpa, Jin-Ho Kim,
and Jong-Bae Park, “A novel binary ant colony optimization: Appli-
cation to the unit commitment problem of power systems,” Journal of
Electrical Engineering and Technology, vol. 6, no. 2, pp. 174–181, 2011.

[36] Shima Kashef and Hossein Nezamabadi-pour, “An advanced aco al-
gorithm for feature subset selection,” Neurocomputing, vol. 147, pp.
271–279, 2015.

[37] Patricia González, Roberto R Osorio, Xoan C Pardo, Julio R Banga,
and Ramón Doallo, “An efficient ant colony optimization framework
for HPC environments,” Applied Soft Computing, vol. 114, pp. 108058,
2022.

[38] Thomas Stützle, “Parallelization strategies for ant colony optimization,”
in International Conference on Parallel Problem Solving from Nature.
Springer, 1998, pp. 722–731.

[39] Marcus Randall and Andrew Lewis, “A parallel implementation of ant
colony optimization,” Journal of Parallel and Distributed Computing,
vol. 62, no. 9, pp. 1421–1432, 2002.

[40] Pierre Delisle, Marc Gravel, Michaël Krajecki, Caroline Gagné, and Wil-
son L Price, “Comparing parallelization of an aco: message passing vs.
shared memory,” in International Workshop on Hybrid Metaheuristics.
Springer, 2005, pp. 1–11.

[41] José M Cecilia, José M Garćıa, Andy Nisbet, Martyn Amos, and Manuel
Ujaldón, “Enhancing data parallelism for ant colony optimization on
gpus,” Journal of Parallel and Distributed Computing, vol. 73, no. 1,
pp. 42–51, 2013.

[42] Yi Zhou, Fazhi He, Neng Hou, and Yimin Qiu, “Parallel ant colony
optimization on multi-core simd cpus,” Future Generation Computer
Systems, vol. 79, pp. 473–487, 2018.

[43] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow, “Parallel meta-
heuristics: recent advances and new trends,” International Transactions
in Operational Research, vol. 20, no. 1, pp. 1–48, 2013.

28



[44] Colin Twomey, Thomas Stützle, Marco Dorigo, Max Manfrin, and
Mauro Birattari, “An analysis of communication policies for homo-
geneous multi-colony aco algorithms,” Information Sciences, vol. 180,
no. 12, pp. 2390–2404, 2010.

[45] Ling Chen, Hai-Ying Sun, and Shu Wang, “A parallel ant colony algo-
rithm on massively parallel processors and its convergence analysis for
the travelling salesman problem,” Information Sciences, vol. 199, pp.
31–42, 2012.

[46] Mateusz Starzec, Grażyna Starzec, Aleksander Byrski, Wojciech Turek,
and Kamil Pietak, “Desynchronization in distributed ant colony opti-
mization in hpc environment,” Future Generation Computer Systems,
vol. 109, pp. 125–133, 2020.

[47] David R Penas, Julio R Banga, Patricia González, and Ramon Doallo,
“Enhanced parallel differential evolution algorithm for problems in com-
putational systems biology,” Applied Soft Computing, vol. 33, pp. 86–99,
2015.

[48] David R Penas, Patricia González, José A Egea, Julio R Banga, and
Ramón Doallo, “Parallel metaheuristics in computational biology: An
asynchronous cooperative enhanced scatter search method,” Procedia
Computer Science, vol. 51, pp. 630–639, 2015.

[49] Diego Teijeiro, Xoán C Pardo, Patricia González, Julio R Banga, and
Ramón Doallo, “Implementing parallel differential evolution on spark,”
in european conference on the applications of evolutionary computation.
Springer, 2016, pp. 75–90.

[50] Diego Teijeiro, Xoán C Pardo, David R Penas, Patricia González,
Julio R Banga, and Ramón Doallo, “Evaluation of parallel differen-
tial evolution implementations on mapreduce and spark,” in European
Conference on Parallel Processing. Springer, 2016, pp. 397–408.

[51] David R Penas, Patricia González, Jose A Egea, Ramón Doallo, and
Julio R Banga, “Parameter estimation in large-scale systems biology
models: a parallel and self-adaptive cooperative strategy,” BMC bioin-
formatics, vol. 18, no. 1, pp. 1–24, 2017.

29



[52] Patricia González, Xoán C Pardo, Ramón Doallo, and Julio R Banga,
“Implementing cloud-based parallel metaheuristics: an overview,” 2018.

[53] Patricia González, Pablo Argüeso-Alejandro, David R Penas, Xoan C
Pardo, Julio Saez-Rodriguez, Julio R Banga, and Ramón Doallo, “Hy-
brid parallel multimethod hyperheuristic for mixed-integer dynamic op-
timization problems in computational systems biology,” The Journal of
Supercomputing, vol. 75, no. 7, pp. 3471–3498, 2019.

[54] Xoán C Pardo, Pablo Argüeso-Alejandro, Patricia González, Julio R
Banga, and Ramón Doallo, “Spark implementation of the enhanced
scatter search metaheuristic: Methodology and assessment,” Swarm
and Evolutionary Computation, vol. 59, pp. 100748, 2020.

[55] Simon Parsons, “Ant Colony Optimization by Marco Dorigo and
Thomas Stützle, MIT Press, 305 pp., ISBN 0-262-04219-3,” The Knowl-
edge Engineering Review, vol. 20, no. 1, pp. 92–93, 2005.

[56] Christian Blum, “Ant colony optimization: Introduction and recent
trends,” Physics of Life Reviews, vol. 2, no. 4, pp. 353–373, 2005.

[57] Thomas Stützle, Marco Dorigo, et al., “Aco algorithms for the trav-
eling salesman problem,” Evolutionary algorithms in engineering and
computer science, vol. 4, pp. 163–183, 1999.

[58] Thomas Stützle and Holger H Hoos, “Max–min ant system,” Future
generation computer systems, vol. 16, no. 8, pp. 889–914, 2000.

[59] Enrique Alba, Parallel metaheuristics: a new class of algorithms, John
Wiley & Sons, 2005.

[60] Thomas Weise, Yan Chen, Xinlu Li, and Zhize Wu, “Selecting a diverse
set of benchmark instances from a tunable model problem for black-box
discrete optimization algorithms,” Applied Soft Computing, vol. 92, pp.
106269, 04 2020.

[61] Makoto Matsumoto and Takuji Nishimura, “Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

30


