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Abstract

Low-coverage whole genome sequencing (WGS) is increasingly used for the study of evolution and ecology in both model and

non-model organisms; however, effective application of low-coverage WGS data requires the implementation of probabilistic

frameworks to account for the uncertainties in genotype likelihood data. Here, we present a probabilistic framework for using

genotype likelihood data for standard population assignment applications. Additionally, we derive the Fisher information for

allele frequency from genotype likelihood data and use that to describe a novel metric, the effective sample size, which figures

heavily in assignment accuracy. We make these developments available for application through WGSassign, an open-source

software package that is computationally efficient for working with whole genome data. Using simulated and empirical data

sets, we demonstrate the behavior of our assignment method across a range of population structures, sample sizes, and read

depths. Through these results, we show that WGSassign can provide highly accurate assignment, even for samples with low

average read depths (< 0.01X) and among weakly differentiated populations. Our simulation results highlight the importance

of equalizing the effective sample sizes among source populations in order to achieve accurate population assignment with

low-coverage WGS data. We further provide study design recommendations for population-assignment studies and discuss the

broad utility of effective sample size for studies using low-coverage WGS data.
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Abstract12

Low-coverage whole genome sequencing (WGS) is increasingly used for the study of evo-13

lution and ecology in both model and non-model organisms; however, effective application of14

low-coverage WGS data requires the implementation of probabilistic frameworks to account for15

the uncertainties in genotype likelihood data. Here, we present a probabilistic framework for us-16

ing genotype likelihood data for standard population assignment applications. Additionally, we17

derive the Fisher information for allele frequency from genotype likelihood data and use that to18

describe a novel metric, the effective sample size, which figures heavily in assignment accuracy. We19

make these developments available for application through WGSassign, an open-source software20

package that is computationally efficient for working with whole genome data. Using simulated21

and empirical data sets, we demonstrate the behavior of our assignment method across a range22

of population structures, sample sizes, and read depths. Through these results, we show that23

WGSassign can provide highly accurate assignment, even for samples with low average read24

depths (< 0.01X) and among weakly differentiated populations. Our simulation results high-25

light the importance of equalizing the effective sample sizes among source populations in order26

to achieve accurate population assignment with low-coverage WGS data. We further provide27

study design recommendations for population-assignment studies and discuss the broad utility28

of effective sample size for studies using low-coverage WGS data.29
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Introduction30

In just a few years, next-generation sequencing (NGS) technologies have revolutionized the study31

of evolution and ecology in both model and non-model organisms, and have become established32

as standard tools in molecular ecology. In particular, whole genome sequencing (WGS) can pro-33

vide sequence data from a large proportion of the genome and is increasing in use. While large-34

scale WGS projects can be prohibitively expensive at the necessary read depths for accurately35

calling individual genotypes, low-coverage WGS offers a cost-effective approach aimed at reduc-36

ing the read depth per individual while retaining sufficient information for genomic analyses.37

However, since low-coverage WGS precludes the ability to call individual genotypes, probabilis-38

tic frameworks are used to account for the uncertainty in an individual’s genotype (Nielsen et al.39

2011; Buerkle & Gompert 2013). Extending common analyses in the field of molecular ecology to40

accommodate genotype uncertainty through the direct use of genotype likelihoods is a necessary41

advance for broadening the utility of low-coverage WGS.42

The creation of probabilistic frameworks for allele frequency estimation, genotype calling,43

and single nucleotide polymorphism (SNP) calling have made low-coverage WGS practical for44

many applications (Nielsen et al. 2011, 2012; Kim et al. 2011). By first estimating the joint site fre-45

quency spectrum for individuals without calling individual genotypes, priors on allele frequency46

can improve the calling of individuals’ genotypes and SNPs. Population genetics analyses have47

been further advanced through the development of methods that quantify genetic differentia-48

tion and investigate population structure with principal components analysis, while accounting49

for uncertain genotypes (Fumagalli et al. 2013). Similarly, accurate estimates of individual ad-50

mixture proportions (Skotte et al. 2013) and pairwise relatedness (Korneliussen & Moltke 2015)51

can be obtained using genotype likelihoods. The widespread use of these methods is facilitated52

by software that is both user-friendly and computationally efficient (e.g. ANGSD (Korneliussen53

et al. 2014), ngsTools (Fumagalli et al. 2014), PCangsd (Meisner & Albrechtsen 2018)). However,54

3



a fundamental analysis for molecular ecology yet to be developed for low-coverage WGS data is55

population assignment.56

Population assignment methods are used to determine an individual’s population of origin57

and have provided insight into ecological and evolutionary processes, such as dispersal, hy-58

bridization, and migration, as well as informed conservation and management decisions (Manel59

et al. 2005). The traditional assignment test uses an individual’s multilocus genotype and the60

source populations’ allele frequencies to calculate the likelihood of the genotype originating61

from each of the populations (Paetkau et al. 1995; Rannala & Mountain 1997). Using this frame-62

work, the recent increase in available markers (e.g., from RADseq approaches) has made possible63

highly accurate assignment of individuals among weakly differentiated populations by using64

subsets of informative loci for population structure (e.g. (DeSaix et al. 2019; Ruegg et al. 2014;65

Benestan et al. 2015)). The traditional assignment test is readily extended to analyses such as66

genetic stock identification (GSI), to determine the proportion of source populations in a mixture67

of individuals Smouse et al. (1990). To date, methods for performing assignment tests require68

known genotypes and have not been implemented to use genotype likelihoods.69

Assignment tests are well suited for application with low-coverage WGS data, because they70

rely heavily on allele frequency estimates, for which a number of approaches are already devel-71

oped. For accurate allele frequency estimation from low coverage WGS data, simulation studies72

have demonstrated that prioritizing larger sample sizes of individuals with lower sequencing73

depth is the most cost-effective strategy (Buerkle & Gompert 2013; Lou et al. 2021; Fumagalli74

2013). Specific recommendations include aiming for individual sequencing depths of 1x (Buerkle75

& Gompert 2013) or having at least 10 individuals sequenced with a total per-population se-76

quencing depth of at least 10x (Lou et al. 2021). The goal of these strategies is to maximize77

information for estimating allele frequencies given finite resources for sequencing depth and78

number of samples. Lower sequencing depth decreases the amount of information about pop-79

ulation allele frequency, while using larger sample sizes increases the amount of information.80
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However, information is not directly quantified in these studies; rather comparison of known81

versus simulated allele frequencies were used to arrive at these general rules of thumb (Buerkle82

& Gompert 2013; Lou et al. 2021). The development of an information metric that accounts for83

read-depth variation across genotypes would provide a valuable method to quantify the thresh-84

olds of information needed for parameter estimation with low-coverage WGS data.85

Here we present WGSassign, an open-source software package of population assignment86

tools for genotype likelihood data from low coverage WGS. The objectives of WGSassign are: 1)87

provide common assignment methods that use genotype likelihoods, instead of called genotypes,88

2) evaluate the information available in low-read-depth sequencing data for allele frequency es-89

timation, and 3) achieve computational efficiency for processing large numbers of samples with90

genome-wide data. WGSassign provides methods for individual assignment, estimation of mix-91

ture proportions, and leave-one-out cross-validation of samples of known origin. Additionally, it92

calculates a z-score metric that can indicate when samples originate from an unsampled source93

population. For the second objective, we calculate Fisher Information and determine the effective94

sample size—the number of samples with completely observed genotypes that would yield the95

same amount of statistical information for estimating allele frequency as the observed genotype96

likelihoods in a dataset. This calculation of effective sample size has broad utility for population97

genomics studies using low-coverage WGS.98

We validate WGSassign and investigate its behavior with an extensive set of simulations and99

demonstrate its use on two empirical datasets. In the first, we apply WGSassign to weakly dif-100

ferentiated groups of yellow warblers (Setophagia petechia). In the second, we apply WGSassign101

to two well-differentiated Chinook salmon (Oncorhynchus tshawytscha) populations to demon-102

strate that when sufficient effective sample sizes of the source population are available, unknown103

individuals can be assigned accurately, even at extremely low read depths.104
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Methods105

WGSassign is written in Python 3 (https://www.python.org/) and requires the following mod-106

ules: numpy (https://numpy.org/), cython (https://cython.org/), and scipy (https://scipy.107

org/). Detailed instructions for using WGSassign are available at https://github.com/mgdesaix/108

WGSassign.109

Population Assignment110

We assume that there are K sampled source populations to which an individual can be assigned111

using data from L biallelic loci in the genome. Let a diploid individual’s genotype at locus ℓ112

(1 ≤ ℓ ≤ L) be represented by Gℓ ∈ {0, 1, 2}, which counts the number of alleles matching the113

reference genome carried by the individual at locus ℓ. Denote by θk,ℓ the true—but typically114

unkown—frequency of the alternate allele at locus ℓ within source population k. Under the115

assumption of Hardy-Weinberg equilibrium, the probability of Gℓ, when the individual is from116

population k is:117

P(Gℓ|θk,ℓ) =



(1 − θk,ℓ)
2 if Gℓ = 0

2(θk,ℓ)(1 − θk,l) if Gℓ = 1

(θk,ℓ)
2 if Gℓ = 2.

(1)118

With low-coverage sequencing data, Gℓ is not observed with certainty. Rather, evidence119

about the unknown genotype is obtained from sequencing reads covering the locus. Let Rℓ120

denote the sequencing read data from an individual at locus ℓ. The evidence for the state of Gℓ121

from the read data is summarized as the likelihood of the genotype given the read data, which122

is simply the probability of the read data given the genotype, considered as a function of the123
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genotype:124

P(Rℓ|Gℓ) =



gℓ,0 for Gℓ = 0

gℓ,1 for Gℓ = 1

gℓ,2 for Gℓ = 2.

(2)125

Without loss of generality, we consider these likelihoods to be scaled so that they sum to one:126

gℓ,0 + gℓ,1 + gℓ,2 = 1. Such likelihoods are typically a function of the number of reads of each allele127

observed and the corresponding base quality scores, and they are computed during genotype128

calling by a variety of programs such as bcftools (Li et al. 2009; Li 2011), GATK (McKenna et al.129

2010), and ANGSD (Korneliussen et al. 2014). An accessible review of the different models130

providing genotype likelihoods is found in (Lou et al. 2021).131

To do population assignment from the read data of an individual (rather than from directly132

observed genotypes) requires, for each locus, ℓ, the likelihood that the individual came from a133

source population k, say, given the individual’s read data. This is simply the probability of the134

read data from the individual given that the individual came from source population k, with135

allele frequencies θk,ℓ. Thus, we require P(Rℓ|θk,ℓ), which can be calculated from (1) and (2) using136

the law of total probability:137

P(Rℓ|θk,ℓ) =
2

∑
Gℓ=0

P(Rℓ|Gℓ)P(Gℓ|θk,ℓ)

= gℓ,0(1 − θk,ℓ)
2 + gℓ,12(θk,ℓ)(1 − θk,ℓ) +

gℓ,2(θk,ℓ)
2.

(3)138

If the L loci in the genome are not in linkage disequilibrium (LD), and are hence independent139

of one another, within source populations, then the likelihood of source population k given R,140

the read sequencing data across the entire genome, is simply the product over loci.141

P(R|θk) =
L

∏
ℓ=1

P(Rℓ|θk,ℓ), (4)142
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where θk denotes the set of all L allele frequencies in population k. Of course, with lcWGS143

some variants may be near one another and will then likely be in LD. In such a case (4) is144

not correct, but, rather, is a composite-likelihood approximation to the true likelihood (which145

is largely intractable). Composite likelihood estimators often produce unbiased results, but,146

because they do not take account of the dependence of different variables in the likelihood, they147

typically underestimate the uncertainty in the estimates (Larribe & Fearnhead 2011). We discuss148

this later. For each individual of unknown origin, this likelihood can be computed for each source149

population, k, and the relative values of those likelihoods gives the evidence that the individual150

came from each of the source populations. If the prior probability πk that an individual came151

from source population k is available for k ∈ {1, . . . , K}, then the likelihoods can be used to152

compute the posterior probability that the individual came from each of the source populations:153

P(Z = k|R, θ1, . . . , θK, π1, . . . , πK) =
πkP(R|θk)

∑K
i=1 πkP(R|θk)

, (5)154

where Z is a random variable indicating the origin of the individual.155

In practice, the allele frequencies in each source population are not known with certainty.156

Accordingly, these frequencies must be estimated from sequencing read data from individuals157

known to be from the source populations (these are often referred to as “reference samples.")158

We estimate these by maximum likelihood. The probability of the read data, R(i)
ℓ , from the ith

159

reference sample, given that it came from source population k, is, following (3),160

P(R(i)
ℓ |θk,ℓ) =

g(i)ℓ,0(1 − θk,ℓ)
2 + g(i)ℓ,12(θk,ℓ)(1 − θk,ℓ) + g(i)ℓ,2(θk,ℓ)

2,
(6)161

where the genotype likelihoods are now adorned with a superscript (i) to denote they are for162

the ith reference sample. Assuming the samples from source population k are not related, the163

log-likelihood for θk,ℓ given the read data from all nk reference samples from population k is:164

L(θk,ℓ) =
nk

∑
i=1

log P(R(i)
ℓ |θk,ℓ) (7)165
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In our implementation, we first use the Expectation-Maximization algorithm (Dempster et al.166

1977) described in the supplement to Meisner & Albrechtsen (2018) to obtain the maximum167

likelihood estimates (MLEs) of the population allele frequencies, θ̂k,ℓ, from the reference samples.168

Then, when calculating P(R|θk) we substitute θ̃k,ℓ for θk,ℓ, calculated as follows:169

θ̃k,ℓ =



θ̂k,ℓ if θ̂k,ℓ > 0

1
2(nk+1) if θ̂k,ℓ = 0,

1 − 1
2(nk+1) if θ̂k,ℓ = 1,

(8)170

where, again, nk is the number of reference samples from source population k. This provides a171

correction for cases in which the the allele exists in a source population, but was not detected172

in the reference samples from that population—effectively, it adds one more individual to the173

sample that carries one copy of the allele not previously seen in that reference population.174

As should be clear from the preceding development, the accuracy of population assign-175

ment depends, at least in part, on the accuracy of the estimates of the allele frequencies from176

each source population. The following section develops theory (which is then implemented in177

WGSassign) that provides the user with a measure of allele frequency estimate accuracy, calcu-178

lated from the genotype likelihoods in the reference samples, that takes account of both sample179

size and read depth.180

Fisher Information and Effective Sample Size181

[Figure 1 about here.]182

The likelihood that an individual originated from a source population depends on the read183

data (summarized as a genotype likelihood) and also on the estimated allele frequencies of the184

source populations. In turn, the accuracy of the estimated allele frequency depends on the185

number of individuals in the reference sample from the source population and read depth of186
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those individuals (Buerkle & Gompert 2013; Lou et al. 2021; Fumagalli 2013). Fewer individuals187

sampled and lower sequencing depth will result in less information in the data regarding allele188

frequency.189

As noted above, estimates of the allele frequencies are made by maximum likelihood using190

the sequencing data on the reference samples from each source population. Fisher information191

is a statistical metric that quantifies the amount of information in a sample for estimating an192

unknown, continuous parameter (Fisher 1922). It measures the curvature of the log-likelihood193

function, and is inversely related to the variance. In visual terms, a sharply peaked log-likelihood194

curve (i.e., one with greater curvature) for a parameter indicates greater certainty in the estimated195

parameter (and, also higher Fisher information) than a flatter log-likelihood function. Formally,196

the curvature is measured by the negative second derivative of the log-likelihood function. The197

observed Fisher information for allele frequency is that negative second derivative evaluated at198

the MLE199

Io(θk,ℓ) = −∂2L(θk,ℓ)

∂θ2
k,ℓ

∣∣∣∣
θk,ℓ=θ̂k,ℓ

. (9)200

Appendix A shows how I(i)o (θk,ℓ), the observed Fisher information for θk,ℓ in the reads from a201

single individual, i, is found to be:202

I(i)o (θk,ℓ) =

[ 2(g(i)ℓ,0 + g(i)ℓ,2 − 2g(i)ℓ,1)

g(i)ℓ,0(1 − θ̂k,ℓ)2 + g(i)ℓ,12θ̂k,ℓ(1 − θk,ℓ) + g(i)ℓ,2 θ̂2
k,ℓ

+

( 2θ̂k,ℓ(g(i)ℓ,0 + g(i)ℓ,2 − 2g(i)ℓ,1) + 2(g(i)ℓ,1 − g(i)ℓ,0)

g(i)ℓ,0(1 − θ̂k,ℓ)2 + g(i)ℓ,12θ̂k,ℓ(1 − θ̂k,ℓ) + g(i)i,2 θ̂2
k,ℓ

)2]
.

(10)203

The observed Fisher information from all nk reference samples is then simply, Io(θk,ℓ) = ∑nk
i=1 I(i)o (θk,ℓ).204

To derive ñl , our effective sample size metric for locus ℓ, we compare this observed Fisher205

information to the expected Fisher information that would be obtained from 2ñℓ gene copies with206

allelic type directly observed (Appendix A) from a population in which the true allele frequency207

is θ̂k,ℓ:208

Ie(θk,ℓ) =
2ñℓ

θ̂k,ℓ(1 − θ̂k,ℓ)
. (11)209
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Equating Io(θk,ℓ) to Ie(θk,ℓ) and solving for ñℓ yields210

ñℓ =
1
2

Io(θk,ℓ)× θ̂k,ℓ(1 − θ̂k,ℓ). (12)211

This is the number of diploid individuals with perfectly observed genotypes that provides the212

same information (and hence accuracy) for estimating θk,ℓ as is available from the sequencing213

read data from the nk reference samples from source population k. We term ñℓ, calculated as214

above, the effective sample size of the read data from the reference samples of source population k215

at locus ℓ. In practice, to avoid issues of non-differentiability on the boundaries of the space (i.e.,216

at θ = 0 or θ = 1) we calculate ñℓ using θ̃k,ℓ. The effective sample size for an individual is then217

derived by taking the mean of ñl across all loci, ñ = 1
L ∑L

l=1 ñl .218

Fisher information and effective sample size calculated in this way are useful summaries for219

understanding the trade-offs between sequencing more individuals at lower depth versus fewer220

individuals at higher depth, at least as it pertains to accurately estimating allele frequencies. In221

the context of population assignment, the effective sample size, in particular, provides an accessi-222

ble metric for how good (or bad) the source-population allele frequencies can be expected to be.223

As we will see later, Fisher information also provides a valuable way to standardize the effective224

sample size of the reference samples from each population—an important consideration when225

using WGSassign. A useful statistic for accomplishing this is the individual-specific average226

effective size for individual i:227

ñ(i) =
1
L

L

∑
ℓ=1

1
2

I(i)o (θk,ℓ)× θ̂k,ℓ(1 − θ̂k,ℓ), (13)228

where I(i)o (θk,ℓ) is the contribution to the observed Fisher information of the reads from individual

i:

I(i)o (θk,ℓ) = −
∂2 log P(R(i)

ℓ |θk,ℓ)

∂θ2
k,ℓ

∣∣∣∣
θk,ℓ=θ̂k,ℓ

.

ñ(i) ranges between 0 and 1.229
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We also implement a z-score calculation for determining whether an individual’s genotype230

is unlikely to have come from one of the K source populations, but rather, from an unsampled231

population. The full derivation of the method is shown in Appendix B. In short, we determine232

the expected distribution of log probabilities of an individual’s genotype likelihood data arising233

from a population (given the individual’s allele counts across loci and the population’s allele234

frequencies), using a central limit theorem approximation. The z-score is then calculated by235

subtracting the mean expected likelihood from the observed likelihood and dividing the differ-236

ence by the standard deviation of the expected likelihoods. Given that the actual distribution of237

the z-score is likely to deviate from a standard normal distribution, we further standardize the238

observed z-score by the z-scores of the reference individuals from the source populations. Indi-239

viduals truly from an assigned population are expected to have z-scores within several standard240

deviations of the normal distribution, while individuals from an unsampled but differentiated241

population are expected to have z-scores that fall below the expected range of a standard unit242

normal random variate.243

Simulations to illustrate the effective sample size244

We used the R programming language to run simulations that illustrate how Fisher information245

and effective sample size vary across a range of simulated read depths and true allele frequencies.246

Our simulations assumed a sample size of 100 diploid individuals and a single biallelic locus,247

with allelic types within individuals being independent of each other.248

For each individual, we simulated read depth from a Poisson distribution with mean Dave249

and allelic types upon each read by sampling from the two gene copies within the individ-250

ual with equal probability and switching the allelic type with probability 0.01 for each read to251

simulate sequencing errors. Genotype likelihoods from the reads were calculated according to252

the simulation model. We calculated the maximum likelihood estimate (MLE) for θ from the253

genotype data as the observed proportion of alleles, and for the sequencing read data, we used254
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the EM algorithm to compute the MLE. Using these estimates, we then computed the observed255

information from the genotypes and from the genotype likelihoods.256

To determine the effective sample size, we calculated the expected information for observed257

genotypes, assuming the true value of θ was the MLE from genotype likelihoods and then used258

(12).259

We ran these simulations across values of Dave ∈ {0.1, 0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 50} and260

values of θ ∈ {0.01, 0.05, 0.10, . . . , 0.90, 0.95, 0.99}, simulating 50 replicate samples for each com-261

bination.262

Genetic Simulations263

To demonstrate the efficacy of WGSassign in performing population assignment for a range of264

samples, read depths and genetic differentiation among populations we simulated a series of265

genetic datasets using msprime (Kelleher et al. 2016). In the first simulation, we implemented266

two-population island models with an effective population size of 1000 individuals in each pop-267

ulation. We simulated ancestry for a genomic sequence of 108 bases with a recombination rate268

of 10−8 and a mutation rate of 10−7. To vary the genetic differentiation between populations,269

we varied the lineage migration rate parameter between 0.0005 and 0.05 in 20 equal increments.270

From both populations we sampled 10, 50, 100, or 500 individuals. Pairwise FST was calculated271

between the two populations using the sampled individuals and the genetic variants were output272

in variant call format.273

Genotype likelihoods were produced with vcfgl (https://github.com/isinaltinkaya/vcfgl)274

based on mean read depths of 0.1X, 0.5X, 1X, 5X, 10X, or 50X. For each of the 480 parameter com-275

binations (10 migration rates, 4 sample sizes, and 6 read depths) we simulated 10 replicates, for276

a total of 2,400 simulated datasets. We used bcftools (Li et al. 2009; Li 2011) to remove any SNPs277

with a minor allele frequency less than 0.05. We converted the data to Beagle file format with278

custom scripts, and used these data as input into WGSassign.279
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To determine the influence of sampling design (i.e. number of samples in a source popula-280

tion and their read depths), as well as amount of genetic differentiation, on assignment accuracy,281

we calculated the effective sample size and leave-one-out (LOO) assignment accuracy for each282

population. In WGSassign, LOO is performed by iteratively removing an individual of known283

origin from its source population, calculating allele frequencies within the source populations284

using the remaining individuals, and then calculating the likelihood that the removed individ-285

uals originated from each of the different source populations. The LOO method is widely used286

to avoid the bias that arises from using training data that also includes data being tested. The287

assigned population was determined by maximum likelihood. We also measured the run time288

for the calculation of allele frequency and effective sample size, as well as the LOO calculation.289

In the second simulation, we assessed the influence on assignment accuracy of using unequal290

effective sample sizes of source populations. In population assignment applications, unequal291

sample sizes in different populations will result in different levels of precision in the allele fre-292

quency estimation. We implemented two-population island models as in the previous simulation,293

but included all sample combinations of 10, 50, and 100 individuals for the two populations. We294

also used 10 equal increments of migration rates from 0.005 to 0.05, and simulated read depths295

of 1X, 5X, and 10X. We then filtered by a minor allele frequency of 0.05 and randomly selected296

100,000 SNPs to be used for the effective sample size calculation and LOO assignment.297

In the third simulation, we assessed the performance of the WGSassign z-score metric for298

determining whether an individual of unknown origin being assigned to a population is actually299

from an unsampled population. We implemented a three-population stepping-stone model with300

20, 60, or 110 individuals using msprime. Individuals had simulated mean read depths of 1X301

or 5X, and we customized vcfgl (https://github.com/isinaltinkaya/vcfgl) to output allele302

counts for the major and minor alleles. We used populations 1 and 2 in the stepping-stone model303

as reference populations and calculated the reference z-scores using WGSassign from all but 10304

the individuals in these two populations. We assigned 10 individuals from population 3 and305
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10 from population 2 to the reference populations (1 and 2) using WGSassign. We calculated306

the z-scores of these individuals’ assignments to demonstrate the behavior of the z-score metric307

for correctly assigned individuals (i.e., the individuals from population 2 that were assigned308

to population 2) versus individuals from an unsampled population (i.e., the individuals from309

population 3 that were assigned to population 2).310

Application to Empirical Data311

We used WGSassign on data from yellow warblers to test its accuracy when applied to individ-312

uals from a species exhibiting isolation by distance (Bay et al. 2021; Gibbs et al. 2000). Previous313

work on yellow warblers has found weak differentiation between populations, with pairwise FST314

values on the order of 0.01 or less (Gibbs et al. 2000). Blood samples from 105 individuals was col-315

lected via brachial venipuncture in the years 2020 and 2021. These served as reference samples316

from 3 populations—North, Central, and South—previously described in Bay et al. (2021) and317

Gibbs et al. (2000). We extracted DNA from blood using the manufacturer’s protocol for Qiagen318

DNEasy Blood and Tissue Kits. Whole genome sequencing libraries were prepared following319

modifications of Illumina’s Nextera Library Preparation protocol (Schweizer & DeSaix 2023) and320

sequenced on a HiSeq 4000 at Novogene Corporation Inc., with a target sequencing depth of 2X321

per individual.322

Sequences were trimmed with TrimGalore version 0.6.5 (https://github.com/FelixKrueger/TrimGalore)323

and mapped to the NCBI yellow warbler reference genome (Sayers et al. 2022) (accession number324

JANCRA010000000) using the Burrows-Wheeler Aligner software version 0.7.17 (Li & Durbin325

2009). After mapping, the resulting SAM files were sorted, converted to BAM files, and indexed326

using Samtools version 1.9 (Li et al. 2009). We used MarkDuplicates from GATK version 4.1.4.0327

(McKenna et al. 2010) to mark read duplicates and clipped overlapping reads with the clipOver-328

lap function from bamUtil (https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap). To329

reduce sequencing depth variation, we used the DownsampleSam function from GATK to down-330
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sample reads from BAM files with greater than 2X coverage, to 2X coverage. To identify genetic331

markers from low-coverage WGS data, we used stringent filtering options in ANGSD version332

0.9.40 (Korneliussen et al. 2014). We retained reads with a mapping quality of at least 30 and333

base quality of at least 33. We retained SNPs that had read data in at least 50% of individuals334

and a minor allele frequency greater than 0.05. The filtered variants were output as genotype335

likelihoods and stored in a Beagle-formatted file.336

We implemented principal components analysis (PCA) to ensure reference samples from337

each of our source populations actually showed geographic signatures of clustering in the PCA.338

Genetic differentiation among the breeding populations was calculated by creating site allele339

frequency files for each breeding population and calculating FST in ANGSD (Korneliussen et al.340

2014). In order to assess our ability to accurately assign individuals of unknown origin to breed-341

ing populations, we determined the accuracy of assignment of the known breeding origin indi-342

viduals using WGSassign’s leave-one-out approach.343

For the second empirical dataset, we applied WGSassign to previously published data from344

Chinook salmon (Thompson et al. 2020) to assess its utility in situations with low to extremely345

low read depth and poor-quality DNA. For this scenario, we entertained the task of assigning346

Chinook salmon to either the Klamath River basin, or the Sacramento Basin. These populations347

are quite distinct, with pairwise FST values between the basins on the order of 0.1. So, it should be348

quite easy to distinguish fish from the two basins. However, in whole genome sequencing data349

from Thompson et al. (2020) there were several fish from rivers in the Klamath basin collected350

from carcasses with low read depth. These fish were excluded from most analyses in Thompson351

et al. (2020) because they did not reliably cluster with other fish from their populations on a352

PCA; however we evaluate here if their basin of origin can be recovered using WGSassign.353

Additionally, through downsampling of reads from the BAM files we investigate if average read354

depths as low as 0.001X in the sample being assigned can deliver accurate assignments.355
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We included fish from the closely related Feather River Spring, Feather River Fall, San356

Joaquin Fall, and Coleman Late Fall collections as members of the Sacramento River source357

population, while fish from the closely related Salmon River Fall and Spring and Trinity River358

Fall and Spring collections constitute samples from the Klamath River source population. With359

64 fish in each source population, we removed the 12 fish from each that had the fewest sequenc-360

ing reads to serve as our 24 “unknown” fish to be assigned to the populations. The remaining 52361

in each population served as the reference samples.362

The genotype likelihoods for the reference sample were in a VCF file produced by GATK.363

This was filtered using bcftools (Danecek et al. 2021) to retain only biallelic SNPs with a minor364

allele frequency > 0.05 which were missing data in fewer than 30% of the samples. Additionally,365

data from chromosome 28, which holds a region strongly differentiated between spring-run and366

fall-run Chinook salmon (Thompson et al. 2020) was excluded. These genotype likelihoods were367

stored in a Beagle-formatted file using a custom script.368

The data for the test samples were extracted from BAM files. We used samtools stats369

(Li et al. 2009) to determine the average read depth in each BAM and used that number with370

samtools view to downsample each BAM five times with five separate seeds to average read371

depth levels of 0.001X, 0.005X, 0.01X, 0.05X, 0.1X, 0.5X, and 1.0X, when those read depths were372

lower than the full read depth of the file. Genotype likelihoods for the 24 individuals were373

then called with ANGSD v0.940 (Korneliussen et al. 2014) using the -sites options to call only374

the sites found in the Beagle-formatted file of the reference samples. After genotype likelihood375

estimation in the test samples, the Beagle file of reference samples was filtered to include only the376

sites output by ANGSD. The resulting Beagle files were then passed to WGSassign to compute377

the likelihood of population origin for each of the test fish, and the results were plotted using R378

version 4.0 (R Core Team 2022).379
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Results380

Effective Sample Size Simulations381

As expected, observed Fisher information for allele frequency from sequencing read data in-382

creases as the average sequencing depth increases, reaching a limit at the observed information383

from fully observed genotypes. The absolute value of the observed Fisher information varies384

widely over the different allele frequencies, however the relative values of information from385

genotypes and from sequencing reads varies less, and the effective sample size is largely consis-386

tent across the range of minor allele frequencies from 0.05 to 0.5, showing the effective sample387

size to be a useful metric. Fisher information and effective sample size are shown for three rep-388

resentative values of θ (0.05, 0.3, and 0.5) in Figure 1. The flattening of the curves for observed389

information from sequencing data as the average read depth increases indicates the diminishing390

returns of additional sequencing depth versus additional samples, for estimating allele frequen-391

cies that has been noted previously (Buerkle & Gompert 2013; Lou et al. 2021; Fumagalli 2013).392

Genetic Simulations393

In the first simulation, genetic differentiation between the sampled individuals from the two394

populations ranged from -0.003 - 0.13 FST. Across all read depths within each category of number395

of samples (10, 50, 100, 500), assignment accuracy increased with genetic differentiation, and396

generally high assignment accuracy was achieved even with low genetic differentiation (Figure 2).397

Accuracy above 90% was reached for all simulations within the 500 samples category with FST398

> 0.004, 100 samples category with FST > 0.006, 50 samples category with FST > 0.015, and the399

10 samples category with FST > 0.043. When excluding simulations with populations with the400

lowest effective sample sizes (< 0.1 individuals), high assignment accuracy was reached for all401

simulations at FST > 0.015 (Figure 2). Within each sample size category, increasing average read402

depth, and therefore effective sample size, resulted in higher assignment accuracy, especially403

when populations had weak genetic differentiation (Figure 2).404
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[Figure 2 about here.]405

Runtime for the simultaneous calculation of Fisher information, effective sample size, and406

allele frequency for populations in WGSassign was fast. With 2 populations and 100,000 loci be-407

ing analyzed in parallel with 20 threads, runtime was less than 10 seconds for populations with408

100 samples or less, and between 15 and 30 seconds for populations with 500 samples. Leave-409

one-out assignment requires population allele frequency to be recalculated for each individual in410

the population, and time required for that re-calculation increases linearly with sample size. Ac-411

cordingly, runtime for LOO cross-validation is expected to increase quadratically with increasing412

number of samples per population, and we observe this: for 100 samples for the two populations413

at 1X mean individual read depth LOO assignment had a mean runtime of 51 seconds and for414

500 samples run time was 1,743 seconds. Run times also increase with lower read depth due to415

the increase in iterations needed in the expectation-maximization algorithm for allele frequency416

calculation used from PCangsd (Meisner & Albrechtsen 2018).417

When FST is greater than 0.01, effective sample sizes as low as approximately 3 individuals418

achieve assignment accuracy of greater than 90% (Figure 3). Examining simulations with weak419

genetic differentiation (0.005 < FST < 0.01), shows that a minimum effective sample size of 10 in-420

dividuals is needed for consistently high assignment accuracy (Figure 3). At the weakest genetic421

differentiation of FST < 0.005, consistently high assignment accuracy is not necessarily achieved422

across all simulations, but a minimum effective sample size of 100 individuals is needed for an423

assignment accuracy of greater than 80%.424

[Figure 3 about here.]425

Assignment bias due to unequal sample sizes426

Our simulation results for unequal sample sizes demonstrate that high assignment bias occurs427

when populations have different numbers of samples (Figure 4). When populations have the428
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same number of samples, with the same average read depths, assignment accuracy overall in-429

creases with genetic differentiation and there is no evidence of bias, with one population having430

higher accuracy than another population. However, when populations have unequal sample431

sizes, individuals from the less-sampled population tend to be assigned to the more-sampled432

population, even when genetic differentiation is higher (FST > 0.01). This bias is exacerbated433

when effective sample size is lower (i.e. the populations have lower read depths).434

[Figure 4 about here.]435

Determining an individual’s origin from an unsampled population436

At higher genetic differentiation (FST > 0.1), samples can readily be identified as coming from an437

unsampled population using the z-score metric in WGSassign (Figure 5. At such high differen-438

tiation, individuals from an unsampled population tend to have z-scores less than 3 compared439

to individuals correctly assigned to a population having z-scores in (−3, 3), as expected of a440

standard unit normal. With weaker genetic differentiation (FST < 0.1), sample size and read441

depth have a more noticeable effect on the behavior of the z-score metric (Figure 5). Generally,442

higher source sample sizes and read depths allow individuals from unsampled populations to443

be distinctively identified from individuals that are truly from a source population.444

[Figure 5 about here.]445

Application to Empirical Data446

Yellow warbler reference samples were accurately assigned to either the North, Central, or East447

populations using leave-one-out self-assignment. All 35 reference samples from both the North448

and East populations were assigned with 100% accuracy, and of the 35 birds from the Central449

population, 34 were correctly assigned.450

Chinook salmon were accurately assigned to either the Sacramento or Klamath river basins451
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even at read depths as low as 0.001X (Figure 6). All 12 test samples from the Sacramento river452

were correctly assigned at all read depth levels, and, of the 12 Klamath test fish, 11 were correctly453

assigned at all read depth levels, while one was correctly assigned at all read depth levels except454

for one of the five replicates at read depth 0.001X. The four samples with lowest full read depth455

(the four at the bottom of Figure 6) have log-likelihood ratios that are noticeably smaller than456

those of the remaining 20 fish at all downsampled read depth levels, possibly indicating that, in457

addition to being samples with low depth, they might also have yielded very poor quality DNA.458

[Figure 6 about here.]459
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Discussion460

Here, we present WGSassign and demonstrate its utility for population assignment with low-461

coverage WGS data. Our results, from both simulated and empirical data, show that low-462

coverage WGS data can be used to achieve high assignment accuracy even among weakly differ-463

entiated populations (FST < 0.01). We show that balancing effective sample size among popula-464

tions is essential for avoiding assignment bias due to variation in the precision of allele frequency465

estimation for different populations. Effective sample size can also be used to guide decisions in466

study design for choosing the number of samples and sequencing depth in a given population.467

The ability to perform population assignment on large numbers of individuals, cost-effectively468

sequenced at low-coverage across the whole genome, further expands the utility of low-coverage469

WGS for population and conservation genomics.470

Performance of WGSassign and implications for population-assignment studies471

Our implementation of WGSassign allows users to perform population-assignment analyses472

from genotype likelihood data. Features of WGSassign include standard and leave-one-out473

(LOO) population assignment, as well as calculations of effective sample sizes (of both individ-474

uals and populations) and a z-score metric for determining whether an individual is from an475

unsampled population. Importantly, as implemented, these analyses can be parallelized across476

loci, which allows for fast computation of data produced from low-coverage WGS, even for com-477

putationally intensive applications such as LOO assignment. Studies of wild populations are478

typically limited in the number of samples available for sequencing, where 50 may be a large479

number of samples for a given population. With such a sample size, leave-one-out assignment at480

a standard low-coverage read depth of 1X could be expected to have a runtime on the order of481

minutes for multiple populations and a million loci.482

Implicit in standard population assignment tests is that there will always be a population483

with a maximum likelihood of assignment, even if the individual does not originate from any484
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of the reference populations. To address this issue, we developed a z-score metric for testing485

whether an individual could be from an unsampled population. The z-score is based on the486

individual’s observed likelihood of assignment in relation to the expected likelihood from a487

hypothetical individual from the same population with the same allele count data as the individ-488

ual being tested. The z-score metric functions as expected at higher genetic differentiation (FST >489

0.05) and with larger source populations by distinguishing the majority of individuals incorrectly490

assigned as having much lower z-scores (outside the 90% expected mass of the distribution of491

z-scores) than correctly assigned individuals. We recommend that any studies that may have492

incomplete sampling coverage of all genetically distinct populations test for correct assignment493

with the z-score metric. However, since this metric is limited by sample size and genetic differ-494

entiation, a robust approach toward using it would involve, first, observing the metric’s behavior495

by testing it upon individuals of known origin, calculating z-scores both for the population they496

are from and the other populations.497

For high assignment accuracy, source populations need to have sufficient effective sample498

sizes in relation to genetic differentiation among the populations. However, individual samples499

being assigned can have extremely low read depth for accurate assignment. Our results from500

downsampled Chinook salmon data showed that individuals were still correctly assigned when501

individual samples had average read depths as low as 0.001X. This has powerful implications502

for population assignment studies, especially those that are conducted at a large scale. For503

example, in the mid-2000’s an arduous, international, multi-laboratory study was undertaken to504

standardize a DNA database of 13 microsatellite loci for genetic stock identification of Chinook505

salmon at a coast-wide scale (Seeb et al. 2007). With today’s sequencing power, a low-coverage506

WGS approach could provide a cost-effective method for creating a reference baseline of known507

populations without the need for extensive standardization of genetic makers. Fish of unknown508

origin could be sequenced at very low read depth, and still be accurately assigned to populations509

from the reference baseline.510
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A potential benefit of low-coverage WGS over other sequence data for population assign-511

ment, is that low-coverage WGS provides more markers for assignment to weakly differentiated512

populations. Population assignment studies with RADseq data have commonly used SNP fil-513

tering methods for selecting the most informative loci for assignment to weakly differentiated514

populations (DeSaix et al. 2019; Ruegg et al. 2014; Benestan et al. 2015). Further identifying a515

subset of informative loci (e.g. < 200) can be cost-effective for genotyping large numbers of in-516

dividuals for the purpose of assignment (Ruegg et al. 2014; Larison et al. 2021). However, our517

results highlight that high assignment accuracy is possible with low-coverage WGS data with-518

out the need for extensive analysis to determine the most informative loci. For example, high519

assignment accuracy was obtained with Yellow Warbler samples from weakly differentiated pop-520

ulations using 5,301,626 sites.521

Furthermore, DNA quantity and quality requirements for RAD-seq methods—and even522

some chip-based genotyping methods—can be more stringent than they are for low-coverage523

whole genome sequencing. For example, reliable WGS data can be obtained from the tiny quan-524

tities of DNA adhering to the tip of a feather (Schweizer & DeSaix 2023), which is not possible525

with RAD-seq methods. Thus, being able to perform population assignment from low coverage526

whole genome sequencing data considerably expands the types of tissues available for sampling.527

And finally, using genotype data that is restricted to loci that are purposely biased toward de-528

tecting population structure (e.g. a SNP chip or hybridization-capture panel) limits the extent of529

analyses those data can be appropriately used for. Low-coverage WGS provides genome-wide530

data useful for population assignment in weakly differentiated populations, but it is also useful531

for demographic modeling, inference of population differentiation, detection of selection, and532

association studies (to name a few) because it has not been previously ascertained, and hence,533

biased.534
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Accounting for population sample size and read depth with effective sample size535

Our development of the effective sample size metric provides a powerful tool for population536

genomics studies using low-coverage WGS data. Previous studies have provided recommenda-537

tions for the number of individuals and sequencing depth required to accurately estimate allele538

frequencies with low-coverage WGS data (Buerkle & Gompert 2013; Lou et al. 2021; Fumagalli539

2013). Effective sample size provides a metric to quantify these recommendations and determine540

the precision of allele frequency estimation needed for different applications. For example, the541

recommendation of (Lou et al. 2021) of at least 10 individuals with 1X average sequencing depth542

for allele frequency estimation can be quantified as an effective sample size of 2.3 individuals543

in the simulations from this study (Figure 7). For assignment to populations with moderate to544

strong differentiation (FST > 0.01), population effective sample sizes of at least 2.3 individuals are545

sufficient for achieving consistently high assignment accuracy (Figure 3). However, at weaker546

genetic differentiation among populations, effective sample size needs to be increased for accu-547

rate assignment. Furthermore, for similar levels of effective sample size, populations with 10548

samples tend to perform worse than populations with more samples. These results suggest that549

sequencing more individuals at lower read depths can be a more effective study-design strategy550

than sequencing fewer individuals at higher read depths. One reason that using more individu-551

als for source populations may improve assignment accuracy is that it increases the likelihood of552

detecting low-frequency alleles.553

[Figure 7 about here.]554

Effective sample size can facilitate population-assignment study design by determining tar-555

get numbers of individuals and average read depth for source populations. Our results show556

how effective sample size quantifies different study design options. For example, in our simu-557

lations a population with 10 samples with mean read depths of 1X had a mean effective sample558

size of 2.3 individuals. Increasing the total read depth of the population from 10X to 50X could559
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be done by increasing the sequencing depth of the 10 individuals to 5X or increasing the sampled560

number of individuals to 50 and keeping the mean individual sequencing depth at 1X. The simu-561

lation results show that increasing the sequencing depth produces an effective sample size of 7.2562

individuals, while increasing sample size results in an effective sample size of 17.1 individuals563

(Figure 7). Quantifying the amount of information gain for different study designs can inform564

researchers on how to more efficiently allocate resources for sequencing efforts.565

Our simulation results show that disproportionate effective sample sizes among source pop-566

ulations can result in biased assignment of individuals to the populations with the highest effec-567

tive sample sizes. We recommend that population assignment studies use the LOO assignment568

in WGSassign to determine if biased assignment is occurring. If all individuals across popula-569

tions have similar average read depths, then subsetting source populations to the same number570

of samples for allele frequency calculation should remove this bias. However, different popula-571

tions may tend to have higher or lower read depths, especially if different DNA sources are used,572

which will result in different effective sample sizes despite equal numbers of individuals. In573

this case, the individual effective sample size (Equation 13) output from WGSassign can be used574

to determine how many individuals to remove from the populations with the highest effective575

sample sizes. Alternatively, individuals could be further downsampled to reduce their effective576

sample size, which would decrease the overall population’s effective sample size. Studies using577

low-coverage WGS data for population assignment can explore these different strategies with578

WGSassign to determine what is most effective for their datasets.579

Further improvements for population assignment580

Currently in our implementation of WGSassign, the issue of only a single allele being observed581

in a population, and thereby producing a likelihood of 0, is avoided by correcting a population582

with a minor allele frequency of 0 at a given locus to 1
2n+2 , where n is the number of individuals583

in the population. Essentially, this treats the locus as having a rare allele that would be observed584
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in a single copy if another individual was to be sampled. Another approach that could poten-585

tially improve performance would be to specify a formal prior for the allele frequencies in each586

population (Rannala & Mountain 1997). Additionally, using a prior that accounts for the a priori587

expectation that allele frequencies at a locus are expected to be similar between weakly differen-588

tiated populations (Falush et al. 2003; Pella & Masuda 2006) may further improve performance of589

population assignment. We expect that the parameters of these more complex prior distributions590

could be estimated in an empirical Bayes approach (Maritz 2018) from the n-dimensional site591

frequency spectrum (Mas-Sandoval et al. 2022).592

Conclusion593

Low-coverage WGS is increasingly becoming more practical as sequencing costs decline and594

library preparation protocols are optimized for a wide-range of study systems (Schweizer &595

DeSaix 2023; Therkildsen & Palumbi 2017). In this paper, we present the WGSassign software596

which expands the types of analyses that can be done from genotype likelihoods. We demon-597

strate with simulated and empirical data that highly accurate and computationally efficient pop-598

ulation assignment can be performed, even with weakly differentiated populations. We provide599

the software as open-source to facilitate further improvements on our developments in the field600

of molecular ecology.601
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Data Accessibility720

WGSassign is available as a Python package with these associated links:721

• Development version and entire revision history on GitHub: https://github.com/mgdesaix/722

wgsassign723

• Zenodo archive of initial package release: https://zenodo.org/record/7957898724

• Online version of data and scripts used in paper: https://github.com/mgdesaix/WGSassign-manuscript-data725

• Data repository with full datasets used in paper. UPDATED WHEN MER PROVIDES DOI.726

https://dryad.something.or.other727

728
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Appendix A: Fisher Information729

Fisher Information from Genotype Likelihoods730

We focus on the information for the ℓth locus in the kth reference population. Accordingly we drop the731

k,ℓ subscript from θ and the ℓ subscript from g. Furthermore, since L(θ) is a sum over the nk reference732

samples from k, we must simply find the derivative for the term in the sum corresponding to a single733

individual, knowing that the Fisher information will be the sum of that quantity over all nk individuals.734

To further ease notation, we will write Li(θ) for the ith individual’s term in the sum for L(θ), while we735

drop the superscript (i) from the g’s. Thus, we seek − ∂2Li(θ)
∂θ2 .736

We start by finding the first derivative:

∂Li(θ)

∂θ
=

∂

∂θ
log

[
g0(1 − θ)2 + g12θ(1 − θ) + g2θ2

]
.

Let
u = g0(1 − θ)2 + g12θ(1 − θ) + g2θ2

= g0(1 − 2θ + θ2) + g1(2θ − 2θ2) + g2θ2,

and note that
∂u
∂θ

= g0(2θ − 2) + g1(2 − 4θ) + g22θ

= 2θ(g0 + g2 − 2g1) + 2(g1 − g0).

Since ∂ log(u)/∂θ = (∂u/∂θ)u−1, we have that

∂Li(θ)

∂θ
=

(
2θ(g0 + g2 − 2g1) + 2(g1 − g0)

)(
g0(1 − θ)2 + g12θ(1 − θ) + g2θ2

)−1

.

Proceeding, define v and w as follows:

v = 2θ(gi,0 + gi,2 − 2gi,1) + 2(gi,1 − gi,0) =
∂u
∂θ

w =

(
gi,0(1 − θ)2 + gi,12θ(1 − θ) + gi,2θ2

)−1

= u−1,

and note that we can rewrite ∂Li(θ)
∂θ = vw, and take the derivative of that easily using the product rule:

(vw)′ = v′w + w′v. To do so, we first find the derivatives

v′ =
∂v
∂θ

= 2(g0 + g2 − 2g1)

w′ =
∂w
∂θ

= −u−2 ∂u
∂θ

= −u−2v,
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then we put them together with the product rule

∂2Li(θ)

∂θ2 = v′w + vw′ =
v′

u
− v2

u2

=
2(g0 + g2 − 2g1)

g0(1 − θ)2 + g12θ(1 − θ) + g2θ2 −
(

2θ(g0 + g2 − 2g1) + 2(g1 − g0)

g0(1 − θ)2 + g12θ(1 − θ) + g2θ2

)2

.

Restoring the k,ℓ subscript to θ, and the (i) superscript and ℓ subscript to g, negating, taking the sum over737

the nk individuals and evaluating at the MLE yields I(i)o (θk,ℓ) in (10).738

Expected Fisher Information from Observed Genotypes739

Under Hardy-Weinberg equilibrium, the allelic type of the two gene copies within a locus are independent

of one another, and thus a sample of n diploids with fully observed genotypes is equivalent to a sample of

2n gene copies, each one an independent Bernoulli trial with success probability θ. Finding the expected

Fisher information in such a case is a standard exercise, but we repeat it here for completeness. For a single

such variable Yi, we have P(Yi = y|θ) = θy(1 − θ)1−y, so the log likelihood for that single observation is

Li(θ) = y log θ + (1 − y) log(1 − θ). It follows that

∂

∂θ
Li(θ) =

y
θ
− 1 − y

1 − θ
and

∂2

∂θ2 Li(θ) = − y
θ2 − 1 − y

(1 − θ)2 .

The expected Fisher information in a single gene copy is the expectation of the negative second derivative

given the true value of θ:

E

[
− ∂2

∂θ2 Li(θ)

]
= E

[
y
θ2 +

1 − y
(1 − θ)2

]
=

1
θ
+

1
1 − θ

=
1

θ(1 − θ)
.

Since information from independent variables is additive, the information for 2n such Bernoulli variables740

is 2n[θ(1 − θ)]−1. Evaluating the expectation under the assumption that the true value of θ is θ̂k,ℓ gives741

Ie(θk,ℓ) in (11).742
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Appendix B: z-Score Calculation743

In order to assess whether an individual A’s genotype could not plausibly have come from one of the744

K source populations, even though it was assigned to population k, we wish to compare A’s log read745

probability given that it originated from population k, log P(R(A)|θk), to the distribution of log read prob-746

ability values expected from individuals that actually are from population k. Complicating matters, these747

log read probabilities are heavily influenced by the read depth, and to a lesser extent, by the relationship748

between allele depths (how many reads of each allele were seen) and the genotype likelihoods. So, in749

fact, we must compare log P(R(A)|θk) to the distribution of log P(R|θk) expected from an individual that750

originates from source k, but also has read depths at each locus exactly the same as individual A, and751

also has genotype likelihoods that exhibit the same relationship to allele depths as those in individual A.752

(This relationship will be influenced by such factors as the base quality scores and the genotype likelihood753

model used).754

In previous applications, with far fewer markers, determining such a distribution of the log proba-

bility of the observed data has been done through simulation, for example, in the “exclusion method” of

Cornuet et al. (1999); however, with genomic-scale data it would be impractical to simulate thousands of

new multilocus genotypes, each with potentially millions of loci, to assess whether each individual (with

their own, specific read depth values) might be from a population not included among the source popula-

tions. Instead of simulation, we develop the expected distribution of log probabilities using a central limit

theorem (CLT) approximation. Note that, since P(R|θk) is a product over many loci, log P(R|θk) is a sum

over loci. We will write the contribution of each locus to that sum as

Wℓ = log[gℓ,0(1 − θk,ℓ)
2 + gℓ,12(θk,ℓ)(1 − θk,ℓ) + gℓ,2(θk,ℓ)

2] = f (gℓ, θk,ℓ)

where we include the notation f (gℓ, θk,ℓ) to emphasize the fact that Wℓ is a deterministic function of θk,ℓ

and the vector of genotype likelihoods gℓ = (gℓ,0, gℓ,1, gℓ,2). It is important to recognize in this context that

θk,ℓ is considered fixed while gℓ is a random variable. By extension, then, so too is Wℓ a random variable.

By the CLT, the sum of very many independent Wℓ random variables can be approximated by a normal
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distribution with mean µ and variance σ2 given by:

µ =
L

∑
ℓ=1

E(Wℓ)

σ2 =
L

∑
ℓ=1

Var(Wℓ).

Thus, we seek E(Wℓ) and Var(Wℓ).755

The distribution of Wℓ clearly depends on the distribution of gℓ. We develop such a distribution,756

hierarchically, based on the following assumptions:757

1. gℓ depends directly on the observed allele depths. Let rℓ be the number of reference alleles and aℓ758

the number of alternate alleles observed in the reads covering site ℓ, and let γ denote an individual-759

specific effect of base quality scores, etc., on the genotype likelihoods. Then we denote this condi-760

tional probability distribution as P(gℓ|rℓ, aℓ, γ) and we will denote the set of values that gℓ might761

take for a given pair (r, a) as Gr,a. Note that here we are asserting that given the allele depths, the762

genotype likelihood is independent of the genotype. This is a relatively unpalatable assumption, but763

we make it because we don’t have access to the information we would need (knowledge of the true764

underlying genotypes) to easily relax this assumption, and it eases the computations considerably.765

2. The read depths rℓ and aℓ depend on the genotype, G∗
ℓ at locus ℓ of the individual being sequenced

and on a population-specific error rate, ϵk. The model for this is simple binomial random sampling

from a total read depth of Dℓ, with a probability ϵk, independently for each read, that the base in

question will be read incorrectly. Hence:

P(rℓ, aℓ|G∗
ℓ , Dℓ) =

Dℓ!
rℓ!aℓ!

×


(1 − ϵk)

rϵ
aℓ
k if G∗

ℓ = 0

(1/2)Dℓ if G∗
ℓ = 1

ϵ
rℓ
k (1 − ϵk)

aℓ if G∗
ℓ = 2,

where aℓ = Dℓ − rℓ, always. (We note that rℓ and Dℓ completely determine aℓ, but we leave both rℓ766

and aℓ in the preceding and following probability expressions for ease of explanation later.)767

3. The frequency of G∗
ℓ in source population k follows Hardy-Weinberg equilibrium with an allele768

frequency of θk,ℓ, so P(G∗
ℓ |θk,ℓ) is given by (1).769
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With these assumptions, given the total read depth Dℓ, and γ and ϵk, the joint probability of the remaining

variables is:

P(G∗
ℓ , rℓ, aℓ, gℓ | θk,ℓ, Dℓ, γ, ϵk) = P(G∗

ℓ |θk,ℓ)P(rℓ, aℓ|G∗
ℓ , Dℓ)P(gℓ|rℓ, aℓ, γ)

The mean and the variance of Wℓ can now be found from these by taking expectations:

E

[
Wℓ | θk,ℓ, Dℓ, γ, ϵk

]
= W̄ℓ =

2

∑
G=0

∑
(r,a):

r+a=Dℓ

∑
g∈Gr,a

f (gℓ = g, θk,ℓ)P(G∗
ℓ = G, rℓ = r, aℓ = a, gℓ = g | θk,ℓ, Dℓ, γ, ϵk)

Var
[

Wℓ | θk,ℓ, Dℓ, γ, ϵk

]
=

2

∑
G=0

∑
(r,a):

r+a=Dℓ

∑
g∈Gr,a

[W̄ℓ − f (gℓ = g, θk,ℓ)]
2P(G∗

ℓ = G, rℓ = r, aℓ = a, gℓ = g | θk,ℓ, Dℓ, γ, ϵk).

As there is no documented distribution for P(gℓ|rℓ, aℓ, γ), we simply use the empirical distribution of770

gℓ values across all loci within the individual having allele depths of r and a. In practice, values of g for771

any particular pair (r, a) are typically clustered around a single value, and we discretize that distribution772

into a histogram with a small number, b, of bins defined by the value of the largest of the three elements of773

g, thus imagining P(gℓ|rℓ, aℓ, γ) as a discrete distribution with weight on b values of g, each one the mean774

of the values of g within the bin. It is also possible to remove loci that have particularly odd values of g.775

For example, GATK sometimes assigns a gℓ of (1/3, 1/3, 1/3) to loci with read depths r = 1, a = 0. Any776

such aberrant values can be removed, without penalty, since the µ and σ2 that we seek are conditioned777

upon a set of loci. The parameter ϵk might be estimable, but for now we assume a value for it, like778

ϵk = 0.01.779

After all this, a sum over the loci included in the metric gives us the mean and variance of the normal

distribution that the log genotype probabilities of a matched individual (same loci, same read depths,

same relationship between allele depths and g) from population k would be expected to have:

µ =
L

∑
ℓ=1

δℓE

[
Wℓ | θk,ℓ, Dℓ, γ, ϵk

]

σ2 =
L

∑
ℓ=1

δℓVar
[

Wℓ | θk,ℓ, Dℓ, γ, ϵk

]
,

where δℓ = 1 if the locus ℓ was included in the calculation, and 0 otherwise. Thus, the variable

z(A)
k =

log P(R(A)|θk)− µ

σ

should, by the CLT, have a normal distribution with mean 0 and variance 1.780
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Of course, there are several reasons why the actual distribution of z(A)
k might depart from a Normal(0, 1):

our calculations for the mean and variance of each locus are unlikely to be perfectly reliable, the rate of

sequencing error might be higher or lower than we assume, or there might be genetic structure within

population k, and hence also within the reference samples from population k. Thus, we correct the z-score

so that it exhibits a mean of 0 and a variance of 1 for the reference samples, themselves, from population

k. With i = 1, . . . , nk denoting the reference samples from population k, we calculate

z̄k =
1
nk

nk

∑
i=1

z(i)k and σ̄2
k =

1
nk − 1

nk

∑
i=1

(
z(i)k − z̄k

)2

.

Then, we assess whether an unknown individual A assigned to population k may have come from an

unsampled population using:

z∗(A)
k =

z(A)
k − z̄k

σ̄2
k

.

781
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but an independent set of fully observed genotypes was simulated for each different value of read786

depth, and these are all shown in the figure. b) Effective sample sizes calculated for simulated geno-787

type likelihood data. In each figure the facet headers give the true population allele frequency, the788

x-axis gives the average read depth in the simulations, and the distribution of quantities in the y789

direction are summarized as boxplots showing the median (dark line) the first and third quartiles790

(the edges of the boxes) the largest (or smallest) value no further than 1.5 × the interquartile range791

from the first (third) quartiles (the whiskers) and outliers beyond the whiskers (individual points). . 41792

2 Leave-one-out (LOO) assignment accuracy for known source individuals increases as genetic differ-793

entiation (FST) increases. Each point represents a single one of 4,633 simulation runs of the two-794

population island model when effective sample sizes were greater than 0.1 individuals. Panels are795

ordered by the number of individuals (10, 50, 100, 500) sampled from each of the two populations.796

The proportion of correctly assigned individuals, via LOO cross-validation for one population is797

given on the y-axis and genetic differentiation (FST) between the two populations is on the x-axis.798

The points are colored by effective sample size (log10 scale) of the population. Assignment accu-799

racy in simulation runs with similar genetic differentiation tends to be greater for populations with800

greater effective sample size (lighter colors) than smaller effective sample sizes (darker colors). The801
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of correctly assigned individuals, using LOO cross-validation, for one population, is given on the806

y-axis and effective sample size (log10 scale) of the population is on the x-axis. Similar values of ef-807

fective sample size results in a similar range of assignment accuracy, however the number of samples808

also influences the accuracy at lower effective samples sizes and with weaker genetic differentiation.809

Some of the effect of sample size, separate from effective sample size, can be explained by LOO810
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4 Unequal sample sizes among source populations result in decreased assignment accuracy due to814

differences in the precision of allele frequency estimation among the populations. Here, the two815

populations had either 10, 50, or 100 samples used for estimating allele frequency and then assigned816

via leave-one-out. When both populations had the same number of samples ("Equal" column), as-817

signment accuracy generally increased as Fst increased and was similar for either population. When818

Population 1 had fewer samples than Population 2 ("Pop1 < Pop2" column), the assignment accu-819

racy of Population 1 was generally less than that of Population 2, and the reverse was demonstrated820

when Population 1 had more samples than Population 2 ("Pop1 > Pop2" column). The reduction in821

assignment accuracy from biased sample sizes was also more pronounced with lower read depth. . . 44822
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denote the read depths after downsampling. There are five points for each individual at each value833
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highlights the potential for different sampling design strategies for achieving similar effective sam-836

ple size. For example, if the target effective sample size is 10, then sequencing 500 individuals at837
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Figure 1 a) Observed information calculated for simulated data summarized either as fully observed genotypes

(purple) or as genotype likelihoods (orange) computed from sequencing read data of different depths simulated

from the genotypes. Fully observed genotype data is not affected by read depth, but an independent set of fully

observed genotypes was simulated for each different value of read depth, and these are all shown in the figure. b)

Effective sample sizes calculated for simulated genotype likelihood data. In each figure the facet headers give the

true population allele frequency, the x-axis gives the average read depth in the simulations, and the distribution of

quantities in the y direction are summarized as boxplots showing the median (dark line) the first and third quartiles

(the edges of the boxes) the largest (or smallest) value no further than 1.5 × the interquartile range from the first

(third) quartiles (the whiskers) and outliers beyond the whiskers (individual points).
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Figure 2 Leave-one-out (LOO) assignment accuracy for known source individuals increases as genetic differentiation

(FST) increases. Each point represents a single one of 4,633 simulation runs of the two-population island model when

effective sample sizes were greater than 0.1 individuals. Panels are ordered by the number of individuals (10, 50, 100,

500) sampled from each of the two populations. The proportion of correctly assigned individuals, via LOO cross-

validation for one population is given on the y-axis and genetic differentiation (FST) between the two populations is

on the x-axis. The points are colored by effective sample size (log10 scale) of the population. Assignment accuracy in

simulation runs with similar genetic differentiation tends to be greater for populations with greater effective sample

size (lighter colors) than smaller effective sample sizes (darker colors). The variation in assignment accuracy decreases

as more samples are used in the source population, with the highest amount of variation when 10 samples are used

and the least amount of variation when 500 samples are used.

42



Fst > 0.01

0.005 < Fst < 0.01

Fst < 0.005

1 10 100

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Effective Sample Size (Log10 scale)

LO
O

 A
ss

ig
nm

en
t A

cc
ur

ac
y

Number of Samples 10 50 100 500

Figure 3 Increasing effective sample size results in an increase in LOO assignment accuracy. The proportion of

correctly assigned individuals, using LOO cross-validation, for one population, is given on the y-axis and effective

sample size (log10 scale) of the population is on the x-axis. Similar values of effective sample size results in a similar

range of assignment accuracy, however the number of samples also influences the accuracy at lower effective samples

sizes and with weaker genetic differentiation. Some of the effect of sample size, separate from effective sample size,

can be explained by LOO assignment removing an individual from the source population during assignment, which

will disproportionately decrease the precision of allele frequency estimation for smaller sample sizes than larger

sample sizes.
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Figure 4 Unequal sample sizes among source populations result in decreased assignment accuracy due to differences

in the precision of allele frequency estimation among the populations. Here, the two populations had either 10, 50,

or 100 samples used for estimating allele frequency and then assigned via leave-one-out. When both populations had

the same number of samples ("Equal" column), assignment accuracy generally increased as Fst increased and was

similar for either population. When Population 1 had fewer samples than Population 2 ("Pop1 < Pop2" column), the

assignment accuracy of Population 1 was generally less than that of Population 2, and the reverse was demonstrated

when Population 1 had more samples than Population 2 ("Pop1 > Pop2" column). The reduction in assignment

accuracy from biased sample sizes was also more pronounced with lower read depth.
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Figure 5 Results from the three-population stepping-stone model demonstrate the behavior of the z-score metric in

identifying individuals from an unsampled population (Pop3) assigned to a population in the reference compared to

individuals correctly assigned to their source population of origin (Pop2). Symmetric lines subtending 90%, 99%, and

99.9% of the mass of a standard unit normal random variate are given by vertical lines (dotted, dashed, and solid,

respectively).
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Figure 6 Log likelihood ratios for assignment at different read depth levels for the Chinook salmon data. On the

y-axis are different Chinook salmon samples, labeled by their population, a colon, their ID number, and then in

parentheses the average read depth of their aligned data at full depth. On the x-axis is the log-likelihood ratio in favor

of assignment to their own (correct) population on a “pseudo-log” scale that accommodates negative values. Positive

numbers indicate correct assignment. Colors denote the read depths after downsampling. There are five points for

each individual at each value of downsampling, reflecting the 5 different seeds used for downsampling.
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Figure 7 The relation between read depth and number of samples in determining the effective sample size highlights

the potential for different sampling design strategies for achieving similar effective sample size. For example, if

the target effective sample size is 10, then sequencing 500 individuals at 0.1x would likely overshoot the target, 50

individuals at 0.5x would be close to the target, and 10 individuals at >10x coverage would be close to the target.

47


