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Abstract

Inaccurate models limit the performance of model-based real-time optimization (RTO) and even cause system instability.

Therefore, a RTO framework that can guarantee global convergence with the presence of plant-model mismatch is desired. In

this regard, the trust-region framework is simple to implement and guarantees globally convergent for unconstrained problems.

However, it remains to be seen if the trust-region strategy can handle inequality constraints directly with the common model

adaptation method. This paper addresses this issue and proposes a novel composite-step trust-region framework that guarantees

global convergence for constrained RTO problems. The trial step is decomposed into a normal step that improves feasibility

and a tangential step that reduces the cost function. In each iteration, the model optimization problem with relaxed constraints

is solved. The proof of the global convergence property under structural plant-model mismatch is given.
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desired. In this regard, the trust-region framework is sim-
ple to implement and guarantees globally convergent for
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directly with the common model adaptation method. This
paper addresses this issue and proposes a novel composite-
step trust-region framework that guarantees global conver-
gence for constrained RTO problems. The trial step is de-
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eration, the model optimization problem with relaxed con-
straints is solved. The proof of the global convergence prop-
erty under structural plant-model mismatch is given.
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1 | INTRODUCTION

Industrial enterprises increasingly demand higher quality and stricter cost control to cope with fierce market compe-
tition. Model-based optimal decision-making is an important enabler. In the process industry, first-principle models
have been widely used in real-time optimization (RTO) because of their advantages in interpretability and extrapola-
tion performance [30]. However, due to model simplifications, parameter uncertainty, and limited knowledge about
the process, there is often a mismatch between the model and the actual plant, which affects the performance of RTO
and even causes convergence problems.

Handling mismatches by reliable optimization algorithms aroused great interest. In static model-based optimiza-
tion, structural plant-model mismatch is successfully handled by algorithms based on gradient matching ideas, e.g.,
integrated system optimization and parameter estimation [26], modifier adaptation [20] and generalized parameter
estimation [34]. In each RTO iteration, the gradient of the plant is approximated, and the model is adapted so that
its first-order necessary condition of optimality (FNCO) matches the FNCO of the plant. These methods guarantee
upon-convergence optimality in the presence of structural plant-model mismatch.

However, they do not guarantee global convergence, and oscillation could arise due to an inadequate model or
optimization overshoot. In the first case, the plant optimum does not satisfy the second-order optimality condition
of the model optimization problem due to the model’s wrong curvature [16, 17]. As a result, the algorithm diverges
even starting from the actual optimum. The model is either directly convexified [17, 23] or adapted properly in each
iteration [2] to avoid oscillation. In the second case, the trial step size calculated according to the mismatched model
is too aggressive for the plant that the plant cost fails to decrease [22, 34]. Similar situations also occur in nonlinear
optimization (see Section 2.2 in [24]). A simple solution to this problem is damping the input [22]. However, it only
reduces the risk of divergence and lacks a theoretical convergence guarantee.

There are two ways to achieve global convergence and make RTO more reliable. First, global convergence is
ensured by feasible-side convergence. In this case, not only does the algorithm converge from any feasible starting
point, but all the iterates also satisfy the plant constraints. Feasible-side convergence is hard to guarantee in practice
[5] unless additional global information about the plant is available. [5] analyzed the sufficient condition for feasibility
and optimality (SCFO) of RTO. According to this condition, feasible-side convergence is achieved by projecting the
model’s optimal solution onto a cone of feasible descent directions. [21] proposed another algorithm using convex
majorization functions of the plant objective and constraints. The nonconvex model is replaced by convex inner
approximations, which results in interior-side monotone convergence. These two algorithms guarantee feasible-side
global convergence to a KKT point of the plant.

Second, globalization strategies like line search and trust-region optimization in nonlinear optimization are ex-
ploited [24]. Trust-region method is the most natural for model-based RTO problems for many reasons. It has several
advantages. (1) the trust-region framework is attractive because it can be extended to deal with inaccurate derivatives
and function values [7]. (2) it is more efficient in RTO because it makes fuller use of the model. (3) the trust-region
idea is simple and intuitive in practice.

In the process engineering community, trust-region optimization is applied to RTO [28, 19, 32, 12], black-box
optimization problems [13, 8], as well as nonlinear model predictive control [11, 31]. The trust-region technique helps
control the update step length based on the local quality of the model. In each iteration, the next input is restricted to
the trust region, where plant-model mismatches are small. The trust-region radius is then adjusted according to the
plant feedback data. For unconstrained RTO problems, the trust-region algorithm is straightforward. [3] showed the
global convergence property using the trust-region framework. [4] showed that the modifier adaptation framework
is equivalent to trust-region methods in certain cases.
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However, constrained problems are more complicated because two goals must be considered simultaneously: re-
ducing the cost andmaintaining the iteration feasible. Several trust region algorithms have been proposedwith orwith-
out theoretical global convergence guarantee. (1) Using Lagrangian. The trust radius is adjusted based on the agree-
ment between the plant Lagrangian and the Lagrangian of the modified model [19]. The Lagrange multiplier acts as a
weighting factor to reconcile the two goals. However, this is a heuristic approach that lacks a theoretical convergence
guarantee. (2) Infeasibility-averse approach. The original model optimization problem with trust-region constraint is
considered whenever the iterates are feasible. When an infeasible point occurs, the trust radius keeps shrinking to
build a better model until a feasible point is found [12]. Global convergence is certified using results in derivative-free
optimization. This method relies on a progressively refined global surrogate model, e.g., Gaussian process. For a gen-
eral model, the algorithm may fail to find a feasible point. (3) Penalty approach. The constrained RTO problem is cast
as an unconstrained one with a penalty for constraint violations included in the augmented cost function [3, 4]. If the
penalty coefficient is large enough, the first-order criticality condition of these two problems are equivalent. Global
convergence of the unconstrained problem then implies the convergence of the constrained problem under certain
assumptions. (4) Filter approach. This approach is mostly applied to black-box/gray-box optimization[13, 14]. At each
iteration, the acceptance of the solution to the optimization subproblem is controlled by a filter, which memorizes
history iteration information. A step is accepted if it improves feasibility or reduces the objective function of the local
surrogate model. If a point is rejected, the trust radius shrinks, and a better local surrogate is built based on sampling
points in a smaller neighborhood. This method guarantees global convergencewithout the need to specify the penalty
coefficient. However, it still needs further investigation on how to use the method to handle plant-model mismatch
in RTO problems.

With the existing RTO literature, it is interesting whether the trust-region strategy can handle constrained RTO
problems directly with a general mismatched model and guarantee optimality in theory. It has several benefits. On
the one hand, it is more intuitive and compatible with existing model-based RTO algorithms. On the other hand, it
is also more reliable since the physical model to preserving physical inequality constraints. This paper addresses this
issue and proposes a novel composite-step trust-region framework for constrained RTO problems.

The rest of the paper is structured as follows. Previous trust-region methods in real-time optimization are de-
scribed in Section 2. Section 3 presents the composite-step trust-region framework. Section 4 discusses the global
convergence of the proposed algorithm and its link to the penalty methods. Section 5 demonstrated the algorithm’s
performance with two examples. Section 6 concludes the paper.

2 | PRELIMINARIES

2.1 | Model-based static real-time optimization

We consider the optimization of a continuous process operating at steady states. The plant optimization problem can
be stated as problem (1). u is the input variable, y is the output variable, φ is the cost function, g is the inequality
constraints, and y = h (u ) is the input-output mapping or the first principle model. The subscript p denotes the plant.

min
u

φp (u, y )

s .t . gp (u, y ) ≤ 0

y = hp (u )

(1)
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The equality constraint is a square systemwhose input is u and output is y . Therefore, it can eliminated by substituting
y with h (u ) . Then we have a neater representation of the plant optimization problem (2).

min
u

φp (u )

s .t . gp (u ) ≤ 0
(2)

The mathematical representation of the plant is unknown, so the model optimization problem (3) with subscript
m is solved in each RTO iteration to calculate optimal u .

min
u

φm (u )

s .t . gm (u ) ≤ 0
(3)

However, plant-model mismatches exist, i.e., φp , φm and gp , gm , and may lead to suboptimal or even infeasible
input. Therefore, themodel needs to be adapted based on the local information around uk at each iteration. Themodel
optimization problem (4) then uses this adapted model, where subscript k indicates the k th RTO iteration.

min
u

φm,k (u )

s .t . gm,k (u ) ≤ 0
(4)

To deal with structural plant-model mismatch and guarantee local convergence, the functions φm,k and gm,k in
problem (4) should satisfy condition (5) given the information of plant output (φp and gp ) and plant derivatives (+φp
and +gp ) at the current input value uk . Condition (5) implies gradient matching between the model and the plant and
leads to KKT matching upon convergence. ng is the number of constraints.

φm,k (uk ) = φp (uk )

gm,k (uk ) = gp (uk )

+φm,k (uk ) = +φp (uk )

+gm,k ,i (uk ) = +gp,i (uk ), i = 1, · · · , ng

(5)

There are various ways to achieve Eqs. (5), such as modifier adaptation [20]. In modifier adaptation, the adapted
model optimization problem in iteration k is problem (6).

min
u

φm,k (u ) = φm (u ) + φp (uk ) − φm (uk ) + (u − uk )T
(
+φp (uk ) − +φm (uk )

)
s .t . gm,k ,i (u ) = gm,i (u ) + gp,i (uk ) − gm,i (uk ) + (u − uk )T

(
+gp,i (uk ) − +gm,i (uk )

)
≤ 0, i = 1, · · · , ng

(6)

To improve convergence of the RTO algorithm, a simple way is filtering the input in each step. Modifier adaptation
algorithm with input filtering is described in Algorithm 1.



ZHANG ET AL. 5

| Algorithm 1: Modifier adaptation with input filtering

Step 0: Initialization. Choose an initial point u0 and filter coefficient 0 < K < 1. k ← 0.
Step 1: Model adaptation. Implement uk to the plant and obtain φp (uk ) , +φp (uk ) , gp (uk ) , +gp (uk ) . Adapt the model

optimization problem according to Eq. (6).
Step 2: Step calculation. Minimize the adapted model optimization problem (6) and denote the solution as u∗

k
.

Step 3: Input filtering. Filter the input by Eq. (7).
uk+1 = uk + K (u∗k − uk ) (7)

k ← k + 1. Go back to Step 1.

2.2 | Trust-region framework for unconstrained problems

Algorithms that solve problem (4) repeatedly based on local models only guarantee upon-convergence optimality.
Inadequate models [16] and improper algorithm parameters [34] could lead to oscillation. To address this, [3, 4]
proposed unconstrained RTO algorithms in the trust-region framework.

| Algorithm 2: Trust-Region Algorithm for Unconstrained Problems

Step 0: Initialization. Choose an initial point u0, an initial trust-region radius 0 < ∆0 < ∆max. Choose constants
0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2. k ← 0.

Step 1: Model adaptation. Build a model satisfying Eqs. (5).
Step 2: Step calculation. Minimize the cost function of the model to obtain the step sk .

sk = argmin
s

φm,k (uk + s )

s .t . ∥s ∥ ≤ ∆k

(8)

Step 3: Acceptance of the trial point. Compute the ratio

ρk =
φp (uk ) − φp (uk + sk )

φm,k (uk ) − φm,k (uk + sk )
(9)

If ρk ≥ η1, then define uk+1 = uk + sk ; otherwise define uk+1 = uk .
Step 4: Trust-region radius update. Set

∆k+1 =


min (γ2∆k ,∆max ) i f ρk > η2,

∆k i f ρk ∈ [η1, η2 ] ,
γ1∆k i f ρk < η1 .

(10)

k ← k + 1. Go back to Step 1.
Step 2 determines the trial step byminimizing the adaptedmodel cost within the trust-region constraint. Through-
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out this paper, if a optimization problem has multiple minima/maxima, then the "arg min/max" operator means to pick
arbitrary one of them. After applying the trial step to the plant and getting new measurements, we compare the
actual improvement to the value predicted by the model in Step 3. The trial point is accepted as the next iterate if
sufficient improvement is made, and this iteration is said to be successful. Otherwise, uk+1 is rejected and the trust
region shrinks; hopefully, the model provides a better prediction in a smaller region.

2.3 | Handling constraints by penalty function

Constrained RTO problems are more complicated because there are two often contradicting aims: minimizing the
cost function and reducing infeasibility. The penalty trust-region algorithm [3] converts the constrained problem to
an unconstrained one by the penalty functions (11), where ∥ · ∥ is L2-norm, c (u ) is the overall infeasibility calculated
by Eqs. (12), and σ > 0 is the penalty coefficient.

fp (u,σ ) = φp (u ) + σcp (u )

fm,k (u,σ ) = φm,k (u ) + σcm,k (u )
(11)

cp (u ) =


max (gp (u ), 0)



cm,k (u ) =


max (gm,k (u ), 0)

 (12)

The penalty trust-region algorithm is then similar to Algorithm 2 with φ (u ) replaced by f (u,σ ) . The difference
between the two algorithms reads,

| Algorithm 3: Penalty Trust-Region Method

Step 2: Step calculation. Minimize the cost function of the model to obtain the step sk .
sk = argmin

s
fm,k (uk + s,σ )

s .t . ∥s ∥ ≤ ∆k

(13)

Step 3: Acceptance of the trial point. Compute the ratio

ρk =
fp (uk ,σ ) − fp (uk + sk ,σ )

fm,k (uk ,σ ) − fm,k (uk + sk ,σ )
(14)

If ρk > η1, then define uk+1 = uk + sk ; otherwise define uk+1 = uk .
If the penalty coefficient σ is large enough, Algorithm 3 is globally convergent [3] under reasonable assumptions.

However, determining σ is not easy because it depends on the specific problem, and a too large σ causes numerical
difficulties.



ZHANG ET AL. 7

3 | COMPOSITE-STEP TRUST-REGION FRAMEWORK

In this section, we propose a novel trust-region algorithm for constrained RTO problems with structural plant-model
mismatch that deals with inequality constraints directly.

3.1 | Algorithm description

| Algorithm 4: Composition-Step Trust-Region Method

Step 0: Initialization. Choose an initial point u0, an initial trust-region radius 0 < ∆0 < ∆max, and a sufficient large
penalty coefficient σ> 0. Choose constants 0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2, 0 < ξ < 1. k ← 0.

Step 1: Model adaptation. Build a model satisfying Eqs. (5).
Step 2: Normal step calculation. If uk is feasible for the model, set nk ← 0. Otherwise, move towards feasibility by

solving problem (15).
nk = arg min

n
cm,k (uk + n )

s .t . ∥n ∥ ≤ ξ∆k
(15)

Step 3: Tangential step calculation. Compute a step tk by problem (16)
tk = arg min

t
φm,k (uk + nk + t )

s .t . cm,k (uk + nk + t ) ≤ cm,k (uk + nk )

∥nk + t ∥ ≤ ∆k

(16)

Step 4: Acceptance of the trial point. The composite step is sk = nk + tk . Compute the ratio

ρk =
fp (uk ,σ ) − fp (uk + sk ,σ )

fm,k (uk ,σ ) − fm,k (uk + sk ,σ )
(17)

If ρk > η1, then define uk+1 = uk + sk ; otherwise define uk+1 = uk .
Step 5: Trust-region radius update. Set ∆k+1 according to Eq. (10). k ← k + 1. Go back to Step 1.

An earlier version of Algorithm 4 was reported in our conference paper[33]. One difficulty in imposing a trust
region on a constrained optimization problem is that the feasible region of the original problemmay not intersect with
the trust region. Therefore, we have to allow some infeasibility in each iteration as long as there is a trend toward
feasibility. In light of this, the composite-step method decomposes the overall step into a normal step that improves
feasibility and a tangential step that reduces the cost function. The earliest composite-step ideas can be found in
[6, 25]. A summary of trust-region composite-step methods in nonlinear programming is available in Section 15.4 of
[10]. The tangential step is chosen not to increase infeasibility. It is called ”tangential” because it is usually tangential
to the feasibility contour. It is often nearly orthogonal to (but not necessarily precisely orthogonal to) the normal
step. By adjusting ξ, we change the step size for cost reduction and infeasibility reduction, and the overall step size is
bounded by ∆k .

In Step 1, any model adaptation approach satisfying Eqs. (5) can be used. Steps 2 and 3 solve the inequality-
constrained subproblem with the updated model. The nonsmoothness in cm,k is not a problem for implementation
because the subproblem can be converted to a smooth one by introducing slack variables. In Step 4, the progress
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towards a critical point is measured by the decrease of the merit function f (u,σ ) , which is also a nonsmooth exact
penalty function. Similar to the situation in Algorithm 3, if σ is large enough, the first-order criticality condition for
this merit function will match the condition for the original constrained optimization problem.

The most crucial difference between the composite-step approach and the penalty approach lies in Steps 2 and
3. In the proposed algorithm, the overall step comprises the normal step that reduces infeasibility and the tangential
step that improves the objective function while maintaining feasibility. The penalty approach calculates the overall
step directly by solving the penalized optimization problem.

3.2 | Implementation issues

Scaling is very important for the trust-regionmethod to avoid ill-conditioned problems and ensure the solution reaches
desired precision [24]. For practical RTO problems, input and output variables usually have quite different orders of
magnitude, so they must be normalized by their range before solving problems (15) and (16).

Furthermore, the nonsmooth optimization subproblems due to the maximum operator in cm,k ( ·) are transformed
into their equivalent smooth form by adding the slack variable z [1]. For problem (15), the equivalent formulation is
problem (18), where i denotes constraint index.

nk = argmin
n

ng∑
i=1

z 2i

s .t . ∥n ∥ ≤ ξ∆k

gm,k ,i (uk + n ) − zi ≤ 0, i = 1, · · · , ng

zi ≥ 0, i = 1, · · · , ng

(18)

Likewise, (16) is replaced by problem (19).
tk = argmin

t
φm,k (uk + nk + t )

s .t .

ng∑
i=1

z 2i ≤ cm,k (uk + nk )
2

∥nk + t ∥ ≤ ∆k

gm,k ,i (uk + nk + t ) − zi ≤ 0, i = 1, · · · , ng

zi ≥ 0, i = 1, · · · , ng

(19)

4 | GLOBAL CONVERGENCE

In this section, we will prove the global convergence property of the proposed composite-step trust-region method
and discuss its link to the penalty trust-region method. We shall show that the bounded merit function f decreases at
successful iterations. Then, we can obtain that f and the optimality error are convergent according to the monotone
convergence theorem. The proof outline is as follows.

The optimality improvement can be measured in each iteration by observing the merit function f . We define the
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optimality improvement of the plant problem and the model problem by Eqs. (20) and (21).
δfp = fp (uk ,σ ) − fp (uk + sk ,σ ) (20)

δfm,k = fm,k (uk ,σ ) − fm,k (uk + sk ,σ ) (21)
If iteration k is successful, i.e., ρk > η1, then δfp > η1δfm,k ≥ 0. In other words, if we focus on successful iterations,

fp decreases strictly monotonically. Because fp is bounded below by the assumption, we expect that fp converges by
the monotone convergence theorem. Thus, δfp and δfm,k converge to zero when k →∞.

However, one risk here is that the algorithm fails to find an acceptable point and the trust radius shrinks to zero.
In this case, the algorithm terminates at a point that is not locally optimal . So our first task is to exclude this possibility.
Fortunately, we can always make ρk close to 1 if the trust-radius is small enough if the currently point is not locally
optimal. The reason is that, by Eq. (22)

|ρk − 1 | =
���� fp (uk + sk ,σ ) − fm,k (uk + sk ,σ )δfm,k

���� (22)

, |ρk − 1 | equals the ratio of plant-model mismatch and model optimality improvement. When the trust-radius is small,
plant-model mismatch∼ O (∆2

k
) , and δfm,k ∼ O (∆k ) . Therefore, ρk will be close to 1 and the next acceptable point

always exists.
Next, we shall show that δfm,k = 0 implies that the system is at a KKT point. On the one hand, δfm,k can be de-

composed into three terms in Eq. (23), which can be called feasibility improvement, tangential step cost improvement
and residue, respectively.

δfm,k = σδf Nm,k + δf
T
m,k + δqk (23)

δf Nm,k = cm,k (uk ) − cm,k (uk + nk + tk ) (24)
δf Tm,k = φm,k (uk + nk ) − φm,k (uk + nk + tk ) (25)

δqk = φm,k (uk ) − φm,k (uk + nk ) (26)
The superscripts N and T stand for normal and tangential. Note that δf N

m,k
and δf T

m,k
are nonnegative because of the

problem formulation in Steps 2 and 3 in Algorithm 4. As for the residue term δq , we shall show that it is not important
if σ is large enough, which helps us to establish the correlation between δfm,k and δf Nm,k or δf Tm,k . On the other hand,
being an optimum of a constrained problem means stationarity and feasibility, which can be quantified by criticality
measure πp , πm and constraint violation cp , cm . The subscripts p and m indicate plant and model respectively. A local
optimum can be verified by checking whether πp and cp are zero.

On that account, our second task in this proof is to show that when the trust radius is small, the model optimality
improvement δfm,k is lower bounded by the optimality error πp and cp . More specifically, we shall show Eqs. (27) and
(28) hold, where κ · is some constant. After that, we shall conclude that πp and cp must also converge to zero as δfm,k
converges to zero, which completes the global convergence proof. The relationship of πp , cp and πm , cm is due to A7.

δfm,k ≥ κ1δf Nm,k ∼ O (cm ) ∼ O (cp ) (27)
δfm,k ≥ κ2δf Tm,k ∼ O (π

2
m ) ∼ O (π2p ) (28)
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The framework of the convergence proof comes from Section 15.4 of [10]. Nevertheless, there are two important
differences. (1) The problem considered in [10] has equality constraints but does not involve inequality constraints.
As a result, we need to substitute the projected gradient with a criticality measure suitable for inequality-constrained
problems. (2) The proof in [10] used a quadratic model, whereas the RTO algorithm relies onmore flexible and possibly
nonconvex models. In this proof, we establish quadratic convex upper bound problems for Steps 2 and 3 to avoid
analyzing the general nonlinear subproblems directly.

Constants used in the proof are summarized in the following list:
βm Assumption A3, bounds on nk with respect to cm
κc Assumption A4, plant infeasibility reduction
βc Remark 1, Lipschitz constant of related functions
βN Lemma 3, normal step problem objective function curvature
βT Lemma 5, tangential step problem objective function curvature
κn Lemma 6, bound on nk with respect to δf N

m,k

4.1 | Proof structure

F IGURE 1 Proof Structure
The overall proof structure is shown in Fig. 1. Assumptions and their implications are presented in Section 4.2.1.

The δf N
m,k
∼ O (cm ) part in Eq. (27) is discussed in Section 4.2.2, while the δf Tm,k ∼ O (π2m ) part in Eq. (28) is discussed inSection 4.2.3. The requirement on the penalty coefficient σ and the relationship of δfm,k , δf Nm,k and δf Tm,k are analyzedin Section 4.2.4. Section 4.2.5 completes the proof.

4.2 | Global convergence of composite-step method

4.2.1 | Assumptions

The following assumptions are needed for the convergence proof.
A1-Smoothness. For all iterations k, φp , φm,k , gp , and gm,k are twice continuously differentiable.
A2-Boundedness.
(a) All feasible inputs in the subproblems are contained in a convex compact set U;
(b) φm,k , +φm,k , gm,k ,i , +gm,k ,i , and +2gm,k ,i are uniformly bounded on U over all k .
A3-Consistent normal steps. There exists a constant βm such that ∥nk ∥ ≤ βmcm,k (uk ) for all k .
A4-Plant constraints. For all feasible u , there exists a unit vector d (u ) such that +gT

p,i
(u ) d (u ) < 0 for all con-

straints satisfying gp,i (u ) = 0. In addition, for all u ∈ U, there exists a unit vector d (u ) and a small positive constant
κc such that +gT

p,i
(u ) d (u ) < −κc for all constraints satisfying gp,i (u ) > 0.

A5-Subproblem optimality. All the optimization subproblems are solved to global optimality.
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A6-Sufficiently large penalty. Penalty coefficientσ ≥ σmin , whereσmin is defined by Eq. (71) thatwill be discussed
in Section 4.2.4.

A7-First-order matching. At each iteration, condition (5) holds.
Unless otherwise stated, all vector norms are L2-norms and all matrix norms are induced L2-norm in this paper.

We make several remarks before the proof to explain the implications of the assumptions.

Remark 1: Lipschitz continuity and boundedness In RTO, the existence ofU is usually because of input bounds. Due
to A1, we have that φp , +φp , gp , +gp are bounded and Lipschitz continuous on the compact set U. Due to A1 and
A2, φm,k , +φm,k , gm,k , and +gm,k are uniformly Lipschitz continuous on U for all k . Denote their Lipschitz constant
as βc for convenience.

The infeasibility measure cp is the L2-norm of the maximum of Lipschitz continuous functions on U, so it is
Lipschitz continuous on U. Due to the same reason as well as A1-A2, cm,k are uniformly Lipschitz continuous on U
for all k . Similarly, fp is Lipschitz continuous on U and fm,k are uniformly Lipschitz continuous on U for all k .

Remark 2: Consistent normal steps A3 prevents the normal step size from being too large when the infeasibility is
small. In addition, it implies that the normal step size converges to zero if the infeasibility converges to zero.

Remark 3: Augmented constraint qualification A4 can be viewed as an augmentation of theMangasarian-Fromowitz
Constraint Qualification (MFCQ) condition. It has the following two consequences.

(1) A4 implies that [i ∈ I = {i : gp,i (uk ) > 0}, +gp,i , 0, so the algorithm cannot be trapped around an infeasible
point.

(2) The following inequalities hold:


+gp (uk )T ·max (
gp (uk ) , 0

)


≥ ���d (uk )T +gp (uk )T ·max (
gp (uk ) , 0

) ���
=

�����∑
i ∈I

d (uk )T +gp,i (uk ) gp,i (uk )
�����

≥κc
∑
i ∈I

gp,i (uk )=κc


max (

gp (uk ) , 0
)



1≥κccp (uk ) .

The first inequality is due to the Cauchy inequality ∥x ∥ ∥d ∥ ≥ |xT d |. The second inequality is due to A4. The last
inequality follows that ∥x ∥1 ≥ ∥x ∥2 for any vector x .

4.2.2 | Feasibility improvement

To derive a bound for the feasibility improvement δf N
m,k

of a nonlinear problem, we first construct its quadratic upper-
bound problem and then deal with the quadratic problem using Theorem 3.1.6 in [10].
Lemma 1 (quadratic upper bounding function) Let D be an open convex subset of Òn , and suppose f : D → Ò is
continuously differentiable on D. Suppose further that +f (x ) is Lipschitz continuous on D, with Lipschitz constant γ. Then,
[x , x + s ∈ D,

f (x + s ) ≤ f (x ) + +f (x )T s + 1

2
γ ∥s ∥2 (29)
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Proof Since D is convex and x , x + s ∈ D, the segment x +θs ∈ D for all θ ∈ [0, 1]. Then Theorem 3.1.6 in [10] gives
that ���f (x + s ) − [f (x ) + +f (x )T s ]��� ≤ 1

2
γ ∥s ∥2 (30)

Using the absolute value inequality a ≤ |a | and rearranging terms, we have Eq. (29). □

Lemma 2 (optimization progress for unconstrained nonlinear problem) Letφ (x ) be continuously differentiable,+φ (x )
Lipschitz continuous with a Lipschitz constant γ. Suppose s∗ is the global minimizer of the following problem within the trust
region.

min
s
φ (x + s )

∥s ∥ ≤ ∆
(31)

Then we have that Eq. (32) holds for all x , where β def= 1 + γ.

φ (x ) − φ
(
x + s∗

)
≥ 1
2
∥+φ (x ) ∥min

(
∆,
∥+φ (x ) ∥

β

)
(32)

Proof According to Lemma 1, we can find an upper bounding function φ (x + s ) ≥ φ (x + s )
φ (x + s ) = φ (x ) + +φ (x )T s + 1

2
γ ∥s ∥2 = φ (x ) + +φ (x )T s + 1

2
sT (γI )s (33)

, where I is the identity matrix. Corollary 6.3.2 in [10] shows that for the quadratic trust-region problemmins φ (x + s )
s .t . ∥s ∥ ≤ ∆, there exist a special feasible point sc called Cauchy point such that improvement in Eq. (34) is guaranteed.

φ (x ) − φ
(
x + sc

)
≥ 1

2




+φ (x )


min ©­­«∆,



+φ (x )



1 + ∥γI ∥

ª®®¬ =
1

2




+φ (x )


min ©­­«∆,



+φ (x )



1 + γ

ª®®¬ (34)

Since φ (x + s ) ≥ φ (x + s ) and φ (x ) = φ (x ) ,
φ (x ) − φ

(
x + sc

)
≥ φ (x ) − φ

(
x + sc

)
= φ (x ) − φ

(
x + sc

) (35)
Since s∗ is the global minimizer of problem (31),

φ (x ) − φ
(
x + s∗

)
≥ φ (x ) − φ

(
x + sc

) (36)
Combining Eqs.(34)-(36), +φ (x ) = +φ (x ) , we have Eq.(32). □

Based on Lemma 2, we establish a lower bound for the feasibility improvement in each iteration in the following
theorem.
Theorem 3 (optimization progress due to normal step) Suppose that A1, A2, A4 and A5 hold. For all k , the infeasibility
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reduction due to the normal step in Algorithm 4 is lower bounded as

δf Nm,k ≥
κc
2
min

(
ξ∆k ,

2κc

βN
cm,k (uk )

)
, (37)

where βN > 0 is some constant.

Proof Since the tangential step does not increase the infeasibility, δf N
m,k
≥cm,k (uk ) − cm,k (uk + nk ) . It is enough to

show
cm,k (uk ) − cm,k (uk + nk ) ≥

κc
2
min

(
ξ∆k ,

2κc

βN
cm,k (uk )

)
. (38)

Consider the following smooth problem that is equivalent to (15) in Algorithm 4 Step 2:
nk = argmin

n
cm,k (uk + n )2

s .t . ∥n ∥ ≤ ξ∆k .
(39)

The objective function c2
m,k

is the composition of max( ·, 0)2 and gm,k which are both differentiable, so it is differen-
tiable. The gradient of c2

m,k
is

d
(
cm,k (u )2

)
du

= 2

ng∑
i=1

max (
gm,k ,i (u ) , 0

)
·+gm,k ,i (u )

= 2+gm,k (u ) · max (
gm,k (u ) , 0

)
.

Since max (
gm,k (u ) , 0

) and +gm,k (u ) are uniformly Lipschitz continuous on U, the above gradient is uniformly Lips-
chitz continuous for all k . Then Lemma 2 applies to c2

m,k
on U, i.e., \ βN > 0 such that for all k ,

cm,k (uk )2 − cm,k (uk + nk )2

≥


+gm,k (uk )max (

gm,k (uk ), 0
)

min

(
ξ∆k ,

2


+gm,k (uk )max (

gm,k (uk ) , 0
)



βN

)
.

(40)

Under A4 and A7, Remark 3 shows that


+gm,k (uk )max (

gm,k (uk ) , 0
)

 = 

+gp (uk )max (

gp (uk ) , 0
)

 ≥ κccp (uk ) = κccm,k (uk ) .

Therefore, Eq.(40) becomes

cm,k (uk )2 − cm,k (uk + nk )2 ≥ κccm,k (uk )min
(
ξ∆k ,

2κc

βN
cm,k (uk )

)
. (41)
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The left-hand side of Eq.(41) satisfies
cm,k (uk )2 − cm,k (uk + nk )2

=
(
cm,k (uk ) − cm,k (uk + nk )

) (
cm,k (uk ) + cm,k (uk + nk )

)
≤ 2cm,k (uk )

(
cm,k (uk ) − cm,k (uk + nk )

)
.

(42)

Suppose that cm,k (uk ) > 0. Combining Eq.(41) and Eq.(42) gives Eq.(43).

cm,k (uk ) − cm,k (uk + nk ) ≥
κc
2
min

(
ξ∆k ,

2κc

βN
cm,k (uk )

)
. (43)

Otherwise, cm,k (uk ) = 0 and nk= 0, so Eq.(43) also holds. This completes the proof. □

4.2.3 | Objective function improvement

Another aspect of optimality is finding a stationary point of the Lagrange function, which can be characterized by
criticality measures. A criticality measure is a nonnegative continuous function of the decision variable, which equals
zero if and only if at a first-order critical point. For unconstrained optimization problems, the norm of the objective
gradient is a criticality measure.

min
x ∈C

f (x ) (44)
For the convex constrained optimization problem (44) where f is continuously differentiable and +f is Lipschitz con-
tinuous, [9] and Theorem 12.1.6 in [10] give two of its criticality measures χ (x ) and π (x ) . They equal to zero if an
only if +f (x )T d ≥ 0 for all feasible direction d at x (the first-order criticality condition at x ).
Definition 1: Criticality measure χ (x ) . χ (x ) defined by Eq. (45) is a criticality measure for problem (44).

χ (x ) def= − min
d

+f (x )T d , s .t . x + d ∈ C, ∥d ∥ ≤ 1 (45)
Definition 2: Criticality measure π (x ) . π (x ) defined by Eq. (46) is a criticality measure for problem (44).

π (x ) def= min (1,χ (x ) ) (46)
In Lemma 4, we will derive a bound for the convex constrained nonlinear problem with trust region using these
two criticality measures. Similar to the approach in Lemma 2, we once again construct a quadratic upper-bound
constrained problem and examine the objective function value along the direction d ∗ determined by the criticality
measure.
Lemma 4 (optimization progress for convex constrained problem) Consider the convex-constrained problem

d ∗ = argmin
d
f (x + d ) s .t . x + d ∈ C, ∥d ∥ ≤ ∆ (47)

, where C is a nonempty closed convex set, x ∈ C, and∆> 0. Let x ∗ = x+d ∗. Suppose that f (x ) is continuously differentiable
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and +f (x ) is Lipschitz continuous with a Lipschitz constant γ. Then, we have

f (x ) − f
(
x ∗

)
≥ 1

2
χ (x )min

[
χ (x )
β
,∆, 1

]
(48)

for β def= 1 + γ and a simpler form using π (x ) .

f (x ) − f
(
x ∗

)
≥ 1

2
π (x )min

[
π (x )
β
,∆

]
(49)

Proof Let the optimizer of Eq. (45) be d̄ .If d̄ = 0, then χ (x ) = 0 and Eq.(48) automatically holds. Otherwise, 

d̄

 > 0

and +f (x )T d̄ = −χ (x ) . By Lemma 1 and β > γ, [x̄ ∈ C, we have an upper bound (50).
f (x ) + +f (x )T (x̄ − x ) + 1

2
β ∥ x̄ − x ∥2 ≥ f (x̄ ) (50)

We shall focus on the segment that connects x and x + d̄ , which is included in C because of convexity. For x̄ = x +αd̄ ,
0 ≤ α ≤ 1, Eq.(50) is equivalent to Eq.(51).

f (x ) + α+f (x )T d̄ + 1

2
α2β



d̄

2 ≥ f (
x + αd̄

) (51)

The vertex of the left-hand quadratic function of α is αv = − +f (x )T d̄
β ∥ d̄ ∥2

=
χ (x )
β ∥ d̄ ∥2

. If 0 ≤ α ≤ αv , we further have a linear
bound Eq.(52) for the quadratic function in Eq.(51).

f (x ) + 1

2
α+f (x )T d̄ ≥ f

(
x + αd̄

) (52)

There are three cases to be discussed. First, if 

d̄

 ≤ min (
∆,

χ (x )
β ∥ d̄ ∥

) , then αv ≥ 1. Let α = 1 ≤ αv . Eq.(52) gives

f (x ) − 1

2
χ (x ) = f (x ) + 1

2
+f (x )T d̄ ≥ f

(
x + d̄

)
Since d̄ ≤ ∆ and x + d̄ ∈ C, x + d̄ is a feasible point of problem (47). Then,

f (x ) − f
(
x ∗

)
≥ f (x ) − f

(
x + d̄

)
≥ 1

2
χ (x ) (53)

Second, if ∆ < min (

d̄

 , χ (x )
β ∥ d̄ ∥

) , then let α = ∆
∥ d̄ ∥ < min(1, αv ) and Eq.(52) gives

f (x ) − ∆

2


d̄

χ (x ) = f (x ) + ∆

2


d̄

+f (x )T d̄ ≥ f

(
x + ∆

d̄

 d̄

)

Since ∆ <


d̄

 and x , x + d̄ ∈ C, we have that x + ∆

∥ d̄ ∥ d̄ ∈ C. Moreover, 


 ∆
∥ d̄ ∥ d̄




 = ∆, so x + ∆
∥ d̄ ∥ d̄ also satisfies the

trust region constraint. Therefore, ∆
∥ d̄ ∥ d̄ is feasible point for problem (47), and inequality (54) holds, where the last
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inequality is due to 

d̄

 ≤ 1.

f (x ) − f
(
x ∗

)
≥ f (x ) − f

(
x + ∆

d̄

 d̄

)
≥ ∆

2


d̄

χ (x ) ≥ 1

2
χ (x ) ∆ (54)

Third, if χ (x )
β ∥ d̄ ∥ < min(∆, 

d̄

) , then let α = αv < 1 and Eq.(52) gives

f (x ) − 1

2β


d̄

2 χ (x )2 = f (x ) + 1

2

χ (x )
β


d̄

2 +f (x )T d̄ ≥ f (

x + αv d̄
)

Since 

αv d̄

 = χ (x )
β ∥ d̄ ∥ < min(∆, 

d̄

) , by the same reasoning as the second case, we have that x + αv d̄ is inside both C

and the trust region. Therefore, αv d̄ is a feasible point for problem (47) and
f (x ) − f

(
x ∗

)
≥ f (x ) − f

(
x + αv d̄

)
≥ 1

2β


d̄

2 χ (x )2 ≥ 1

2β
χ (x )2 (55)

The last inequality is due to 

d̄

 ≤ 1. Combining Eqs.(53)-(55) gives Eq.(48).
Because π (x ) ≤ χ (x ) , it follows Eq.(48) that

f (x ) − f
(
x ∗

)
≥ 1

2
π (x )min

[
π (x )
β
,∆, 1

]
(56)

Since β ≥ 1 and π (x ) ≤ 1 by their definition, the first term in the minimum is always less than 1, and Eq.(56) becomes
Eq.(49). □

The tangential step aims to find a better point within the current infeasibility level. Consider an analogous tan-
gential step problem to (16) in Algorithm 4.

min
t

φm,k (uk + nk + t )

s .t . gm,k (uk + nk + t ) ≤ max (
gm,k (uk + nk ), 0

) (57)

Replacing its constraint with the quadratic upper bound function using Lemma 1, we get a more restrictive problem
(58) that is convenient for analysis.

min
t

φm,k (uk + nk + t )

s .t . gm,k ,i (uk + nk ) + +gm,k ,i (uk + nk )T t +
1

2
βc t

T t ≤ max (
gm,k ,i (uk + nk ), 0

)
, i = 1, · · · , ng

(58)

Problem (58) can be viewed as a parametric optimization problem that depends on two parameters uk and nk . More-
over, it depends on uk in two ways. First, uk appears in function arguments. Second, φm,k and gm,k are the approxi-
mated functions of the plant’s at uk . With this in mind, we denote the χ (t ) and π (t ) criticality measures of problem
(58) at t = 0 as χm (uk , nk ) and πm (uk , nk ) , respectively.

Definition 3: Criticality measure χm (uk , nk ) . Theχ (t ) criticalitymeasure of problem (58)at t = 0 is the value function
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of optimization problem (59).
χm (uk , nk )

def
= −min

d
+φm,k (uk + nk )T d

s .t . gm,k ,i (uk + nk ) + +gm,k ,i (uk + nk )T d +
1

2
βcd

T d ≤ max (gm,k ,i (uk + nk ), 0), i = 1, · · · , ng

dT d ≤ 1

(59)

Definition 4: Criticality measure πm (uk , nk ) . Criticality measure πm (uk , nk ) is derived from χm (uk , nk ) .
πm (uk , nk )

def
= min (1,χm (uk , nk ) ) (60)

In Theorem 5, we will derive a lower bound for the optimization progress due to the tangential step using πm (uk , nk ) .

Theorem 5 (optimization progress due to tangential step) Suppose that A1, A2, and A5 hold. For all k , the lower bound
for optimization progress due to the tangential step in Algorithm 4 is

δf Tm,k ≥
1

2
πm (uk , nk )min

(
πm (uk , nk )

βT
, (1 − ξ ) ∆k

)
(61)

, where βT > 0 is some constant.

Proof Our basic idea is to use Lemma 4. For doing so, we need to find a feasible point for problem (16). The simplest
choice is t = 0. We shall also adjust the trust region so that it is centered at this feasible point.

Consider problem (58) with u = uk + nk + t and add a trust-region constraint centered at t = 0.
t ′k = argmin

t
φm,k (uk + nk + t )

s .t . gm,k ,i (uk + nk ) + +gm,k ,i (uk + nk )T t +
1

2
βc t

T t

≤ max (
gm,k ,i (uk + nk ) , 0

)
i = 1, · · · , ng

∥t ∥ ≤ (1 − ξ ) ∆k

(62)

Since t = 0 is a feasible solution to problems (62) and +φm,k is Lipschitz continuous on U, Lemma 4 applies and
guarantees that for some βT > 0,

φm,k (uk + nk ) − φm,k
(
uk + nk + t ′k

)
≥ 1

2
πm (uk , nk )min

(
πm (uk , nk )

βT
, (1 − ξ ) ∆k

)
(63)

Because problem (62) a restriction of problem (16) according to Lemma 1 and the definition of cm , and because tk is
a global minimizer for problem (16), we have

δf Tm,k = φm,k (uk + nk ) − φm,k (uk + nk + tk ) ≥ φm,k (uk + nk ) − φm,k
(
uk + nk + t ′k

) (64)
Combining Eqs.(63) and (64) yields Eq.(61). □
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4.2.4 | Sufficiently large penalty coefficient

To establish relation between δfm,k and δf N
m,k

, δf T
m,k

, we need A6 to ensure a large enough σ . When the penalty is
not big enough, the improvement in terms of the normal and tangential step does not guarantee overall improvement
because of the δqk term.

Since both δf N
m,k

and δqk are related to ∥nk ∥ , we will use ∥nk ∥ as an intermediate variable to establish a lower
bound for δfm,k . Our first result is that under A3, the length of the normal step is bounded in terms of the improvement
of feasibility.
Lemma 6 (normal step size upper bound) Suppose that A1- A5 and A7 hold. Then there is a constant κn > 0 such that
for all k

κn ∥nk ∥ ≤ δf Nm,k ≤ cm,k (uk ) (65)

Proof By Theorem 3,

δf Nm,k ≥
κc
2
min

(
ξ∆k ,

2κc

βN
cm,k (uk )

)
If ξ∆k ≤ 2κc

βN
cm,k (uk ) ,

δf Nm,k ≥
1

2
κcξ∆k ≥

1

2
κc ∥nk ∥ (66)

On the other hand, if ξ∆k > 2κc
βN
cm,k (uk ) , then

δf Nm,k ≥
κ2c
βN

cm,k (uk ) (67)

Using A3,

δf Nm,k ≥
κ2c

βN βm
∥nk ∥ (68)

By defining κn=min
(
κc
2 ,

κ2c
βN βm

)
and combining Eqs. (66) and (68), we have in both cases that

δf Nm,k ≥ κn ∥nk ∥

The second inequation in inequality (65) follows directly from the definition of δf N
m,k

and the fact that cm,k (uk + nk + tk ) ≥
0. The proof is completed. □

Now we are ready to determine the threshold for a large penalty coefficient, which makes δqk unimportant.
Theorem 7 (sufficiently large penalty coefficient) Suppose that A1- A5 and A7 hold. There exists a constant σmin > 0,
such that for all k and all σ ≥ σmin (assumption A6) the following statement is true.
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δfm,k ≥
1

4
σδf Nm,k + δf

T
m,k (69)

Proof As Remark 1 mentioned, A1 and A2 leads to the uniformly Lipschitz continuity of φm,k . Therefore, for some
constant βc > 0,

δqk = φm,k (uk ) − φm,k (uk + nk ) ≥ −βc ∥nk ∥ (70)
Select σmin according to Eq. (71), where κn is defined in Lemma 6.

σmin =
2βc
κn

(71)
By Eqs. (23), (71) and [σ ≥ σmin ,

δfm,k −
1

4
σδf Nm,k − δf

T
m,k =

3

4
σδf Nm,k + δqk ≥

3βc
2κn

δf Nm,k + δqk (72)
Using inequalities (65) and (70),

3βc
2κn

δf Nm,k + δqk ≥
3βc
2
∥nk ∥ − βc ∥nk ∥ =

βc
2
∥nk ∥ ≥ 0 (73)

Combine Eqs. (72) and (73) yields Eq. (69). □

It is hard to know these constants κ · and verify if σ is large enough before the RTO implementation. Therefore,
a sufficiently large σ is selected empirically according to the knowledge about the nonlinearity of the plant. An alter-
native method is to adapt σ in each iteration so that condition (69) holds. In this case, A6 is not needed for global
convergence. The composition-step trust-region method with adaptive σ is described as follows.

| Algorithm 5: Composition-Step Trust-Region Method with Adaptive Penalty Coefficient

Step 0: Initialization. Choose an initial point u0, an initial trust-region radius 0 < ∆0 < ∆max, and an initial penalty
coefficient σ0> 0. Choose constants 0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2, 0 < ξ < 1. k ← 0.

Step 4: Adapt Penalty Coefficient. Update σk according to Eq. (74).

σk ← max
(
σk −1,

−4δqk
3δf N

m,k

)
(74)

Step 4: Acceptance of the trial point. The composite step is sk = nk + tk . Compute the ratio

ρk =
fp (uk ,σk ) − fp (uk + sk ,σk )

fm,k (uk ,σk ) − fm,k (uk + sk ,σk )
(75)

If ρk > η1, then define uk+1 = uk + sk ; otherwise define uk+1 = uk .
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Steps 1-3 of Algorithms 4 and 5 are the same. The main difference between Algorithm 5 and Algorithm 4 is that
a new σ is calculated before evaluating ρ in Algorithm 5. Step 5 of Algorithm 4 then becomes Step 6 in Algorithm
5. Following the approach of Theorem 15.4.8 in [9], we can show that inequality (69) holds for all σk . Since σ is
increasing, fp is no longer decreasing. However, Lemma 15.4.5 in [9] shows that by defining a new function ψp (u,σ )

ψp (u,σ ) =
fp (u,σ ) − fp,min

σ
(76)

, where fp,min is the lower bound of fp , the sequence {ψp (uk ,σk ) }k is decreasing for successful iterations. Moreover,
the amount of decrease satisfies

ψp (uki ,σki ) − ψp (uk j ,σk j ) ≥ η1
δfm,ki

(
uki ,σki

)
σki

(77)

, where k i and k j are two consecutive successful iterations.
All the proofs in the paper assume fp and fm,k use a sufficiently large constant penalty coefficient that satisfies

assumption A6. However, by replacing fp with ψp and slightly modifying the existing proof, we can prove the same
global convergence results for Algorithm 5.

4.2.5 | First-order Optimality

Nowwe are ready to complete the convergence proof in this subsection. The remaining part resembles Section 15.4.2
[10], which relies on the continuity of c ( ·) and π ( ·) . For equality-constrained problems, the criticality measure is the
projected gradient. In our nonlinear inequality-constrained case, we rely on a more complicated quantity πm (uk , nk ) ,
whose continuity with respect to uk and nk is not obvious. Section 4.2.5 is divided into two parts. First, we show the
continuity of πm (uk , nk ) using parametric optimization results. Then, we summarize the current results and finish the
global convergence proof.
Lemma 8 (continuity of the model criticality measure) If A1, A2 and A7 hold, πm is jointly continuous in uk and nk over
D = U×{0}nu .

Proof Since the continuity of πm follows the continuity of χm , it is enough to analyze the latter one. For clarity, we
re-express the definition of χm is in the following form:

χm (uk , nk )
def
= − min

d
F (d ;uk , nk )

s .t . Gi (d ;uk , nk ) ≤ 0,

dT d ≤ 1,

(78)

where d is the decision variable, uk and nk are the parameters of the optimization problem, and the functions
F (d ;uk , nk ) =+φm,k (uk + nk )T d ,
Gi (d ;uk , nk ) =gm,k ,i (uk + nk ) + +gm,k ,i (uk + nk )T d + 1

2
βcd

T d − max (gm,k ,i (uk + nk ), 0), i = 1, · · · , ng .

According to the result in [18] (or Theorems 2.1 and 2.9 in [15]), χm is continuous at any (uk , nk ) ∈ D if:



ZHANG ET AL. 21

(1) The constraints that only involve d define a convex and compact set, which obviously holds for (78);
(2) Gi is strictly convex in d for any fixed (uk , nk ) (i = 1, · · · , ng ), which obviously holds;
(3) Functions F and Gi (i = 1, · · · , ng ) are continuous in (uk , nk ) for any point in D.
So it remains to prove the last condition. Next, we prove that F is continuous in (uk , nk ) for any point in D. Note

that F depends on uk in two ways. First, the functional +φm,k is updated from uk and therefore dependent on uk .
Second, the value of +φm,k at uk + nk depends on uk . When d = 0, the continuity of F is obvious. When d , 0,
consider any (uk , nk ) ∈ D, [ϵ > 0, \δ > 0 such that [(u j , n j ) ∈ { (u j , n j ) ∈ D × Ònu : ∥ (u j , n j ) − (uk , 0) ∥ ≤ δ }, the
following two inequalities hold:

|+φp (uk ) − +φp (u j ) | ≤
1

2∥d ∥ ϵ,

|+φm,j (u j + n j ) − +φm,j (u j ) | ≤
1

2∥d ∥ ϵ.

The first inequality comes from the continuity of φp and the second comes from the uniform continuity of φm,j . There-
fore,

|F (d ;uk , nk ) − F (d ;u j , n j ) | ≤ ∥+φm,j (uk ) − +φm,k (u j + n j ) ∥ ∥d ∥

= ∥+φm,k (uk ) − +φm,j (u j ) − (+φm,j (u j + n j ) − +φm,j (u j ) ) ∥ ∥d ∥

≤ ( ∥+φm,k (uk ) − +φm,j (u j ) ∥ + ∥+φm,j (u j + n j ) − +φm,j (u j ) ∥ ) ∥d ∥

= ( ∥+φp (uk ) − +φp (u j ) ∥ + ∥+φm,j (u j + n j ) − +φm,j (u j ) ∥ ) ∥d ∥

≤ ( 1

2∥d ∥ ϵ +
1

2∥d ∥ ϵ ) ∥d ∥ = ϵ.

The second equality in the above derivation comes from the first-order matching in A7. This proves the continuity of
F for any (uk , nk ) ∈ D.

Similarly, we can prove thatGi is continuous in (uk , nk ) for any point in D ([i ∈ {1, ·, ng }), based on the continuity
of gp , uniform continuity of gm,k ,i and +gm,k ,i , and the first-order matching in A7. □

Remark 4: Uniform continuity of πm A continuous function is uniformly continuous on a compact set (Theorem 4.19
in [27]), so πm is also uniformly continuous on U.

Like in Section 4.2.3, we now define the criticality measure for the plant optimization problem. Consider the
relaxed plant problem (79) of the original problem (2).

min
s

φp (uk + s )

s.t. gp (uk + s ) ≤ max (
gp (uk ), 0

) (79)

Replacing its constraint using a quadratic upper bound function, problem (79) becomes problem (80).
min
s

φp (uk + s )

s.t. gp,i (uk ) + +gp,i (uk )T s +
1

2
βcsT s ≤ max (

gp,i (uk ), 0
)
, i = 1, · · · , ng

(80)

Problem (80) can be regarded as a parametric optimization problem with parameter uk . Denote the χ (s ) and π (s )
criticality measure of problem (80) at s = 0 as χp (uk ) and πp (uk ) , respectively.
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Definition 5: Criticality measure χp (uk ) . χp (uk ) is the value function of optimization problem (81).
χp (uk )

def
= − min

d
+φp (u )T d

s.t. gp,i (uk ) + +gp,i (uk )T d +
1

2
βcd

T d ≤ max (gp,i (uk ), 0), i = 1, · · · , ng

dT d ≤ 1

(81)

Definition 6: Criticality measure πp (uk ) . Criticality measure πp (uk ) is derived from χp (uk ) .
πp (uk )

def
= min (

1,χp (uk )
) (82)

Theorem 9 (Algorithm 4 convergence) Suppose that A1-A7 hold and Algorithm 4 is applied. Then uk asymptotically sat-
isfies the plant KKT condition when k →∞.

Proof First, we shall show that cp (uk ) converges to zero when k →∞. This is identical to Theorem 15.4.6 in [10] de-
spite different notations. Detailed proof using the notation consistent with this paper is available in the supplementary
material for readers’ convenience.

Second, we shall show that limk→∞ πp (uk ) = 0, so that uk asymptotically satisfies the first-order criticality condi-
tion (described in Definition 1) of problem (80).

Given the continuity of πm analyzed in Lemma 8, with the same approach in Theorem 15.4.10 and Theorem 6.4.6
[10], we have limk→∞ πm (uk , nk ) = 0. Details are available in LemmaA.4 in the supplementarymaterial. Because of A3,
A7 and the convergence of cp (uk ) , we have ∥nk ∥ → 0. Combining Lemma 8, ∥nk ∥ → 0, and limk→∞ πm (uk , nk ) = 0

gives limk→∞ πm (uk , 0) = 0. In addition, A7 assures that πp (uk ) =πm (uk , 0) . Therefore, limk→∞ πp (uk ) = 0 is true.
Last, we shall combine the above two results and complete the proof. Since uk is a feasible solution to problem

(80), limk→∞ πp (uk ) = 0 together with the constraint qualification enforced by A4 gives that uk asymptotically satisfies
the KKT condition of problem (80) [29]. Moreover, the KKT conditions of problem (80) and problem (79) are the same
at u = uk due to A7, so uk also asymptotically satisfies the KKT condition of problem (79).

In addition, since cp (uk ) converges to zero, max (
gp,i (uk ), 0

)
→ 0 as k → 0 in problem (79), and problem (79)

becomes problem (2). Therefore, uk asymptotically satisfies the KKT condition for plant optimization problem (2). □

4.3 | Relationship with the penalty method

Both the penalty approach and the composite-step approach involve the merit function (11), and a sufficiently large
penalty coefficient σ is required to guarantee convergence. However, there are three differences between them. First,
σ does not appear in the optimization subproblems in the composite-step method, which avoids potential numerical
difficulties due to large σ . Second, the optimization subproblem (16) in the composite-step method is constrained by
cm , which is consistent with most RTO algorithms for constrained problems. Third, by calculating the ratio of δqk and
δf N
m,k

, the update law in Algorithm 5 Step 4 guarantees a large enough penalty coefficient σ for the composite-step
method.
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5 | CASE STUDIES

The performance of the composite-step trust-region method is illustrated by two case studies. In the first quadratic
example, we focus on the global convergence property and algorithm parameter tuning. In the second chemical
reactor example, the proposed method is compared to the feasible-side convergence approach. In each iteration of
the trust-region algorithms, Step 1 is in the same way as the modifier adaptation method. Trust-region parameters
are selected according to [10]. Specifically, we choose η1 = 0.01, η2 = 0.9, γ1 = 0.5, γ2 = 2 throughout this section.

5.1 | Quadratic optimization problem

The proposed trust-region algorithm is compared with the standard modifier adaptation method (Algorithm 1) and
penalty trust-region method (Algorithm 3). To make it comparable to the trust-region method, we replace the input
filtering in Algorithm 1 by the trust-region constraint with trust radius ∆max when solving problem (6). ∆max = 2 and
∆0 = 1. Global convergence of the proposed algorithm and the influence of σ and ξ are studied.

5.1.1 | Problem description

In the first example, we consider a quadratic plant problem (83).
min
u1,u2

u21 + u
2
2 + u1u2

s .t . 1 − u1 + u22 + 2u2 ≤ 0

(83)

In RTO, oscillation is often due to model inadequacy, especially when the model has wrong curvature (second-
order derivatives) in the objective function or the constraints. In this case study, three models with different structural
mismatches are considered. The first model optimization problem (84) ignores the bilinear term in the objective func-
tion and the u2 term in the constraint. In contrast, the other two problems (85) and (86) have the wrong curvature in
the cost function and the constraint, respectively.

min
u1,u2

u21 + u
2
2

s .t . 1 − u1 + u22 ≤ 0

(84)

min
u1,u2

− u21 + u
2
2

s .t . 1 − u1 + u22 ≤ 0

(85)

min
u1,u2

u21 + u
2
2

s .t . 1 − u1 − 4u22 ≤ 0

(86)
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5.1.2 | Global convergence

In this subsection, we show that the proposed algorithm converges even when the objective and constraints curva-
tures of themodel are wrong. The threemodel optimization problems (84)-(86) are investigated. Simulations begin at a
feasible point [2, −2]. Algorithm 1 and 5 are studied. For the composite-step method, the composite-step parameter
ξ = 0.5, the initial penalty coefficient σ0 = 1.

As Figure 2 shows, the proposed composite-step algorithm converges to the plant optimum in all three scenarios,
while the modifier adaptation method fails to find the optimum with the wrong curvature model. For both methods,
the model’s KKT condition matches the plant’s. However, the second-order sufficient optimality condition may be
violated for the modifier adaptation method due to the wrong curvature of the model. On the contrary, the trust-
region framework lowers the requirement for model adequacy and converges to the plant optimum.

F IGURE 2 Iteration profiles under model mismatch

5.1.3 | Composite-step parameter

The composite-step parameter ξ determines the step size ratio of the normal step (improves feasibility) and the tangen-
tial step (improves cost function). In theory, if the iterations remain feasible for the plant, then the penalty method and
Algorithm 5 with different ξ will produce the same input sequence if every subproblem has a unique global optimum.
This subsection investigates how ξ affects performance starting from an infeasible point [−1, 0]. Other algorithm
parameters are the same as in the previous subsection.

Figure 3 shows the input variable using Algorithm 5 with ξ = 0.3, 0.6, 0.9 and the penalty method. The infeasibility
for the first iteration decreases when ξ increases. When the composite-step parameter is small, finding a feasible point
usually takes more iteration, and the convergence could be slow.
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F IGURE 3 Influence of composite-step parameter ξ

5.1.4 | Penalty coefficient

In this subsection, we investigate the effect of a small σ on the penalty and the composite-step trust-region algorithms.
RTO problem (86) from the starting point [2, −2] is considered. Algorithm 3, 4, and 5 using different σ are studied.
Other simulation settings are the same as the Section 5.1.2.

F IGURE 4 Influence of penalty coefficient

As Figure 4 shows, all methods converge to the optimum with σ0 = 1. However, with smaller σ , the penalty
method significantly violates the inequality constraints. The composite-step method with fixed σ violates the plant
constraint to a lesser degree. The reason is that the composite-step method explicitly imposes the model constraint.
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The composite-step method with adaptive σ converges to the plant optimum in all cases. In the last two scenarios, σk
converges to 1.29 in the end. Algorithm 5 may yield large σ during the iteration. However, as σ only appears when
evaluating the trial point in Eq. (75), not in solving optimization subproblems (15) or (16), it does not suffer from ill-
conditioned optimization subproblems due to a large σ . If a very large σ is used in the penalty method, ill-conditioned
problem could occur.

5.2 | William-Otto reactor

Trust-region optimization and feasible-side convergence (e.g., [21]) are two typical approaches to ensure global con-
vergence in RTO. This subsection compares these two approaches using a chemical engineering example.

5.2.1 | Problem description

F IGURE 5 William-Otto Reactor
The case study is from [21]. It consists of an ideal continuous stirred tank reactor (CSTR) in which the following

reactions occur:
A + B

k1−→ C k1= 1.660×106exp (−666.4/TR )

B + C
k2−→ P + E k2= 7.212×108exp (−8333.3/TR )

P + C
k3−→ G k3= 2.675×1012exp (−11111/TR )

Reactants A and B are fed with the mass flowrates FA and FB , respectively. The reactor mass holdup is fixed at
2105 kg. The manipulated variables are the flowrates of both reactants and the reactor temperature, u = (FA, FB ,TR ) .
Input bounds are FA ∈ [3, 4.5], FB ∈ [6, 11], and TR = [80, 105]. The five output variables are the mass fraction x · of
components A, B, E, P, and G. The optimization problem is Eq. (87). The constraint on the concentration of G is active
at the plant optimum.

min
FA ,FB ,TR

φ = −1143.38xP FR −25.92xE FR+76.23FA+114.34FB

s .t . g = xG − 0.08 ≤ 0

(87)

It is assumed that the reaction scheme is not well understood, and plant-model mismatch is caused by neglecting
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the intermediate product C. The mismatched model has two reactions:

A + 2B
k
′
1−→ P + E k

′
1=2.19 × 108exp (−8.08 × 103/TR )

A + B + P
k
′
2−→ G k

′
2=4.31 × 1010exp (−1.24 × 104/TR )

The measurements are assumed to be noise-free, and the plant gradients can be measured directly. RTO iteration
begins from a plant-feasible point u = [3.6, 10, 85]T , which is assumed to be the operating set point before RTO
implementation. Input variables are normalized by their range. Output variables are scaled byφ = φ/10, and g = g/0.1.

Three algorithms are compared in the case study: standard modifier adaptation (Algorithm 1), feasible-side-
convergent modifier adaptation [21], and the proposed method (Algorithm 5). For the standard adaptation method,
the filter coefficient is K = 0.5. For the feasible-side-convergent modifier adaptation method, [21] shows that by
adding suitable quadratic terms in the cost and constraint functions, the model optimization problem becomes con-
vex, and the modifier adaptation method with filter coefficient K = 1 is globally convergent from the feasible side.
The suggested convex problem is Eq. (88). For Algorithm 5, ∆0 = 0.1, ∆max = 0.5, ξ = 0.5, σ0 = 100.

min
FA ,FB ,TR

φ = −1143.38xP FR −25.92xE FR+76.23FA+114.34FB + 74.38
[ (
FA − FA,0

)2 + (
FB − FB ,0

)2 + (
TR − TR ,0

)2]
s .t . xG − 0.08 + 0.0563

[ (
FA − FA,0

)2 + (
FB − FB ,0

)2 + (
TR − TR ,0

)2] ≤ 0

(88)

5.2.2 | Simulation results

F IGURE 6 Iteration profile of the William-Otto reactor example
The profile of input and output variables are illustrated in Figure 6. The following remarks can be made.

• Convergence. The composite-step trust-region method converges to the plant optimum. Standard MA diverges
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due to an inadequatemodel. The oscillation can be reduced by decreasing the filter coefficient, but it can hardly be
completely avoided. The feasible-sideMAmethod converges to the plant optimum judged by the plant constraint.
However, there is a bias in the plant cost due to its slow convergence rate near the optimum.

• Speed. The composite-step trust-region method is faster than the feasible-side MA method. The feasible-side
MA method converge slowly because the model becomes very conservative with the additional quadratic terms.

• Constraint violation. As its name suggests, all iterates of feasible-side MA remain feasible for the plant. The
reason is that the cost and constraint functions of the model are convex upper-bounding functions of the plant.
The composite-step trust-region method slightly violates the purity constraint at iteration 4.

• Algorithm assumptions. The feasible-side MA method requires two assumptions that the trust-region method
does not need. First, u0 needs to be feasible. Second, at each RTO iteration, the model cost and constraint
functions are strictly convex upper-bounding functions of the plant counterparts, which is fulfilled by carefully
choosing the quadratic term based on the Hessian upper bound of the plant.

In conclusion, both the trust region and the feasible-side convergence approach are globally convergent regardless of
an inadequate model. The trust-region approach is faster and needs less prior knowledge about the plant, but it may
violate the plant constraints before convergence. The feasible-side convergence approach is better for dealing with
hard constraints. However, it is usually slow and the additional quadratic term make the model less precise.

6 | CONCLUSION

This paper proposes a novel composite-step trust-region algorithm that handles plant-model mismatches for con-
strained RTO problems. The global convergence property is proved by establishing lower bounds on feasibility im-
provement and the cost function reduction in each iteration. The composite-step approach is free of numerical prob-
lems caused by a large penalty coefficient in themerit function. Adaptive penalty coefficient is discussed to ensure the
equivalence of the first-order criticality condition of the plant and the merit function. Numerical simulations show the
proposed method is globally convergent and reduces model adequacy requirements. It is faster than the feasible-side
convergence approach at the cost of slightly violating the inequality constraints.

Data Availability and Reproducibility Statement

The numerical data from Figures 2, 3, 4, and 6 are tabulated in the Supplementary Material.

Supplementary Material

(1) Relevant lemmas in [10] used by Theorem 9. (2) Numerical data for case studies. The python codes implementing
the numerical case studies are available onGitHub (https://github.com/WheatZhang/RTOdemo/tree/master/example/TR).
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