# Construction of ZnCo2O4/Ag3PO4 composite photocatalyst for enhanced photocatalytic performance

Jiafeng Hu<sup>1</sup>, Jiayi Liu<sup>2</sup>, Hao Hu<sup>1</sup>, Xiaotao Zhou<sup>1</sup>, Qiwei Wang<sup>3</sup>, Weizhi Wei<sup>3</sup>, and Wenhui Liu<sup>2</sup>

<sup>1</sup>Chinese People's Liberation Army <sup>2</sup>North University of China <sup>3</sup>Army Engineering University of PLA

June 19, 2023

#### Abstract

In this study, a ZnCo2O4/Ag3PO4 composite catalyst was prepared by the precipitation method, and its photocatalytic degradation activity for methyl orange (MO) was studied. The catalysts were characterized by TEM, XRD, EDX, HRTEM, SAED, SEM, XPS, and UV-Vis-DRS. The results indicate that 0.1 ZnCo2O4/Ag3PO4 The composite system has a good photocatalytic degradation effect on methyl orange. Under 30-minute simulated sunlight conditions, the degradation rate can reach 94%. The results show that the maximum reaction rate constant of 0.1 ZnCo2O4/Ag3PO4 is 0.05301 min-1, which is three times the size of pure Ag3PO4 and 52 times the size of pure ZnCo2O4. After three cycles, 0.1 ZnCo2O4/Ag3PO4 still degraded methyl orange (MO) at a rate of 84.4%. The trapping experiment showed that hole (h+) and O2- played the most important roles in the photocatalytic degradation field of methyl orange (MO) by 0.1 ZnCo2O4/Ag3PO4, and hydroxyl radical (OH·) played a partial role. The energy level structure of ZnCo2O4/Ag3PO4 is conducive to the effective separation of photogenerated electrons and holes, improving the lifespan of photogenerated charges. Among them, the photocatalytic performance of 0.1 ZnCo2O4/Ag3PO4 is the most excellent.

# Title page

# Construction of $\rm ZnCo_2O_4/Ag_3PO_4 composite photocatalyst for enhanced photocatalytic performance$

Jiafeng Hu<sup>a,b</sup>, Jiayi Liu <sup>c</sup>\*, Hao Hu<sup>a</sup>, Xiaotao Zhou<sup>a</sup>, Qiwei Wang<sup>b</sup>, Weizhi, Wei<sup>b</sup>, Wenhui Liu <sup>c</sup>\*

Jiafeng Hu was responsible for conducting the experiment and writing the article. Jiayi Liu and Wenhui Liu was mainly responsible for guiding the experiment and the writing of the article. Hao Hu, Xiaotao Zhou, Qiwei Wang, and Weizhi, Wei participated in some of the experiments and data analysis.

<sup>a</sup> 75714 troops of the Chinese people's liberation army, Hengyang, 421000, PR China

<sup>b</sup> Army Engineering University of PLA, Nanjing 210007, PR China.

<sup>c</sup> Environmental and Safety Engineering Institute, North University of China, Taiyuan, Shanxi 030051,People's Republic of China

E-mail: H892601280@163.com (Jiafeng Hu), 827487598@qq.com (Jiayi Liu),

HUhao75714@163.com (Hao Hu), ZHOUxiaotao778812@163.com (Xiaotao Zhou), wangqiwei\_83@126.com (Qiwei Wang) and weiweizhi0517@163.com (Weizhi Wei)

# **Corresponding Author**

\* Jiayi Liu, E-mail: 827487598@qq.com and \*Wenhui Liu, E-mail: wenhuiliuzb@163.com

#### Funding: None

**Conflict of interest statement:** The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

#### Permission to reproduce materials from other sources: None

**Data Availability statement:** The data used to support the findings of this study are available from the corresponding author upon request.

Abstract: In this study, a  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  composite catalyst was prepared by the precipitation method, and its photocatalytic degradation activity for methyl orange (MO) was studied. The catalysts were characterized by TEM, XRD, EDX, HRTEM, SAED, SEM, XPS, and UV-Vis-DRS. The results indicate that 0.1 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>The composite system has a good photocatalytic degradation effect on methyl orange. Under 30-minute simulated sunlight conditions, the degradation rate can reach 94%. The results show that the maximum reaction rate constant of 0.1 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> is 0.05301 min<sup>-1</sup>, which is three times the size of pure Ag<sub>3</sub>PO<sub>4</sub> and 52 times the size of pure ZnCo<sub>2</sub>O<sub>4</sub>. After three cycles, 0.1 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> still degraded methyl orange (MO) at a rate of 84.4%. The trapping experiment showed that hole (h<sup>+</sup>) and O<sub>2</sub><sup>-</sup> played the most important roles in the photocatalytic degradation field of methyl orange (MO) by 0.1 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>, and hydroxyl radical (OH·) played a partial role. The energy level structure of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> is conducive to the effective separation of photogenerated electrons and holes, improving the lifespan of photogenerated charges. Among them, the photocatalytic performance of 0.1 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> is the most excellent.

Keywords: methyl orange; photocatalytic activity; photogenerated carriers

#### 1. Introduction

At present, the form of global environmental pollution is severe, and environmental problems pose a major threat to mankind [1-3]. Solar energy is a renewable energy source, but its development is greatly limited due to its low utilization rate and severe environmental pollution. Therefore, how to efficiently use solar energy and effectively manage environmental pollution has become an important issue that human society is facing and urgently needs to solve [4-5]. Semiconductor photocatalytic technology provides a new choice for solving the problem of global environmental pollution [6-7]. Since  $TiO_2$  was first used as a photoanode to decompose water under UV irradiation in the 1970s [8], the application of nano-TiO<sub>2</sub> semiconductor photocatalytic oxidation technology in the field of environmental pollution control has opened a new chapter. The so-called photocatalytic reaction is a process in which the reaction system containing the catalyst excites reaction molecules under light irradiation or excites the catalyst to form complexes with reaction molecules to transform light power into chemical power and improve reaction efficiency [9]. However, due to the large band gap of  $TiO_2$ , its photocatalytic reaction can only be carried out under ultraviolet light, and the utilization rate of sunlight is low. In response to this practical issue, people have been committed to developing efficient visible-light catalytic materials. In response to this issue, this project aims to further optimize the photocatalytic performance of  $TiO_2$  based on preliminary work. At present, the main research methods include precious metal deposition, co-doping, metal ion doping, etc. At the same time, they are also researching new photocatalytic materials.

 $Ag_3PO_4$  has high photocatalytic efficiency and can degrade organic pollutants under the conditions of sunlight and visible light. However,  $Ag_3PO_4$  is easily reduced to elemental Ag under visible light irradiation [10], which restricts its practical use. In order to better utilize sunlight as a clean energy source, people have conducted extensive research and development. Therefore, people organically combine these two types of semiconductors with different band structures, hoping to accelerate the separation of photogenerated charge carriers and enhance their photocatalytic activity.

Zhang et al. prepared an Ag<sub>3</sub>PO<sub>4</sub>/SnO<sub>2</sub> composite photocatalyst by combining Ag<sub>3</sub>PO<sub>4</sub> and SnO<sub>2</sub>, which not

only showed strong photocatalytic performance but also enhanced the stability of the composite [11]. In the experiment of degrading methyl orange wastewater, the reusability and stability of  $Ag_3PO_4/TiO_2$  composite photocatalytic material prepared by Li et al. were significantly improved compared with  $Ag_3PO_4$  and  $TiO_2$  [12]. Liu et al. synthesized  $Bi_2GeO_5/Ag_3PO_4$ nanocomposites by a two-step method and formed Z-type heterojunctions through a subsequent photocatalytic process, which significantly improved their photocatalytic activity and stability [13].

In this paper,  $ZnCo_2O_4$  nanoparticles were prepared by microwave assisted method and then deposited on  $Ag_3PO_4$  surface by precipitation method to form  $ZnCo_2O_4/Ag_3PO_4$  composite catalyst. The structure of the composite was characterized, and its degradation performance in methyl orange wastewater was studied under visible light. Results indicate that  $ZnCo_2O_4$  can availably improve the stability and photocatalytic degradation properties of  $Ag_3PO_4$ .

#### 2. Experimental section

#### 2.1. Experiment reagents

The reagents used in the experiment are shown in Table 1.

**Table 1** Experimen reagents

| Medications designation       | Chemical formula                                                        | Purity        | Manufacturer                  |
|-------------------------------|-------------------------------------------------------------------------|---------------|-------------------------------|
| Zinc nitrate                  | $Zn(NO_3)_2.6H_2O$                                                      | AR            | Sinopharm Chemical Reagent Co |
| Cobaltous nitrate hexahydrate | $Co(NO_3)_3.6H_2O$                                                      | AR            | Sinopharm Chemical Reagent Co |
| Urea                          | $CO(NH_2)_2$                                                            | $\mathbf{AR}$ | Sinopharm Chemical Reagent Co |
| Ammonium fluoride             | $NH_4F$                                                                 | AR            | Sinopharm Chemical Reagent Co |
| Silver nitrate                | $AgNO_3$                                                                | AR            | Sinopharm Chemical Reagent Co |
| Disodium hydrogen phosphate   | $Na_2HPO_4 \cdot 12H_2O$                                                | AR            | Sinopharm Chemical Reagent Co |
| 1,4-Benzoquinone              | $C_6H_4O_2$                                                             | AR            | Sinopharm Chemical Reagent Co |
| Triethanolamine               | $N(CH_2CH_2OH)_3$                                                       | AR            | Sinopharm Chemical Reagent Co |
| Isopropanol                   | $(CH_3)_2 CHOH$                                                         | AR            | Sinopharm Chemical Reagent Co |
| Ethanol                       | $CH_2CH_3OH$                                                            | AR            | Sinopharm Chemical Reagent Co |
| Methyl orange                 | $\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{N}_{3}\mathrm{SO}_{3}\mathrm{S}$ | AR            | Sinopharm Chemical Reagent Co |

#### 2.2. Characterization instruments

The characterization instruments and test conditions used in the experiment are shown in Table 2.

 Table 2 Characterization instruments

| Characterization instruments                             | Version           | Test Conditions                             |
|----------------------------------------------------------|-------------------|---------------------------------------------|
| Scanning electron microscope (SEM)                       | JSM-6510          | /                                           |
| High resolution transmission electron microscope (HRTEM) | JEM-2100          |                                             |
| X-ray diffraction (XRD)                                  | Rigaku D/max-2500 | X-ray diffractometer at 35 kV, ranging      |
| X-ray photoelectron spectroscopy (XPS)                   | ESCALAB 250       | /                                           |
| UV-visible diffuse reflectance spectra (DRS)             | UV-2550           | wavelength between 200 and $850\mathrm{nm}$ |

#### 2.3. Preparation of catalyst

# 2.3.1. Synthesis of the $ZnCo_2O_4$

A microwave-assisted synthesis method was used to synthesize  $\text{ZnCo}_2\text{O}_4$  particles. The specific preparation process is as follows: 7.5 mmol of  $\text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ , 15 mmol of  $\text{Co}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$ , 60 mmol of  $\text{CO}(\text{NH}_2)_2$  and

12 mmol of  $NH_4F$  were successively added to 100 ml of deionized water, using a magnetic stirrer to stir for 30 minutes and ultrasound for 30 minutes to completely dissolve the medicine and form a light pink solution. Then transfer the mixed solution to a 300 ml polytetrafluoroethylene reaction tank, assemble the reaction instrument, and place it in the microwave device, heating at a rate of 8 °C/min and microwave reaction at 130 °C for 30 min. When the reaction is complete, the product temperature is brought to room temperature, and then the drug is collected by centrifugation, filtration, and repeat washing with deionized water, dried in the oven at 80 °C for 10 hours, and finally calcined in the tubular muffle furnace at 350 °C for 2 hours at a heating rate of 1 °C/min to obtain the product, which is collected for standby.

# 2.3.2. Preparation of the $ZnCo_2O_4/Ag_3PO_4Composites$

 $0.612g \text{ AgNO}_3$  was added to 30 ml of silver nitrate solution, and also  $\text{ZnCo}_2\text{O}_4$  (0.1g, 0.2 g, and 0.3g) was added to the silver nitrate solution, sonicated for 30 min to disperse  $\text{ZnCo}_2\text{O}_4$  evenly, then slowly added to 30 ml of solution having  $0.43g \text{ Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O}$  and stirred at room temperature for 120 min. After that, the product was filtered and precipitated by centrifugation, cleaned with deionized water and anhydrous ethanol, dried at 60 °C, and three  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  catalysts with different  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ , respectively. A single  $\text{Ag}_3\text{PO}_4$  was prepared for comparative study.

#### 2.4. Photocatalytic experiment

The photocatalytic experiment was carried out in a photochemical reactor. A xenon lamp (1000 W) simulates sunlight. Weigh 50 mg of photocatalyst, scatter it into a beaker with 50 ml of 10 mg/L methyl orange, put it in the photochemical reactor, close the box door to avoid alternating light and dark, stir and adsorb for 20 minutes, turn on the light source, take 4 ml of samples every 5 minutes, and take the supernatant after centrifugation. The absorbance of the methyl orange solution before and after the reaction was measured by a UV-Vis spectrophotometer at 464 nm. During the reaction, hold the reaction suspension at about 10 °C. Beer Lambert's Law was used to calculate the degradation rate of photocatalytic degradation of MO. Characterization of photocatalytic degradation of MO using the kinetic equation method:

 $\frac{\mathbf{C}_t}{\mathbf{C}_0 = \frac{A_t}{A_0}}$ (1)

 $A_t + Kt = -ln(\frac{C_t}{C_0}) \ (2)$ 

 $A_0$  and  $A_t$  show the absorbance of the solution at the initial and post-irradiation times, and  $C_0$  and  $C_t$  show the corresponding initial concentration of the solution and the solution concentration after t time.

Catalyst cycle stability analysis: collect the photocatalyst after each use, wash and dry it many times, and repeat the above steps twice to investigate its cycle stability.

Free radical capture experiment: Using isopropanol (IPA) as hydroxyl radical (OH·) trapping agent, triethanolamine (TEOA) as hole (h<sup>+</sup>) trapping agent, and p-benzoquinone (BQ) as superoxide radical (O- 2·) trapping agent, the active factors in the catalytic degradation process of the objective contaminant were analyzed through the change in degradation efficiency before and after the addition of trapping agent.

# 3. Results and Discussion

#### 3.1. Catalyst characterization

The XRD spectra of the prepared  $Ag_3PO_4$ ,  $ZnCo_2O_4$ , 0.1  $ZnCo_2O_4/Ag_3PO_4$ , 0.2  $ZnCo_2O_4/Ag_3PO_4$ , and 0.3  $ZnCo_2O_4/Ag_3PO_4$  catalysts are shown in Fig. 1. It can be seen from the figure that the diffraction peaks located at 18.96°, 31.22°, 36.81°, 44.74°, 59.28°, and 65.15° in the XRD pattern of  $ZnCo_2O_4$ (JCPDS No. 23-1390) belong to the (111), (220), (210), (311), (400), (511), and (440) crystal planes, indicating that  $ZnCo_2O_4$  was synthesized by the microwave-assisted method. The characteristic diffraction peaks located at 20.9°, 29.7°, 33.3°, 36.6°, 47.9°, 52.8°, 55.1°, 57.4°, 61.7°, and 72.0° in the XRD spectrum of  $Ag_3PO_4$  catalyst correspond to

the (110), (200), (210), (211), (310), (222), (320), (321), (400), and (421) crystallographic planes of  $Ag_3PO_4$ , which are consistent with the standard card of  $Ag_3PO_4$  (JCPDS No. 70-0702). The characteristic diffraction peaks belonging to  $ZnCo_2O_4$  in the XRD pattern of  $ZnCo_2O_4/Ag_3PO_4$  became more and more obvious with the increase in the amount of  $ZnCo_2O_4$ , which indicated that the  $ZnCo_2O_4$  particles were successfully loaded onto the surface of  $Ag_3PO_4$  to form the  $ZnCo_2O_4/Ag_3PO_4$  composite catalyst.



Figure 2 a Low and b high-magnification SEM images of  $ZnCo_2O_4$ ; c SEM images of  $Ag_3PO_4$ ; d SEM images of  $ZnCo_2O_4/Ag_3PO_4$ ; e TEM image of  $ZnCo_2O_4/Ag_3PO_4$ ; f HRTEM image of  $ZnCo_2O_4/Ag_3PO_4$  and g SAED pattern of  $ZnCo_2O_4/Ag_3PO_4$ .

Fig. 2a shows the spherical ZnCo<sub>2</sub>O<sub>4</sub>successfully synthesized by the microwave-assisted method with a

Posted on 19 Jun 2023 — The copyright holder is the author/funder. All rights reserved. No reuse without permission. — https://doi.org/10.22541/au.168719613.32382608/v1 — This a preprint and has not been peer reviewed. Data may be preliminary

diameter range of 3–8 µm. Fig. 2b shows the structure of a single  $\text{ZnCo}_2\text{O}_4$  microsphere, which can be seen from the figure as a stack of nanosheets. Fig. 2c shows  $\text{Ag}_3\text{PO}_4$  crystals with a regular hexahedral structure and a particle size range of 0.4–1 µm. Fig. 2d is an SEM image of the composite  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ . It can be seen from the figure that the particle size range of  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  is also 0.4–1 µm, which is caused by the recrystallization of  $\text{ZnCo}_2\text{O}_4$  and deposition on  $\text{Ag}_3\text{PO}_4$  during the synthesis process. To further observe the morphology of  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ , Fig. 2e shows the TEM image of  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ , from which it can be seen that the recrystallized  $\text{ZnCo}_2\text{O}_4$  is attached to the  $\text{Ag}_3\text{PO}_4$  crystal surface. Fig. 2f shows the HRTEM image of  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ , which further verifies that the recrystallized  $\text{ZnCo}_2\text{O}_4$  is successfully attached to the  $\text{Ag}_3\text{PO}_4$  crystal surface, and the lattice spacing d is 0.244 and 0.269 nm for  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ , in which the bright diffraction rings of  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ can be seen, indicating that it is polycrystalline. In addition, the lattice distances of 0.244 nm and 0.269 nm for the two crystal planes can be clearly seen in Fig. 2g, which is in agreement with the results of HRTEM plots. In summary, it can be clearly seen that the composite catalyst  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  is formed by loading the recrystallized  $\text{ZnCo}_2\text{O}_4$  onto the  $\text{Ag}_3\text{PO}_4$  crystal surface.

# Hosted file

image3.wmf available at https://authorea.com/users/630614/articles/650303-construction-ofznco2o4-ag3po4-composite-photocatalyst-for-enhanced-photocatalytic-performance

Figure 3 XPS spectra of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>:(a) survery scan, (b) Ag 3d, (c) O1s,(d) Zn 2p, (e) P 2p, (f) Co 2p.

The XPS of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> is shown in Fig. 3. Fig. 3a shows the full spectrum scan of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>, from which it can be seen that the product has six elementary substances: Ag, O, Zn, C, P, and Co, where C is the substrate. Fig. 3b shows the XPS spectrum peaks of Ag 3d. The peaks at 367.85 eV and 373.8 eV in Ag 3d correspond to Ag  $3d_{5/2}$  and Ag  $3d_{3/2}$ , respectively. Ag  $3d_{5/2}$  can be decomposed into two peaks at 367.75 eV and 368.20 eV, while Ag  $3d_{3/2}$  can also be decomposed into two peaks at 373.8 eV and 374.4 eV. The peaks appearing at 367.75 eV and 373.8 eV belong to Ag<sup>+</sup>, while the peaks at 368.2 eV and 374.4 eV belong to  $Ag^0$  monomer, which indicates that the Ag in the catalyst exists mainly in the form of  $Ag^+$  [13, 14]. Fig. 3c shows the XPS spectrum of O1s. The whole peak can be split into three feature peaks: 530.35 eV, 530.8 eV, and 532.2 eV. Among the three characteristic peaks, 530.35 eV and 530.8 eV corresponded to  $Ag_3PO_4$  and  $ZnCo_2O_4$  lattices in the material, respectively. The peak at 532.2 eV manifests  $H_2O$  or  $OH^$ adsorbed on the material surface [15]. Fig. 3d is the XPS analytical diagram of Zn 2p. There are two main peaks at 1021.6 eV and 1044.7 eV, corresponding to the regional of  $\operatorname{Zn} 2p_{3/2}$  and  $\operatorname{Zn} 2p_{1/2}$  [16, 17]. It can be seen that the peak of Zn  $2p_{3/2}$  is a single peak near 1021.6 eV, which is typical of the oxidation state of  $Zn^{2+}$ . Fig. 3e indicates the XPS peak of P 2p, corresponding to  $P^{5+}$  in PO3+ 4 structure at 132.45 eV. Fig. 3f is the XPS analytical diagram of Co 2p. There are two main peaks at 780.8 eV and 795.9 eV, corresponding to the regional of Co  $2p_{1/2}$  and Co  $2p_{3/2}$ , and the obvious satellite peaks observed at 780.8 eV are characteristic peaks of the  $\text{Co}^{3+}$  oxidation state [18, 19]. XPS analysis further proved that  $\text{ZnCo}_2\text{O}_4$ and  $Ag_3PO_4$  were compounded.

**Figure 4 a** UV-Vis DRS results of  $Ag_3PO_4$ ,  $ZnCo_2O_4$  and  $0.1 ZnCo_2O_4/Ag_3PO_4$ ; **b** Plots of  $(\alpha hv)^2$  as a function of energy (hv) for bandgap energies of  $Ag_3PO_4$ ,  $ZnCo_2O_4$  and  $0.1 ZnCo_2O_4/Ag_3PO_4$ .

Fig. 4a shows the UV-Vis diffuse absorption spectra of  $Ag_3PO_4$ ,  $ZnCo_2O_4$ , and 0.1  $ZnCo_2O_4/Ag_3PO_4$  catalysts. The light absorption intensity of  $ZnCo_2O_4$  is stronger in the whole wavelength range, while  $Ag_3PO_4$  absorbs wider in the visible light region with an absorption boundary of approximately 530 nm. The addition of  $ZnCo_2O_4$  widens the  $Ag_3PO_4$  light absorption range and also raises the light absorption intensity, which indicates that  $ZnCo_2O_4$  has a synergistic effect with  $Ag_3PO_4$ .

According to the Kubelka-Munk formula, the band gap width of Ag<sub>3</sub>PO<sub>4</sub> and ZnCo<sub>2</sub>O<sub>4</sub> can be counted [20]:  $\alpha hv = A (hv - Eg)^{\frac{n}{2}}$  (3) In this equation, and h are the absorption coefficient and Planck constant, Eg is the energy band gap, V is the optical frequency, and a is the constant. n represents the optical transition type of the semiconductor. When the semiconductor has a direct band gap, n is 1, and when the semiconductor has an indirect band gap, n is 4. Since  $ZnCo_2O_4$  and  $Ag_3PO_4$  are direct semiconductors, n is taken as 1 [19, 21]. Fig. 4b shows the  $(\alpha hv)^2$  versus energy (hv) of band gap energy for  $Ag_3PO_4$ ,  $ZnCo_2O_4$ , and  $0.1 ZnCo_2O_4/Ag_3PO_4$  catalysts, in which the band gap widths of  $ZnCo_2O_4$  and  $Ag_3PO_4$  are 2.63 eV and 2.45 eV, respectively.

In order to show the carrier transfer of  $ZnCo_2O_4/Ag_3PO_4$  catalyst in the process of photocatalytic reaction, the VB and CB potentials of  $ZnCo_2O_4$  and  $Ag_3PO_4$  were forecasted by this formula [22]:

$$E_{\rm CB} = X - Ee - 0.5Eg \ (4)$$

 $E_{\rm VB} = E_{\rm CB} + Eg~(5)$ 

Where x is the absolute electronegativity of the semiconductor, Ee is the potential of the free electron relative to the standard hydrogen electrode (about 4.5 eV), Eg is the band gap width of the semiconductor, and  $E_{CB}$  and  $E_{VB}$  are the conduction band and valence band potentials of semiconductors, respectively. X values of  $ZnCo_2O_4$  and  $Ag_3PO_4$  are 5.96 eV and 6.17 eV, and the  $E_{VB}$  values of  $ZnCo_2O_4$  and  $Ag_3PO_4$  can be calculated to be 2.775 eV and 2.9 eV, respectively. Therefore, the  $E_{CB}$  values of  $ZnCo_2O_4$  and  $Ag_3PO_4$  are estimated to be 0.145 eV, respectively.

#### 3.2. Photocatalytic properties and mechanism

**Figure 5 a** Visible light scanning pattern of MO degradation by  $0.1 \text{ ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ ; **b** Effects of different catalysts on photocatalytic degradation of MO under visible light; **c**First-order kinetic fitting plots of MO degradation by each catalysts; **d** Cycling runs of Ag\_3PO\_4 and 0.1 ZnCo\_2O\_4/Ag\_3PO\_4 for the degradation of MO.

Table 3 Photodegradation rate constants and linear regression coefficients of different catalysts obtained according to the formula:  $-\ln(C/C_0) = kt$ .

|                                                                       | $K(min^{-1})$ | Regression equation                | $\mathbb{R}^2$          |
|-----------------------------------------------------------------------|---------------|------------------------------------|-------------------------|
| 0.1 ZnCo <sub>2</sub> O <sub>4</sub> /Ag <sub>3</sub> PO <sub>4</sub> | 0.05301       | $-\ln(C/C_0) = 0.05301x + 0.34031$ | R <sup>2</sup> =0.70906 |
| $0.2 \operatorname{ZnCo}_2O_4/\operatorname{Ag}_3PO_4$                | 0.0229        | $-\ln(C/C_0) = 0.0229x + 0.18005$  | $R^2 = 0.77862$         |
| $0.3 \operatorname{ZnCo}_2O_4/\operatorname{Ag}_3PO_4$                | 0.02006       | $-\ln(C/C_0) = 0.02006x + 0.15152$ | $R^2 = 0.76032$         |
| $Ag_3PO_4$                                                            | 0.01793       | $-\ln(C/C_0) = 0.01793x + 0.16102$ | $R^2 = 0.83218$         |
| $ZnCo_2O_4$                                                           | 0.00102       | $-\ln(C/C_0) = 0.00102x + 0.02698$ | R <sup>2</sup> =0.92847 |

In Figure 5a, the photocatalytic degradation of  $0.1 \text{ ZnCo}_2O_4/\text{Ag}_3PO_4$  was analyzed using UV-vis full wave scanning of methyl orange molecules. The results showed that the characteristic peak intensity of methyl orange molecules decreased with the prolongation of reaction time near 464nm, and after 30 minutes, its peak intensity approached 0, indicating that methyl orange had been completely degraded. Fig. 5b shows the photocatalytic degradation of MO by different catalysts Ag<sub>3</sub>PO<sub>4</sub>, ZnCo<sub>2</sub>O<sub>4</sub>, 0.1 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>, 0.2  $ZnCo_2O_4/Ag_3PO_4$ , and 0.3  $ZnCo_2O_4/Ag_3PO_4$ . The results showed that the photocatalytic effect of pure  $ZnCo_2O_4$  was the worst, and the photocatalytic degradation rate was only 5% within 30 min. While Ag<sub>3</sub>PO<sub>4</sub>, 0.2 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>, and 0.3 ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>showed 56%, 69%, and 65% photocatalytic degradation at 30 min, respectively. The results showed that the 0.1ZnCo2O4/Ag3PO4 catalyst had the best photocatalytic degradation effect on methyl orange, and after 30 minutes, the degradation rate of methyl orange could reach 94%. This study found that  $ZnCo_2O_4$  can effectively improve the photocatalytic degradation performance of Ag<sub>3</sub>PO<sub>4</sub>. Fig. 5c shows that the reaction of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>photocatalytic degradation of methyl orange follows the pseudo first-order reaction kinetic model. As shown in Table 3, calculate the k-value of each sample after linearly fitting the curve, and the reaction rate constants of  $Ag_3PO_4$ ,  $ZnCo_2O_4$ , 0.1  $ZnCo_2O_4/Ag_3PO_4$ , 0.2  $ZnCo_2O_4/Ag_3PO_4$ , and 0.3  $ZnCo_2O_4/Ag_3PO_4$ were 0.01793min<sup>-1</sup> 0.00102min<sup>-1</sup>, 0.05301min<sup>-1</sup>, 0.0229min<sup>-1</sup> and 0.0206min<sup>-1</sup>, respectively. The maximum reaction rate constant of 0.1  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  is 0.05301min<sup>-1</sup>, which is 3 times that of  $\text{Ag}_3\text{PO}_4$  and 52 times that of  $\text{ZnCo}_2\text{O}_4$ . These results indicate that the combination of  $\text{Ag}_3\text{PO}_4$  and  $\text{ZnCo}_2\text{O}_4$  has a synergistic effect, which can improve its photocatalytic performance. Figure 5d shows the test of stability consequences of  $\text{Ag}_3\text{PO}_4$  and 0.1 $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  recycled three times. From the figure, it can be seen that after three rounds of recycling, the degradation rate of MO by  $\text{Ag}_3\text{PO}_4$  is only 21.8%, while the degradation rate of Mo by 0.1  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  is 84.4%, which indicates that the use of  $\text{Ag}_3\text{PO}_4$  and  $\text{ZnCo}_2\text{O}_4$  for compounding can improve the stability of the photocatalyst.

Figure6Trapping experiments of active species during photocatalysis reaction.

Fig. 6 shows the effect of different capture factors on the reaction rate of  $0.1 \text{ ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$  photocatalytic degradation of MO. From the figure, it can be seen that the addition of IPA has little influence on the photocatalytic degradation of MO. It can be seen that in the photocatalytic degradation of MO by 0.1  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ , holes (h<sup>+</sup>) and superoxide ions (O-2•) play the most important roles in the photocatalytic degradation, and hydroxyl radicals (OH•) play a partial role in the degradation.



Scheme 1 Schematic diagram of photocatalytic mechanism of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub>.

Based on the aforesaid analysis, the reaction mechanism of the  $ZnCo_2O_4/Ag_3PO_4$  photocatalytic degradation process was proposed. The valence band potential energy level of  $Ag_3PO_4$  is about 2.9 eV, and the conductive band potential energy level is about 0.45 eV, so its band gap is 2.45 eV. The conduction band potential level of  $ZnCo_2O_4$  is 0.145 eV, the valence band potential level is 2.775 eV, and its band gap width is 2.63 eV. Both  $ZnCo_2O_4$  and  $Ag_3PO_4$  can be excited by visible photons to form electron-hole pairs (Eq. (6-7)). With the accumulation of photogenerated electrons in the CB of  $Ag_3PO_4$ ,  $Ag_3PO_4$  was photoetched, which makes part of the  $Ag^+$  converted to singlet silver (Eq. (8)) [13]. Silver nanoparticles can absorb visible photons and form photoexcited electron hole pairs (Eq. (9)). [23]. Photogenerated electrons formed in Ag nanoparticles are captured by dissolved oxygen to form superoxide anions (O- 2•) (Eq. (10)). The strong oxidation property of O- 2• degrades MO to produce carbon dioxide and water (Eq. (11)). Meanwhile, the photogenerated electrons in the conduction band of  $ZnCo_2O_4$  combine with the photogenerated holes generated by Ag nanoparticles to prevent further corrosion, making the catalyst itself self-stabilizing. The holes left in the valence bands of  $Ag_3PO_4$  and  $ZnCo_2O_4$  directly decomposed the MO oxidation to water and  $CO_2$  (Eq. (12)). This is consistent with the active factor capture results.

 $Ag_3PO_4 + hv \rightarrow e^- + h^+ (6)$ 

 $ZnCo_{2}O_{4} + hv \to e^{-} + h^{+} (7)$   $Ag^{+} + e^{-} \to Ag (8)$   $Ag + hv \to e^{-} + h^{+} (9)$   $e^{-} + O_{2} \to O_{2}^{-} (10)$   $O_{2}^{-} + RhB \to CO_{2} + H_{2}O(11) h^{+} + RhB \to CO_{2} + H_{2}O (12)$ 

# 4. Conclusion

In this paper,  $ZnCo_2O_4$  was prepared by a microwave-assisted process, and then  $ZnCo_2O_4$  was loaded onto  $Ag_3PO_4$  by in-situ chemical precipitation method to obtain a composite photocatalyst. The catalytic activity and cycle stability were evaluated under visible light, and the catalytic reaction mechanism was proposed. The main conclusions are as follows:

(1)  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4\text{exhibits}$  high photocatalytic performance and good stability under room temperature and visible light conditions. The photocatalytic degradation rate of pure  $\text{ZnCo}_2\text{O}_4$  within 30 minutes is only 5%, and the photocatalytic efficiency is very low. The results show that the degradation rate of MO by the  $0.1\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ composite system can reach 94% within 30 minutes, and MO is basically degraded. Research has found that  $\text{ZnCo}_2\text{O}_4$  has a significant promoter effect on the photocatalytic degradation of  $\text{Ag}_3\text{PO}_4$ .

(2) In the stability test, after three cycles, the degradation rate of MO by 0.1  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ remained at 84.4%, while the degradation rate of  $\text{Ag}_3\text{PO}_4$  was only 21.8%, indicating that the stability of the 0.1  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ composite was significantly improved compared with  $\text{Ag}_3\text{PO}_4$ . The photocatalytic activity was the highest at 0.1  $\text{ZnCo}_2\text{O}_4/\text{Ag}_3\text{PO}_4$ . This study will play an important guiding role in pollution control.

(3) The visible light degradation of MO solution by  $Ag_3PO_4$  is very easy to inactivate. The addition of  $ZnCo_2O_4$  can accelerate the separation of photoelectron holes and improve the stability and catalytic activity of the catalyst.

#### References

[1] Fujishima A. Photoelectrochemistry and photocatalysis will help us realize a geen, sustainable future [J]. Electrochemistry, 2011, 79(10): 759.

[2] Wu JM, Shih HC, Wu WT, Tseng YK, Chen IC. Thermal evaporation growth and the luminescence property of TiO<sub>2</sub> nanowires [J]. J Cryst Growth, 2005, 281(2): 384-390.

[3] Mao J, Wu Q, Tao FF, Xu W, Hong TJ, Dong YL. Facile fabrication of porous BiVO<sub>4</sub> hollow spheres with improved visible-light photocatalytic properties [J]. RSC Advances, 2020, 10(11): 6395-6404.

[4] Fagan R, McCormack DE, Dionysiou DD, Pillai SC. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern [J]. Materials Science in Semiconductor Processing, 2016, 42(1):2-14.

[5] Cesaro A, Belgiorno V. Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review [J]. The Open Biotechnology Journal, 2016, 10(1):151-172.

[6] Nakata K, Fujishima A. TiO<sub>2</sub> photocatalysis: Design and applications [J]. Journal of photochemistry and photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189.

[7] Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance [J]. Trends in microbiology, 2014, 22(1): 36-41.

[8] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. nature, 1972, 238(5358): 37-38.

[9] Teng W, Li XY, Zhao QD, Chen GH. Fabrication of Ag/Ag<sub>3</sub>PO<sub>4</sub>/TiO<sub>2</sub>heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation [J]. Journal of Materials Chemistry A, 2013, 1(32): 9060-9068.

[10] Nosaka Y, Nosaka AY. Generation and detection of reactive oxygen species in photocatalysis [J]. Chemical reviews, 2017, 117(17): 11302-11336.

[11] Li F, Zhang G, Song YH. Preparation and Photocatalytic Mechanism of Ag<sub>3</sub>PO<sub>4</sub>/SnO<sub>2</sub>Composite Photocatalyst [J]. Nano, 2019, 14(07): 1950092.

[12] Li Y, Liu YF, Zhang MQ, Zhou QY, Li X, Chen TL, Wang SF. Preparation of  $Ag_3PO_4/TiO_2(B)$  heterojunction nanobelt with extended light response and enhanced photocatalytic performance [J]. Molecules, 2021, 26(22): 6987.

[13] Liu DD, Zhu PY, Yin L, Zhang XY, Zhu KJ, Tan Jh, Jin RY. Facile fabrication of Bi<sub>2</sub>GeO<sub>5</sub>/Ag@Ag<sub>3</sub>PO<sub>4</sub>for efficient photocatalytic RhB degradation [J]. Journal of Solid State Chemistry, 2021, 301: 122309.

[14] Zheng CX, Yang H. Assembly of  $Ag_3PO_4$  nanoparticles on rose flower-like  $Bi_2WO_6$  hierarchical architectures for achieving high photocatalytic performance [J]. Journal of Materials Science: Materials in Electronics, 2018, 29:9291-9300.

[15] Zhang XL, Wang N, Geng LL, Fu JN, Hu H, Zhang DS, Zhu BY, Carozza J, Han HX. Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitropheno [J]. Journal of Colloid and Interface Science, 2012, 512: 844-852.

[16] Che H, Liu A, Zhang X, Mu J, Bai Y, Hou J. Three-dimensional hierarchical ZnCo<sub>2</sub>O<sub>4</sub> flower-like microspheres assembled from porous nanosheets: Hydrothermal synthesis and electrochemical properties [J]. Ceramics International, 2015, 41(6): 7556-7564.

[17] Hung TF, Mohamed SG, Shen CC, Tsai YQ, Chang WS, Liu RS. Mesoporous  $ZnCo_2O_4$  nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium–oxygen batteries in aprotic media [J].Nanoscale, 2013, 5(24): 12115-12119.

[18] Hung TF, Mohamed SG, Shen CC, Tsai YQ, Chang WS, Liu RS. Mesoporous  $ZnCo_2O_4$  nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium–oxygen batteries in aprotic media [J].Nanoscale, 2013, 5(24): 12115-12119.

[19] Liu WH, Hu SQ, Wang Y, Zhang BB, Jin RY, Hu LS. Anchoring Plasmonic Ag@AgCl Nanocrystals onto ZnCo<sub>2</sub>O<sub>4</sub> Microspheres with Enhanced Visible Photocatalytic Activity [J]. Nanoscale Research Letters, 2019, 14:1-10.

[20] Schuhl Y, Baussart H, Delobel R, Bras ML, Leroy JM, Gengembre L, Grimblot J. Study of mixedoxide catalysts containing bismuth, vanadium and antimony. Preparation, phase composition, spectroscopic characterization and catalytic oxidation of propene. Journal of the Chemical Society Faraday Transactions 1, 1983, 79: 2055-2069

[21] Tan JH, Peng JH, Li Z, Liu DD, Li WB. Ag@AgBr/Ag3PO4 Nanocomposites as Photocatalyst for Degradation of Rhodamine B [J]. Int. J. Electrochem. Sci, 2021, 16(7).

[22] Zhang X, Zhang L, Xie T, Wang D. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO<sub>2</sub> Heterostructures. Journal of Physical Chemistry C, 2009, 113:7371-7378

[23] Hu X, Ma Q, Wang X, Yang Y, Yang Y. Layered Ag/Ag<sub>2</sub>O/BiPO<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub>heterostructures by two-step method for enhanced photocatalysis. Journal of Catalysis, 2020, 387:28-38