
P
os
te
d
on

26
J
u
n
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
77
67
71
.1
85
31
55
6/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Stability analysis of nonlinear fuzzy hybrid control systems subject

to saturation and delays via step-function method

Ruiyang Qiu1, Ruihai Li2, and Jianbin Qiu1

1Harbin Institute of Technology School of Astronautics
2Harbin Institute of Technology School of Mathematics

June 26, 2023

Abstract

Under the framework of the step-function method, the stability of a nonlinear fuzzy hybrid control system combining an

impulsive controller and a continuous state feedback controller is investigated. Both the two controllers are assumed to be

subject to both actuator saturation and time-varying delays, which has received little attention if any, in the existing studies.

A new assumption is established enabling the use of generalized sector conditions to tackle the double saturation, and the

conservatism of the stability results is remarkably reduced thanks to the improved step-function method. The stability theorem

proposed in this paper removes restriction on the time delays of both controllers, which can be also applied to wider scopes

of systems, including hybrid control systems with both stabilizing and instabilizing impulses, systems with varying impulsive

gain, and systems with Zeno behavior. Numerical simulations of stabilization for different systems by delayed saturated hybrid

control have been conducted, which demonstrate the validity of proposed theorems.
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Abstract

Under the framework of the step-function method, the stability of a nonlinear fuzzy
hybrid control system combining an impulsive controller and a continuous state feed-
back controller is investigated. Both the two controllers are assumed to be subject to
both actuator saturation and time-varying delays, which has received little attention
if any, in the existing studies. A new assumption is established enabling the use of
generalized sector conditions to tackle the double saturation, and the conservatism
of the stability results is remarkably reduced thanks to the improved step-function
method. The stability theorem proposed in this paper removes restriction on the time
delays of both controllers, which can be also applied to wider scopes of systems,
including hybrid control systems with both stabilizing and instabilizing impulses,
systems with varying impulsive gain, and systems with Zeno behavior. Numerical
simulations of stabilization for different systems by delayed saturated hybrid control
have been conducted, which demonstrate the validity of proposed theorems.
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1 INTRODUCTION

Various phenomena and processes in real life such as biological population management and spacecraft control can be mod-
eled by impulsive systems which involve both continuous dynamics and discrete state changes occurring at specific instants.
Milman and Myshkis conducted initial research on impulsive systems in 1960.1 Since then, considerable studies on the sta-
bility of systems with impulses have been carried out2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 and several methods have been established
to investigate impulsive systems including the impulse time window method2,4 and B-equivalence method.11,12,13 More re-
cently, T-S fuzzy systems with impulse effects, namely, T-S fuzzy impulsive systems, have also been explored and their stability
has been studied.13,14,15,16,17 The use of fuzzy expressions simplifies the analysis process, allowing the application of analysis
methods for linear systems to impulsive systems with nonlinear continuous dynamics. Currently, impulsive control systems,
an important branch of impulsive systems that utilizes a series of impulses as the controller, have garnered significant re-
search interest. It is noteworthy that, unlike other classes of impulsive systems, the dynamics of impulses in impulsive control
systems are inherently stable. For its accessibility, robustness, and relatively low cost, impulsive control has attracted consid-
erable interest among researchers and engineers. Moreover, aiming to further enhance control performance and tackle some
more complex nonlinear systems, hybrid control involving impulsive controller has captured the attention of scientists in recent
years.2,3,4,18,19,20,21,22,23,24,25,26,27,28,29
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Actually, the combination of an impulsive controller and another controller, such as a continuous state-feedback controller,
in nonlinear systems has demonstrated the ability to achieve superior control performance. The impulsive controller introduces
intermittent control inputs at specific time instants, which allows for rapid adjustments and responses to sudden changes or
disturbances in the system. On the other hand, the state-feedback controller operates in real-time, continuously monitoring and
adjusting the control inputs to maintain stability and optimize performance. When combined, these two controllers complement
each other’s capabilities. This hybrid control approach may leverage the strengths of both controllers and has proven particularly
effective in diverse fields, such as neural networks18,19,20,21,22,23,24, multi-agent control2,3,4, and integrated pest management.25

Unfortunately, it is worth noting that the phenomenon of saturation is common and, in many circumstances, inevitable in prac-
tical control systems. It often comes from the output limitations of the actuator, which is a device stimulated by the controller
and amplifies the control signals to directly drive the controlled object in a closed-loop control system. In real control systems,
the output of the actuator (e.g., an impulse thruster) is always constrained as the output amplitude and power of a certain device
are bounded. When the actuator reaches its saturation threshold, a discrepancy arises between the expected and actual output,
which can degrade the control performance, such as reduced speed of response, severe oscillation, and even instability. Given
their importance for practical engineering, control systems with actuator saturation constraints have gained much attention re-
cently. Several methods addressing saturated nonlinearity have been developed. The convex hull analysis method18,26,27,28 and
the sector nonlinearity method23,24,29,30 are two approaches with the widest application. Via the former approach, a convex poly-
hedron is used to indicate the saturation term, while the latter method aims to transform a system with actuator saturation into
a non-saturation system with an additional nonlinear feedback loop, with the help of a decentralized dead-zone term. The dead
zone function is proven to satisfy some inequalities (called sector conditions) which can help to simplify the system when cer-
tain set relations are fulfilled. In addition to actuator saturation, the time delay is another unavoidable phenomenon that may
damage the performance and stability of a specific control system, occurring during signal transmission, computation, actua-
tion, or measurement processes. Considering the challenges it may pose, time-varying delays should also be considered when
designing a nonlinear impulsive control system.8,18,30,31,32,33,34 Specially, state feedback control of neural networks systems with
impulsive inputs has obtained extensive attention considering time delays in either impulse inputs or continuous feedback con-
trol.18,19,20,21,22,23,24 Very recently, taking the actuator saturation and/or time delay into account, some interesting and inspiring
results in the field of hybrid control involving impulse effect have been reported. For example, studies conducted by Li29 establish
a framework of composite control involving both sampled-data and constrained impulsive controllers and reveal its effectiveness
in stabilizing a class of nonlinear dynamic systems. Recent research conducted by Yu focuses on the stabilization of nonlinear
systems using impulsive control and continuous control simultaneously, where both controllers are assumed to have saturated
outputs.26 The saturation nonlinearity in the two controllers is converted into convex hulls utilizing the poly-topic representation
approach, and a new set relation is given to address the problem of double saturation.

Nevertheless, to the best of our knowledge, double saturation in composite control systems has been investigated by few re-
searchers26,27, and, unfortunately, none of these works considers both saturation and delays in both controllers simultaneously,
despite their theoretical and practical significance. In fact, each controller in practical hybrid control systems may experience sat-
uration and time-varying delays, and the combination of double saturation and double delays will result in significant additional
complexity. This is an open question that warrants further investigation.

There are some other shortcomings or limitations that call for improvement in current studies. For example, despite extensive
studies reported considering the stability of systems with impulses, room for improvement remains. When analyzing the stability
of hybrid control systems, the Lyapunov-like function approach is generally applied. However, many present works require
the monotonic decreasing with time of the Lyapunov function in each interval between two adjacent impulse actions, which
causes significant conservatism in stability conditions. To tackle this problem and derive less conservative stability conditions, a
novel analysis framework called the step-function method has been developed recently17, involving constructing a step auxiliary
function that is always greater than or equal to the Lyapunov-like function. This method only requires the Lyapunov function
to decrease every step of the step function (equivalently, every m impulsive intervals, where m can be a bit large number), and
imposing fewer restrictions on the dynamics during the m impulsive intervals. Both theoretical and simulation evidence has
revealed that results derived via the step-function method exhibit less conservatism. In this paper, this approach is expected to
be applied to systems that are subject to saturation and time delays. Apart from that, the impulsive gain matrices in many related
studies are assumed to be fixed, or, time-invariant, for the sake of analysis simplicity.18,22,23,24,26,29 This assumption seriously
restricts the applicability of the current findings and results. In addition, set inclusion relations proposed in some literature are
difficult to verify26, which highlights the need for improved expression of these conditions.
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Motivated by the preceding discussions on existing research, in this paper, a nonlinear hybrid control system that incorporates
saturated delayed impulsive and state feedback controllers is presented using the T-S fuzzy model framework. The saturation in
both controllers is tackled through local sector conditions, while the step-function method is then employed to obtain relaxed
conditions for local asymptotic stability of the hybrid control system. The following summarizes the advantages and innovations
of the methodologies and results presented in this paper compared to existing studies:

(i). Incorporating double saturation and double time-varying delays in the framework of fuzzy hybrid control systems, which
is previously unexplored because of its complexity;

(ii). Reducing the conservatism of stability results by relaxing the limitations of the Lyapunov-like function through the
utilization of a novel step function-based method;

(iii). The impulsive gain matrix of the impulsive controller in the hybrid control system proposed in this paper can be variable
at each impulsive instance, which is a rare feature in current studies;

(iv). The proposed method can handle systems with varying time intervals between impulses and can also address Zeno behav-
ior, which is not effectively handled by popular approaches for analysis of delayed impulsive systems such as the average
impulsive interval-based method;31,32

(v). the proposed stability theorem removes the common assumption in most existing research that the delays of controllers
must be shorter than the impulsive intervals.

In the subsequent parts of this paper, Section 2 introduces the problem and provides necessary background information
regarding fuzzy hybrid control systems. The stabilization analysis of a simplified case, where only the impulsive controller is
involved, is presented in Section 3. Furthermore, applying the step-function and sector nonlinearity method, the main findings
of this paper are presented in Section 4, where sufficient stability conditions for hybrid control systems considering double
saturation and time-varying delays are derived. To verify the effectiveness of these results, Section 5 provides two illustrative
simulation examples. The paper concludes with a summary of the key points in Section 6.

2 PROBLEM STATEMENT AND PRELIMINARIES

Consider a general nonlinear impulsive system which is described as

⎧

⎪

⎨

⎪

⎩

𝑧̇ (𝑡) = 𝑦 (𝑡, 𝑧 (𝑡)) , 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

Δ𝑧
(

𝜏𝑘
)

= 𝜕
(

𝜏𝑘, 𝑧
(

𝜏𝑘
))

𝑧
(

𝜏+0
)

= 𝑧0,
𝑘 = 1, 2, 3, ... (1)

where 𝑧 (𝑡) ∈ ℜ𝑛 denotes the state vector; 𝑦 ∶ ℜ+ × ℜ𝑛 → ℜ𝑛 is a continuous nonlinear function with respect to both time
variable t and state vector z, which denotes the continuous behavior of the system; 𝜏𝑘 ( 𝑘 = 1, 2, 3, ... ) represents time instant
when there is an impulse, satisfying 0 = 𝜏0 < 𝜏1 < 𝜏2 < ... < 𝜏𝑘 < ... < 𝜏∞. Suppose that 𝑧

(

𝜏+𝑘
)

= lim
Δ𝑡→0+

𝑧
(

𝜏𝑘 + Δ𝑡
)

, and
𝑧
(

𝜏−𝑘
)

= lim
Δ𝑡→0−

𝑧
(

𝜏𝑘 + Δ𝑡
)

, and Δ𝑧
(

𝜏𝑘
)

= 𝑧
(

𝜏+𝑘
)

−𝑧
(

𝜏−𝑘
)

represents the instantaneous changes of states at impulsive instants.
As a common assumption in previous studies, we suppose that 𝑧 (𝑡) is left-continuous at each time instant of impulse, that is to
say, 𝑧

(

𝜏−𝑘
)

= 𝑧
(

𝜏𝑘
)

, 𝑘 = 1, 2, 3, ....
Then, system (1) is assumed to be in the form of T-S fuzzy impulsive system with q fuzzy rules, and the ith subsystem is

given as follows:
Module Rule i: IF 𝑒1 (𝑡) is M𝑖1, 𝑒2 (𝑡) is M𝑖2, ..., 𝑒𝑝 (𝑡) is M𝑖𝑝, THEN

{

𝑧̇ (𝑡) = 𝐴𝑖𝑧 (𝑡) , 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

𝑧
(

𝜏+𝑘
)

=
[

𝐼 + 𝑖𝑘
]

𝑧
(

𝜏𝑘
)

, 𝑘 = 1, 2, ...
(2)

where 𝑖 = 1, 2, ..., 𝑞, 𝑒 (𝑡) =
[

𝑒1 (𝑡) , 𝑒2 (𝑡) , ..., 𝑒𝑝 (𝑡)
]𝑇 is a vector composed of p premise variables, M𝑖𝑗 is the fuzzy set of module

rule i corresponding to the jth premise variable, 𝐴𝑖 ∈ ℜ𝑛×𝑛 is the system matrix of the linear subsystem, matrix 𝑖𝑘 ∈ ℜ𝑛×𝑛

denotes the impulsive control gain at 𝜏𝑘 and 𝐼 ∈ ℜ𝑛×𝑛 is the identity matrix.
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By singleton fuzzifier, product fuzzy inference and center average defuzzifier, we can construct the overall T-S fuzzy impulsive
system as

⎧

⎪

⎨

⎪

⎩

𝑧̇ (𝑡) =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐴𝑖𝑧 (𝑡) , 𝑡 ∈

(

𝜏𝑘−1, 𝜏𝑘
]

Δ𝑧
(

𝜏+𝑘
)

=
𝑞
∑

𝑖=1
𝑑𝑖
(

𝑒
(

𝜏𝑘
))

𝑖𝑘𝑧
(

𝜏𝑘
)

(3)

where 𝑑𝑖 (𝑒 (𝑡)) = 𝜙𝑖 (𝑒 (𝑡)) ∕
𝑞
∑

𝑖=1
𝜙𝑖 (𝑒 (𝑡)), 𝜙𝑖 (𝑒 (𝑡)) =

𝑝
∏

𝑗=1
𝑖𝑗

(

𝑒𝑗 (𝑡)
)

, 𝑖𝑗 represents the membership function. Obviously,

𝑑𝑖 (𝑒 (𝑡)) ≥ 0,
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡)) = 1 for 𝑡 ≥ 𝜏0. Consider the saturation function, which can be defined as

𝑆𝑎𝑡 (𝑧) =

⎧

⎪

⎨

⎪

⎩

Γmax, 𝑧 > Γmax
𝑧,Γmin ≤ 𝑧 ≤ Γmax
Γmin, 𝑧 < Γmin

(4)

where Γmin and Γmax are the lower and upper saturation thresholds, respectively. For simplicity, the saturation function is assumed
to be symmetrical in this paper:

𝑆𝑎𝑡 (𝑧) =

⎧

⎪

⎨

⎪

⎩

𝑢0, 𝑧 > 𝑢0
𝑧, − 𝑢0 ≤ 𝑧 ≤ 𝑢0
−𝑢0, 𝑧 < −𝑢0

(5)

Then the fuzzy saturated impulsive system with nonlinear continuous dynamics can be formulated by

⎧

⎪

⎨

⎪

⎩

𝑧̇ (𝑡) =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐴𝑖𝑧 (𝑡) , 𝑡 ∈

(

𝜏𝑘−1, 𝜏𝑘
]

Δ𝑧
(

𝜏𝑘
)

= 𝑆𝑎𝑡
{ 𝑞
∑

𝑖=1
𝑑𝑖
(

𝑒
(

𝜏𝑘
))

𝑖𝑘𝑧
(

𝜏𝑘
)

} (6)

For brevity, we assume that matrix 𝑘 =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝑖𝑘 ∈ ℜ𝑛×𝑛. And then, a hybrid control system compositing an impulsive

controller and a continuous state feedback controller can be constructed as

⎧

⎪

⎨

⎪

⎩

𝑧̇ (𝑡) =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))

[

𝐴𝑖 −𝐾𝑖
]

𝑧 (𝑡), 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

Δ𝑧
(

𝜏𝑘
)

=
𝑞
∑

𝑖=1
𝑑𝑖
(

𝑒
(

𝜏𝑘
))

𝑖𝑘𝑧
(

𝜏𝑘
)

, 𝑡 = 𝜏𝑘
(7)

If the saturation and the time-varying delay in each controller are considered, the composite control system can be further
modeled by fuzzy model as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧̇ (𝑡) =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐴𝑖𝑧 (𝑡) − 𝑆𝑎𝑡1

{ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

}

, 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

Δ𝑧
(

𝜏𝑘
)

= 𝑆𝑎𝑡2

{ 𝑞
∑

𝑖=1
𝑑𝑖
(

𝑒
(

𝜏𝑘
))

𝑖𝑘𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

}

, 𝑡 = 𝜏𝑘

𝑧
(

𝜏0 + 𝜉
)

= 𝜃
(

𝜏0 + 𝜉
)

, 𝜉 ∈ [−𝜅, 0]

(8)

where time delays in the two controllers 𝐽1 (𝑡) ≥ 0, 𝐽2
(

𝜏𝑘
)

≥ 0, ∀𝑡 ≥ 𝜏0, and 𝜅 = max
[

sup
[

𝐽1 (𝑡)
]

, sup
[

𝐽2
(

𝜏𝑘
)]]

≥ 0,

𝑘 = 1, 2, .... For brevity, we suppose that  =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖. To ensure self-containment of this paper, we now present some

definitions, lemmas, and other preliminaries.

Definition 1. Three classes of functions are defined as follows:
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i. If a continuous function 𝑓1 ∶ [0, 𝑎) → [0,∞) is strictly increasing with 𝑓1(0) = 0 , then we say 𝑓1 ∈ 𝐾;

ii. If a function 𝑓2 ∈ 𝐾 with 𝑎 = +∞ and 𝑚→ +∞, 𝑓2 (𝑚) → +∞, then we say 𝑓2 ∈ 𝐾∞;

iii. If a continuous function 𝑓3 ∶ [0, 𝑎)×[0,∞) → [0,∞) satisfies 𝑓3
(

𝑜1, 𝑜2
)

∈ 𝑘 for each fixed 𝑜2, and 𝑓3
(

𝑜1, 𝑜2
)

is decreasing
with respect to 𝑜2, and 𝑓3

(

𝑜1, 𝑜2
)

→ 0 as 𝑜2 → ∞, then we say 𝑓3 ∈ 𝐾𝐿.

The Lyapunov stability of non-autonomous nonlinear systems are defined using these classes of functions in most existing
works.
Definition 2. 33 The equilibrium point of (1), or, the origin is uniformly attractively stable if there exists a function 𝜗 ∈ 𝐾𝐿,
such that, for any 𝑡 ≥ 𝜏0, there is

‖

‖

‖

𝑧
(

𝑡, 𝜏0, 𝑧0
)

‖

‖

‖

≤ 𝜗
(

‖

‖

𝑧0‖‖ , 𝑡 − 𝜏0
)

(9)

The uniform attractive stability of system (6) and (8) can be defined similarly. To investigate the stability of impulsive systems,
a so-called step-function method is proposed17, which has shown a great advantage in reducing the conservatism of the stability
conditions, with the ability to address various kinds of impulsive systems. In this way, the stability of the system can be derived
when the step auxiliary function exhibits a decreasing trend and is convergent to the equilibrium point.

Lemma 1. 17 Let 𝑧 (𝑡) be a solution of (6) with 𝑧0 ∈ Ω ⊆ ℜ𝑛,  ∶ ℜ𝑛 → ℜ+ be a positive definite scalar function. If there
exists an integer 𝑚 ≥ 2 such that the step function

 (𝑡) =

⎧

⎪

⎨

⎪

⎩

sup𝑡∈[𝜏0,𝜏𝑚]  (𝑧 (𝑡)) , 𝑡 ∈
[

𝜏0, 𝜏𝑚
]

sup𝑡∈[𝜏𝑚𝑘,𝜏𝑚(𝑘+1)]  (𝑧 (𝑡)) , 𝑡 ∈
(

𝜏𝑚𝑘, 𝜏𝑚(𝑘+1)
]

0, 𝑡 > 𝜏∞

, 𝑘 = 1, 2, 3, ... (10)

can fulfil the following conditions:

i. 
(

𝜏𝑚
)

≤ 𝛼
(


(

𝑧0
))

, where 𝛼 ∈ 𝐾;

ii.  (𝑡) decreases with t and  (𝑡) → 0, 𝑡→ 𝜏∞;

then the origin of (6) is locally uniformly attractively stable for any 𝑧0 ∈ Ω.

Moreover, considering the case when each impulse is trying to stabilizing the system to the origin, in other words,
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝑖𝑘 < 0 holds for every 𝑘 = 1, 2, 3, ..., Lemma 1 can be reduced to the following lemma.

Lemma 2. Let 𝑧 (𝑡) be a solution of (6) with 𝑧0 ∈ Ω ⊆ ℜ𝑛,  ∶ ℜ𝑛 → ℜ+ be a positive definite scalar function. If there exists
an integer 𝑚 ≥ 2 such that the step function

 (𝑡) =

⎧

⎪

⎨

⎪

⎩

sup𝑡∈[𝜏0,𝜏𝑚]  (𝑧 (𝑡)) , 𝑡 ∈
[

𝜏0, 𝜏𝑚
]


(

𝑧
(

𝜏𝑚𝑘
))

, 𝑡 ∈
(

𝜏𝑚𝑘, 𝜏𝑚(𝑘+1)
]

0, 𝑡 > 𝜏∞
, 𝑘 = 1, 2, 3, ... (11)

can fulfil the following conditions:

i. 
(

𝜏𝑚
)

≤ 𝛼
(


(

𝑧0
))

, where 𝛼 ∈ 𝐾;

ii.  (𝑡) decreases with t and  (𝑡) → 0, 𝑡→ 𝜏∞;

iii.  (𝑡) ≥  (𝑧 (𝑡)), 𝑡 ∈
(

𝜏𝑚(𝑘−1), 𝜏𝑚𝑘
]

;

then the origin of (6) is locally uniformly attractively stable for any 𝑧0 ∈ Ω.

In this paper, the method utilizing the sector conditions in order to address the saturation term in the impulsive system.
Consider a general nonlinear control system with actuator saturation



6 AUTHOR ONE ET AL

{

𝑧̇ (𝑡) = 𝑦 (𝑧 (𝑡)) + ℎ (𝑡)
ℎ (𝑧 (𝑡)) = 𝑆𝑎𝑡 (𝐵 (𝑧 (𝑡)))

(12)

We define a decentralized dead-zone function

𝜑 (𝐵) =
[

𝜑
(

𝐵(1)
)

, 𝜑
(

𝐵(2)
)

, ..., 𝜑
(

𝐵(𝑛)
)]𝑇 (13)

where 𝜑
(

𝐵(𝑖)
)

satisfies

𝜑
(

𝐵(𝑖)
)

= 𝑆𝑎𝑡
(

𝐵(𝑖)
)

− 𝐵(𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑢0(𝑖) − 𝐵(𝑖), 𝐵(𝑖) > 𝑢0(𝑖)
0, − 𝑢0(𝑖) ≤ 𝐵(𝑖) ≤ 𝑢0(𝑖)
−𝑢0(𝑖) − 𝐵(𝑖), 𝐵(𝑖) < −𝑢0(𝑖)

(14)

where 𝑖 = 1, 2, 3, ..., 𝑛. Substituting (14) into (12), we can remove the saturation nonlinearity in the system as

𝑧̇ (𝑡) = 𝑦 (𝑧 (𝑡)) + 𝐵 (𝑧 (𝑡)) + 𝜑 (𝐵 (𝑧 (𝑡))) (15)
The dead-zone function has been proven to fulfill some sector conditions, which is helpful in the following deduction.

However, before that, we need to define some sets.
Definition 3. 35,36 Define a set S as

𝑆
(

𝜐 − 𝛿,Γmin,Γmax
)

=
{

𝜐 ∈ ℜ𝑛, 𝛿 ∈ ℜ𝑛 ∶ −Γmin(𝑖) ≤ (𝜐 − 𝛿)(𝑖) ≤ Γmax(𝑖)
}

(16)
where, 𝜐(𝑖), 𝛿(𝑖), Γmax(𝑖), Γmin(𝑖) denote the ith row of 𝜐, 𝛿, Γmax, Γmin, respectively. Define a polyhedron set as

𝑆̄
(

𝑘 − ,Γmin,Γmax
)

=
{

𝑧 ∈ ℜ𝑛 ∶ −Γmin(𝑖) ≤
(

𝑘(𝑖) −(𝑖)
)

𝑧 ≤ Γmax(𝑖)
}

(17)
In particular, when Γmax = Γmin = 𝑢0, we have

𝑆
(

|

|

𝑘 − |

|

, 𝑢0
)

=
{

𝑧 ∈ ℜ𝑛 ∶ |

|

|

(

𝑘(𝑖) −(𝑖)
)

𝑧||
|

≤ 𝑢0(𝑖)
}

(18)

According to the results presented in recent researches35,36, the so-called extended local sector conditions can be stated as
follows:

Lemma 3. For any (𝜐, 𝛿) ∈ 𝑆
(

𝜐 − 𝛿,Γmin,Γmax
)

and any diagonal positive definite matrix 𝐻 ∈ ℜ𝑚×𝑚, the dead-zone function
𝜑 (𝜐) always fulfills that

𝜑𝑇 (𝜐)𝐻 [𝜑 (𝜐) + 𝛿] ≤ 0 (19)

Another problem emerges due to the fact that the equilibrium point of systems with strong nonlinearity (for example, saturation
nonlinearity) is generally not globally stable. To end this section, we shall define the region of attraction and the region of
asymptotic stability (RAS) of the saturated impulsive system (6).

Definition 4. The region of attraction𝑅𝑎 is defined as a set of all 𝑧∗ ∈ ℜ𝑛 satisfying that 𝑧 (𝑡, 𝑧 (0)) will converge asymptotically
to the origin when 𝑧

(

𝜏0
)

= 𝑧 (0) = 𝑧∗.

In practice, we tend to investigate some subsets with some regular forms of the domain of attraction, especially, ellipsoidal
sets and polyhedral sets, as it is both difficult and unnecessary to derive the accurate region of attraction.

Definition 5. 𝑅𝑠 is called the RAS if 𝑅𝑠 ⊆ 𝑅𝑎 and 0 ∈ 𝑅𝑠.

3 STEP-FUNCTION APPROACH FOR NONLINEAR FUZZY IMPULSIVE SYSTEM WITH
SATURATED IMPULSES

The stability of the nonlinear system with saturated impulses has been studied by several scholars very recently.37,38,39 However,
existing studies and results are still very few, bearing some serious defects. Specifically, the continuous subsystems of the
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saturated impulsive systems are restricted to be stable37,38, which is too strict for most impulsive control systems. Although the
research conducted by Li has removed this requirement39, it further assumes that all the impulses must be stabilizing, ignoring
the case that stabilizing impulses may be coupled with impulsive disturbances at some instants which will exert an instabilizing
effect.

In the following, we shall present a theorem providing relaxed sufficient conditions for the stability of a general nonlinear fuzzy
impulsive system. The proof is developed subsequently utilizing the step-function method and extended local sector condition.

Theorem 1. Given a column vector 𝑢0 ∈ ℜ𝑛 and a positive integer 𝑚 ≥ 1, if there exist a positive definite symmetric matrix
 ∈ ℜ𝑛×𝑛, a positive definite diagonal matrix  ∈ ℜ𝑛×𝑛, a matrix  ∈ ℜ𝑛×𝑛, scalars 𝛼, 𝛽𝑘 > 0, 𝛽1 = 1, 𝜂 > 0 and positive
integer 𝑘 ≥ 1, 𝑖 = 1, 2, ..., 𝑞, assuming that 𝜏0 = 0, 𝑧

(

𝜏0
)

= 𝑧0, such that the following conditions are satisfied:

i. 𝐴𝑖 + 𝐴𝑇𝑖  − 𝛼 ≤ 0;

ii. Π𝑘 =

[

(

𝐼 +𝑘
)𝑇 

(

𝐼 +𝑘
)

− 𝛽𝑘
(

𝐼 +𝑘
)𝑇  − 𝑇 


(

𝐼 +𝑘
)

−    − 2

]

≤ 0;

iii.

[


[

𝑘(𝑖) −(𝑖)
]𝑇

[

𝑘(𝑖) −(𝑖)
]

𝑢20(𝑖)

]

≥ 0;

iv. max
𝑖=𝑚(𝑘−1)+1,...,𝑚𝑘

{

sup𝑡∈(𝜏𝑖−1,𝜏𝑖]

[(

𝑖−1
∏

𝑗=𝑚(𝑘−1)
𝛽𝑗

)

𝑒𝛼(𝑡−𝜏𝑚(𝑘−1))
]}

≤ 𝜌𝑘 < 1;

then the high-dimensional ellipsoid set 𝜀 ( , 𝜂) =
{

𝑧 ∈ ℜ𝑛 ∶ 𝑧𝑇𝑧 ≤ 𝜂
}

is a RAS of the origin of nonlinear fuzzy systems
with saturated impulses (6), where 𝜂 = 𝜌−11 .

Proof. The theoretical deduction of Theorem 1 is based on Lemma 2 and we are going to verify all three conditions in Lemma
2. To begin with, consider a quadratic Lyapunov function candidate  (𝑧 (𝑡)) = 𝑧𝑇 (𝑡)𝑧 (𝑡), and let 0 = 𝑧𝑇0𝑧0. When
𝑡 ∈

(

𝜏𝑘−1, 𝜏𝑘
]

, the time derivative of 𝑉 (𝑧 (𝑡)) satisfies

𝐷+ (𝑧 (𝑡)) =

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐴𝑖𝑧 (𝑡)

]𝑇

𝑧 (𝑡) + 𝑧𝑇 (𝑡)

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐴𝑖𝑧 (𝑡)

]

=
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡)) 𝑧𝑇 (𝑡)

[

𝐴𝑇𝑖  + 𝐴𝑖 − 𝛼
]

𝑧 (𝑡) + 𝛼𝑧𝑇 (𝑡)𝑧 (𝑡)

≤ 𝛼 (𝑧 (𝑡))

(20)

In this way, obviously we can derive  (𝑧 (𝑡)) ≤ 𝑒𝛼(𝑡−𝜏𝑘−1)
(

𝑧
(

𝜏+𝑘−1
))

for any 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

, and 
(

𝑧
(

𝜏𝑘
))

≤
𝑒𝛼(𝜏𝑘−𝜏𝑘−1)

(

𝑧
(

𝜏+𝑘−1
))

. Specially, when 𝑡 ∈
(

𝜏0, 𝜏1
]

, supposing that 
(

𝑧0
)

= 0, then we have  (𝑧 (𝑡)) ≤ 𝑒𝛼𝑡0.
Now, we will investigate the changes of Lyapunov candidate function at impulsive instants. Noting that if 𝑧

(

𝜏1
)

∈ 𝜀 ( , 1) ⊂
𝑆
(

|

|

𝑘 − |

|

, 𝑢0
)

holds, we have


(

𝑧
(

𝜏+1
))

= 𝑧𝑇
(

𝜏+1
)

𝑧
(

𝜏+1
)

=
[(

𝐼 +1
)

𝑧
(

𝜏1
)

+ 𝜑
(

1𝑧
(

𝜏1
))]𝑇 

[(

𝐼 +1
)

𝑧
(

𝜏1
)

+ 𝜑
(

1𝑧
(

𝜏1
))]

= 𝑧𝑇
(

𝜏1
) (

𝐼 +1
)𝑇 

(

𝐼 +1
)

𝑧
(

𝜏1
)

+ 𝑧𝑇
(

𝜏1
) (

𝐼 +1
)𝑇 𝜑

(

1𝑧
(

𝜏1
))

+ 𝜑𝑇
(

1𝑧
(

𝜏1
))


(

𝐼 +1
)

𝑧
(

𝜏1
)

+ 𝜑𝑇
(

1𝑧
(

𝜏1
))

𝜑
(

1𝑧
(

𝜏1
))

(21)

Reminding of the sector condition presented in Lemma 3, apparently, we have


(

𝑧
(

𝜏+1
))

≤ 𝑧𝑇
(

𝜏1
) (

𝐼 +1
)𝑇 

(

𝐼 +1
)

𝑧
(

𝜏1
)

+ 𝑧𝑇
(

𝜏1
) (

𝐼 +1
)𝑇 𝜑

(

1𝑧
(

𝜏1
))

+ 𝜑𝑇
(

1𝑧
(

𝜏1
))


(

𝐼 +1
)

𝑧
(

𝜏1
)

+ 𝜑𝑇
(

1𝑧
(

𝜏1
))

𝜑
(

1𝑧
(

𝜏1
))

− 2𝜑𝑇
(

1𝑧
(

𝜏1
))

 𝜑
(

1𝑧
(

𝜏1
))

− 𝜑𝑇
(

1𝑧
(

𝜏1
))

  𝑧
(

𝜏1
)

− 𝑧𝑇
(

𝜏1
)

 𝑇  𝜑
(

1𝑧
(

𝜏1
))

(22)

It follows that
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
(

𝑧
(

𝑡+1
))

≤
[

𝑧𝑇
(

𝜏1
)

𝜑𝑇
(

1𝑧
(

𝜏1
)) ]

[

(

𝐼 +1
)𝑇 

(

𝐼 +1
)

− 𝛽1
(

𝐼 +1
)𝑇  − 𝑇 


(

𝐼 +1
)

−    − 2

]

[

𝑧
(

𝜏1
)

𝜑
(

1𝑧
(

𝜏1
))

]

+ 𝛽1
(

𝑧
(

𝜏1
))

=
[

𝑧𝑇
(

𝜏1
)

𝜑𝑇
(

1𝑧
(

𝜏1
)) ]

Π1

[

𝑧
(

𝜏1
)

𝜑
(

1𝑧
(

𝜏1
))

]

+ 𝛽1
(

𝑧
(

𝜏1
))

≤ 𝛽1
(

𝑧
(

𝜏1
))

(23)

Thus, for 𝑡 ∈
(

𝜏1, 𝜏2
]

,  (𝑧 (𝑡)) ≤ 𝑒𝛼(𝑡−𝜏1)
(

𝑧
(

𝜏+1
))

≤ 𝑒𝛼𝑡𝛽10 and 
(

𝑧
(

𝜏2
))

≤ 𝑒𝛼𝜏2𝛽10 under the condition that 𝑧
(

𝜏1
)

∈
𝜀 ( , 1) ⊂ 𝑆

(

|

|

1 − |

|

, 𝑢0
)

. Similarly, when 𝑧
(

𝜏2
)

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

2 − |

|

, 𝑢0
)

, we have


(

𝑧
(

𝜏+2
))

≤
[

𝑧𝑇
(

𝜏2
)

𝜑𝑇
(

2𝑧
(

𝜏2
)) ]

Π2

[

𝑧
(

𝜏2
)

𝜑
(

2𝑧
(

𝜏2
))

]

+ 𝛽2
(

𝑧
(

𝜏2
))

≤ 𝛽2
(

𝑧
(

𝜏2
))

(24)

Therefore, for 𝑡 ∈
(

𝜏2, 𝜏3
]

,

 (𝑧 (𝑡)) ≤ 𝛽2𝑒
𝛼(𝑡−𝜏2)

(

𝑧
(

𝜏2
))

≤ 𝛽1𝛽2𝑒
𝛼𝑡0 (25)


(

𝑧
(

𝜏3
))

≤ 𝑒𝛼𝜏3𝛽1𝛽20 (26)
Generally, if 𝑧

(

𝜏𝑖
)

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

𝑖 − |

|

, 𝑢0
)

, 𝑖 = 1, 2, ..., 𝑘 − 1, we can derive


(

𝑧
(

𝜏+𝑖
))

≤ 𝛽𝑖
(

𝑧
(

𝜏𝑖
))

, 𝑖 = 1, 2, ..., 𝑘 − 1 (27)
And for any 𝑡 ∈

(

𝜏𝑘−1, 𝜏𝑘
]

, 𝑘 = 1, 2, ..., we have

 (𝑧 (𝑡)) ≤ 𝛽𝑘−1𝑒
𝛼(𝑡−𝜏𝑘−1)

(

𝑧
(

𝜏𝑘−1
))

≤ ... ≤

(𝑘−1
∏

𝑖=1
𝛽1

)

𝑒𝛼𝑡0 (28)

Next, we consider the conditions given by Lemma 2. For this, an m-span step function is constructed as follows:

 (𝑡) =

⎧

⎪

⎨

⎪

⎩

sup𝑡∈[𝜏0,𝜏𝑚]  (𝑧 (𝑡)) , 𝑡 ∈
[

𝜏0, 𝜏𝑚
]

sup𝑡∈[𝜏𝑚𝑘,𝜏𝑚(𝑘+1)]  (𝑧 (𝑡)) , 𝑡 ∈
(

𝜏𝑚𝑘, 𝜏𝑚(𝑘+1)
]

0, 𝑡 > 𝜏∞

(29)

When 𝑡 ∈
[

𝜏0, 𝜏𝑚
]

, we have

 (𝑡) = sup
𝑡∈[𝜏0,𝜏𝑚]

 (𝑧 (𝑡))

≤ max
𝑖=1,2,...,𝑚

[

sup
𝑡∈[𝜏𝑖−1,𝜏𝑖]

 (𝑧 (𝑡))

]

≤ max
𝑖=1,2,...,𝑚

{

sup
𝑡∈(𝜏𝑖−1,𝜏𝑖]

[( 𝑖−1
∏

𝑗=1
𝛽𝑗

)

𝑒𝛼𝑡
]}

0

= 𝜌10

(30)

Note that function 
(

0
)

= 𝜌10 belongs to class K where 𝜌1 is a constant, so the condition i in Lemma 2 is satisfied. As
for the kth step, when 𝑡 ∈

(

𝜏𝑚(𝑘−1), 𝜏𝑚𝑘
]

, 𝑘 = 1, 2, ...
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 (𝑧 (𝑡)) ≤ max
𝑖=𝑚(𝑘−1)+1,...,𝑚𝑘

[

sup
𝑡∈[𝜏𝑖−1,𝜏𝑖]

 (𝑧 (𝑡))

]

≤ max
𝑖=𝑚(𝑘−1)+1,...,𝑚𝑘

{

sup
𝑡∈(𝜏𝑖−1,𝜏𝑖]

[( 𝑖−1
∏

𝑗=𝑚(𝑘−1)
𝛽𝑗

)

𝑒𝛼(𝑡−𝜏𝑚(𝑘−1))
]}


(

𝑧
(

𝜏𝑚(𝑘−1)
))

≤ 𝜌𝑘
(

𝑧
(

𝜏𝑚(𝑘−1)
))

(31)

Then it fulfills that

 (𝑡) = sup
𝑡∈(𝜏𝑚(𝑘−1),𝜏𝑚𝑘]

 (𝑧 (𝑡)) ≤ 𝜌𝑘
(

𝑧
(

𝜏𝑚(𝑘−1)
))

(32)

The third condition has thus been proved. We then consider the monotonicity of step function during the interval 𝑡 ∈
(

𝜏𝑚(𝑘−1), 𝜏𝑚𝑘
]

,


(

𝜏𝑚𝑘
)

−
(

𝜏𝑚(𝑘−1)
)

= sup
𝑡∈(𝜏𝑚(𝑘−1),𝜏𝑚𝑘]

 (𝑧 (𝑡)) − sup
𝑡∈(𝜏𝑚(𝑘−2),𝜏𝑚(𝑘−1)]

 (𝑧 (𝑡))

≤ 𝜌𝑘
(

𝑧
(

𝜏𝑚(𝑘−1)
))

− sup
𝑡∈(𝜏𝑚(𝑘−2),𝜏𝑚(𝑘−1)]

 (𝑧 (𝑡))

≤ −
(

1 − 𝜌𝑘
)


(

𝑧
(

𝜏𝑚(𝑘−1)
))

≤ 0

(33)

Obviously, it shows that  (𝑡) decreases with time t, and we have


(

𝑧
(

𝜏𝑚(𝑘−1)
))

≤ 𝜌𝑘−1
(

𝑧
(

𝜏𝑚(𝑘−2)
))

≤ ... ≤

(𝑘−1
∏

𝑖=1
𝜌𝑖

)

0 (34)

It follows that

lim
𝑡→𝜏∞

 (𝑡) ≤ lim
𝑘→∞

[( 𝑘
∏

𝑖=1
𝜌𝑖

)

0

]

= 0 (35)

Consider the fact that lim𝑡→𝜏∞  (𝑡) ≥ 0, according to the Squeeze Theorem, we have

lim
𝑡→∞

 (𝑡) = 0 (36)
which means condition ii has been satisfied. In this way, on the bases of Lemma 2, we can say that the origin of (6) is locally
asymptotically stable.

Remark 1. It is noteworthy that condition iv in Theorem 1 is less conservative than the conditions given in the present works.
Employing the step-function approach, we divide the entire time axis into segments with a length of m. For any moment within
each segment, the value of the quadratic Lyapunov function must be less than or equal to the function value at the beginning of
that segment after the impulse. As a comparison, take the latest study39 as an example, condition ln𝜇 + 𝜏𝜆 ≤ 0 was proposed
in the stability theorem requiring the quadratic Lyapunov function to decrease at every impulsive interval. In this way, the
step function-based approach reduces the conservatism of the stability conditions. Moreover, the theorem also indicates that
𝜇 ∈ (0, 1)39, which implies that the theorem can only handle the case that the impulses are stabilizing.

Now, we consider the last step of the proof of Theorem 1, confirming the set relations. Note that during the process of proof
above, we have made an assumption:

𝑧
(

𝜏𝑘
)

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

𝑘 − |

|

, 𝑢0
)

=
{

𝑧 ∈ ℜ𝑛 ∶ |

|

|

(

𝑘(𝑖) −(𝑖)
)

𝑧||
|

≤ 𝑢0(𝑖)
}

, 𝑖 = 1, 2, ..., 𝑘 (37)

Now we will verify this assumption in two steps: Firstly, we prove 𝜀 ( , 1) ⊂ 𝑆
(

|

|

𝑘 − |

|

, 𝑢0
)

; Then, we derive 𝑧
(

𝜏𝑘
)

∈
𝜀 ( , 1) when 𝑧0 ∈ 𝜀 ( , 𝜂). Consider the condition iv in Theorem 1. According to Schur Complement Theorem, we have

 − 1
𝑢20(𝑖)

[

𝑘(𝑖) −(𝑖)
]𝑇 [𝑘(𝑖) −(𝑖)

]

≥ 0 (38)
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It follows

𝑧𝑇
(

𝑡𝑘
)

𝑧
(

𝑡𝑘
)

− 1
𝑢20(𝑖)

|

|

|

(

𝑘(𝑖) −(𝑖)
)

𝑧
(

𝑡𝑘
)

|

|

|

2
≥ 0 (39)

With 𝑧𝑇
(

𝑡𝑘
)

𝑧
(

𝑡𝑘
)

≤ 1, one observes

|

|

|

(

𝑘(𝑖) −(𝑖)
)

𝑧
(

𝑡𝑘
)

|

|

|

≤ 𝑢0(𝑖) (40)
which means 𝜀 ( , 1) ⊂ 𝑆

(

|

|

𝑘 − |

|

, 𝑢0
)

.
Subsequently, we prove that 𝑧0 ∈ 𝜀 ( , 𝜂) implies 𝑧

(

𝜏𝑘
)𝑇 𝑧

(

𝜏𝑘
)

≤ 𝜂 = 𝜌1. Suppose that k is a positive integer smaller than
m, when 𝑡 ∈

(

𝜏𝑘−1, 𝜏𝑘
]

, we have

 (𝑧 (𝑡)) ≤

(𝑘−1
∏

𝑖=1
𝛽𝑖

)

𝑒𝛼𝑡0 ≤ 𝜌10 ≤ 𝜌1𝜂 = 1 (41)

Furthermore, suppose that there exists an integer 𝑎 ≥ 1, such that

𝜏0 < 𝜏1 < ... < 𝜏𝑎(𝑚−1) ≤ ... ≤ 𝜏𝑘−1 < 𝜏𝑘 ≤ ... ≤ 𝜏𝑎𝑚 < ... < 𝜏∞ (42)
When 𝑡 = 𝜏𝑘,


(

𝑧
(

𝜏𝑘
))

≤

(𝑘−1
∏

𝑖=1
𝛽𝑖

)

𝑒𝛼𝜏𝑘0

≤

(𝑎−1
∏

𝑗=1
𝜌𝑗

)

⋅

( 𝑘−1
∏

𝑖=(𝑎−1)𝑚
𝛽𝑖

)

𝑒𝛼(𝜏𝑘−𝜏(𝑎−1)𝑚)0

≤

( 𝑎
∏

𝑗=1
𝜌𝑗

)

0

(43)

Consider that 0 ≤ 𝜂 = 𝜌−11 , we have


(

𝑧
(

𝜏𝑘
))

≤ 𝜌10 ≤ 𝜌1𝜂 = 𝜌1𝜌
−1
1 = 1 (44)

Combine the two parts above, we verify the assumption in the process of proof of stability

𝑧
(

𝜏𝑘
)

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

𝑘 − |

|

, 𝑢0
)

(45)
Thus, we can say that the ellipsoid set 𝜀 ( , 𝜂) =

{

𝑧 ∈ ℜ𝑛 ∶ 𝑧𝑇𝑧 ≤ 𝜂
}

is the RAS of the origin of nonlinear fuzzy sys-
tems with saturated impulses (6), which means when the trajectory of the impulsive system starts in the ellipsoid 𝜀 ( , 𝜂) =
{

𝑧0 ∈ ℜ𝑛 ∶ 𝑧𝑇0𝑧0 ≤ 𝜌−11
}

, it will converge to the equilibrium point 𝑧∗ = 0 asymptotically.

Regarding the situation where the impulses of the system(6) are always unstable, when𝑚 = 2, Theorem 1 yields the following
corollary.

Corollary 1. For nonlinear fuzzy impulsive system (6), given a column vector 𝑢0 ∈ ℜ𝑛, if there exist a positive definite
symmetric matrix  ∈ ℜ𝑛×𝑛, a positive definite diagonal matrix  ∈ ℜ𝑛×𝑛, a matrix  ∈ ℜ𝑛×𝑛, scalars 𝛼 > 0, 0 < 𝛽𝑘 ≤ 1,
𝛽1 = 1, 𝜂 > 0 and positive integer 𝑘 ≥ 1, 𝑖 = 1, 2, ..., 𝑞, assuming that 𝜏0 = 0, 𝑧

(

𝜏0
)

= 𝑧0, such that the following conditions
are satisfied:

i. 𝐴𝑖 + 𝐴𝑇𝑖  − 𝛼 ≤ 0;

ii. Π𝑘 =

[

(

𝐼 +𝑘
)𝑇 

(

𝐼 +𝑘
)

− 𝛽𝑘
(

𝐼 +𝑘
)𝑇  − 𝑇 


(

𝐼 +𝑘
)

−    − 2

]

≤ 0;

iii.

[


[

𝑘(𝑖) −(𝑖)
]𝑇

[

𝑘(𝑖) −(𝑖)
]

𝑢20(𝑖)

]

≥ 0;

iv. 𝛽2𝑘−2𝑒𝛼(𝜏2𝑘−1−𝜏2𝑘−2) ≤ 1, 𝛽2𝑘−2𝛽2𝑘−1𝑒𝛼(𝜏2𝑘−𝜏2𝑘−2) ≤ 1, 𝛽2𝑘−1𝛽2𝑘𝑒𝛼(𝜏2𝑘−𝜏2𝑘−2) ≤ 1;
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then the high-dimensional ellipsoid set 𝜀 ( , 𝜂) =
{

𝑧 ∈ ℜ𝑛 ∶ 𝑧𝑇𝑧 ≤ 𝜂
}

is a RAS of the origin of T-S fuzzy systems with
saturated impulses (6), where 𝜂 = min

[

𝑒−𝛼𝜏1 , 𝑒−𝛼𝜏2−ln 𝛽1
]

.

Remark 2. As far as we know, there are few works considering fuzzy impulsive systems with saturation, and Theorem 1 is also
the first time using the step-function method to investigate saturated systems, which leads to related stability criterion. It should
be noted that Theorem 1 can address some more challenging cases, such as the situation when the impulsive gain matrix is
varying, and the saturated impulsive systems with Zeno behavior, which can not be tackled by existing methods37,38,39.

4 STABILITY ANALYSIS OF HYBRID CONTROL SYSTEMS WITH ACTUATOR
SATURATION AND TIME DELAY IN BOTH IMPULSIVE CONTROLLER AND STATE
FEEDBACK CONTROLLER

In recent years, hybrid control systems have gained massive interest because of their ability to control and regulate complex
behaviors in engineering and natural systems. However, designing a reliable hybrid control system with actuator saturation and
time delays is a challenging task, as these factors can significantly affect the stability of the system, and few studies have been
conducted.

In this section, we focus on the stability analysis of hybrid control systems where both impulsive controller and state feedback
controller are employed, and they face actuator saturation and time delay respectively. Utilizing novel methods (step function-
based approach) for the analysis of such systems, we present stability results that reduce the conservatism of the stability
conditions. Several applications and simulation experiments will be provided to show the efficacy of the proposed methods in
the next section.

Similar to condition iii in Theorem 1, we present the following assumption in order to apply the generalized local sector
condition to the two types of saturation in system (8).

Assumption 1. Given matrices ,𝑘 ∈ ℜ𝑛×𝑛, column vector 𝑢01, 𝑢02 ∈ ℜ𝑛, when there are matrices 1,2 ∈ ℜ𝑛×𝑛 and a
positive definite matrix  ∈ ℜ𝑛×𝑛, such that

[


[

(𝜛) −1(𝜛)
]𝑇

[

(𝜛) −1(𝜛)
]

𝑢201(𝜛)

]

≥ 0, 𝜛 = 1, 2, ..., 𝑛 (46)

And for some 𝑖, 𝑗 ∈
{

𝜛 ∈ 𝑍+ ∶ 1 ≤ 𝜛 ≤ 𝑛
}

, 𝑘 ∈ 𝑍+, if it holds that Ω(1)
𝑘 (𝑖, 𝑗) ≤ Ω(2)

𝑘 (𝑖, 𝑗), then

[


[

𝑘(𝑖) −2(𝑖)
]𝑇

[

𝑘(𝑖) −2(𝑖)
]

𝑢202(𝑖)

]

≥ 0 (47)

where,

Ω(1)
𝑘 (𝑖, 𝑗) = 1

𝑢01(𝑖)
|

|

|

(

(𝑖𝑗) −1(𝑖𝑗)
)

⋅ 𝑧(𝑗)
(

𝜏𝑘
)

|

|

|

(48)

Ω(2)
𝑘 (𝑖, 𝑗) = 1

𝑢02(𝑖)
|

|

|

(

𝑘(𝑖𝑗) −2(𝑖𝑗)
)

⋅ 𝑧(𝑗)
(

𝜏𝑘
)

|

|

|

(49)

Note that the stability Lemma 2 proposed in the previous section can not cope with the impulsive systems with time delays.
Therefore, a generalized m-span step function is then constructed as follows:

 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sup𝑡∈[𝜏0−𝜅,𝜏𝑚]  (𝑧 (𝑡)) , 𝑡 ∈
[

𝜏0 − 𝜅, 𝜏0
]

sup𝑡∈[𝜏0,𝜏𝑚]  (𝑧 (𝑡)) , 𝑡 ∈
(

𝜏0, 𝜏𝑚
]


(

𝑧
(

𝜏𝑚𝑘
))

, 𝑡 ∈
(

𝜏𝑚𝑘, 𝜏𝑚(𝑘+1)
]

0, 𝑡 > 𝜏∞

(50)

Based on which, a stability lemma ensues according to the idea of step-function method:
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Lemma 4. Let 𝑧 (𝑡) be a solution of (8) with 𝑧0 ∈ Ω ⊆ ℜ𝑛,  ∶ ℜ𝑛 → ℜ+ be a positive definite scalar function. If there exists
an integer 𝑚 ≥ 1, such that the step function defined by (50) satisfies

i. 
(

𝑡0 − 𝜅
)

≤ 𝜗
(


(

𝑧0
))

, where 𝜗 ∈ 𝐾;

ii.  (𝑡) decreases with t and fulfills  (𝑡) → 0, 𝑡→ 𝜏∞;

iii.  (𝑡) ≥  (𝑧 (𝑡)) on each impulsive interval 𝑡 ∈
(

𝜏𝑚(𝑘−1), 𝜏𝑚𝑘
]

;

then the origin of (8) is locally uniformly attractively stable for any 𝑧0 ∈ Ω.

Proof. As  (𝑧) is a positive definite function with respect to z, then there exist functions 𝜒1, 𝜒2 ∈ 𝐾∞ fulfill that

𝜒1 (‖𝑧‖) ≤  (𝑧) ≤ 𝜒2 (‖𝑧‖) (51)
Apparently,


(

𝜏0 − 𝜅
)

= 
(

𝜏0
)

≤ 𝜗
(


(

𝑧0
))

≤ 𝜗
(

𝜒2
(

‖

‖

𝑧0‖‖
))

(52)
Then, we can construct the following comparison function

𝐹
(


(

𝜏0 − 𝜅
)

, 𝑡 − 𝜏0
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩


(

𝜏0 − 𝜅
)

, 𝜏0 − 𝜀 ≤ 𝑡 ≤ 𝜏0
(𝜏0)−(𝜏0−𝜅)

𝜀

(

𝑡 − 𝜏0 + 𝜅
)

+
(

𝜏0
)

, 𝜏0 ≤ 𝑡 < 𝜏𝑚
(𝜏𝑚𝑘)−(𝜏𝑚(𝑘−1))

𝜏𝑚𝑘−𝜏𝑚(𝑘−1)

(

𝑡 − 𝜏𝑚(𝑘−1)
)

+
(

𝜏𝑚(𝑘−1)
)

, 𝜏𝑚(𝑘−1) ≤ 𝑡 ≤ 𝜏𝑚𝑘
0, 𝑡 ≥ 𝜏∞

(53)

Suppose that

𝐹
(


(

𝜏0 − 𝜅
)

, 𝑡
)

= 𝐹
(


(

𝜏0 − 𝜅
)

, 𝑡
)

+ 𝑒−𝑡+𝜏0−𝜅
(

𝜏0 − 𝜅
)

(54)
Apparently, 𝐹

(


(

𝜏0 − 𝜅
)

, 𝑡
)

∈ 𝐾𝐿. Then, for 𝑡 ≥ 𝜏0 − 𝜅, it follows that

𝜒1 (‖𝑧‖) ≤  (𝑧 (𝑡)) ≤  (𝑡) ≤ 𝐹
(


(

𝜏0 − 𝜅
)

, 𝑡
)

(55)
which leads to

‖𝑧 (𝑡)‖ ≤ 𝜒−1
1

(

𝐹
(

𝜗
(

𝜒2
(

‖

‖

𝑧0‖‖
))

, 𝑡
))

∈ 𝐾𝐿 (56)
The proof of Lemma 4 is then finished.

Thus, we can now present the stability theorem of the hybrid control system suffering both saturation and time delay in both
controllers, following the m-span step-function approach with the help of sector conditions.

Theorem 2. Given column vectors 𝑢01, 𝑢02 ∈ ℜ𝑛 and a positive integer 𝑚 ≥ 1 and a constant 𝜅 > 0, if there exist a positive
definite symmetric matrix  ∈ ℜ𝑛×𝑛, positive definite diagonal matrices 1, 2 ∈ ℜ𝑛×𝑛, matrices 1,2 ∈ ℜ𝑛×𝑛, scalars
𝑔 > 0, 𝛼 > 0, 0 < 𝛽𝑘 ≤ 1, 𝛽1 = 1, and positive integers 𝑘 ≥ 1, 𝑖 = 1, 2, ..., 𝑞, assuming that 𝜏0 = 0, 𝑧

(

𝜏0
)

= 𝑧0, suppose that the
Assumption 1 is fulfilled, such that the following conditions are fulfilled:

i. ℵ =
⎡

⎢

⎢

⎣

𝐴𝑇𝑖  + 𝐴𝑖 − 𝛼 −𝐾𝑖 −
−𝐾𝑇

𝑖  0 0
− −11 −1

⎤

⎥

⎥

⎦

≤ 0;

ii. Π𝑘 =
⎡

⎢

⎢

⎣

 − 𝛽𝑘 𝑄𝑘 
𝑇
𝑘 𝑇

𝑘𝑘 𝑇
𝑘

 𝑘 − 22  − 2

⎤

⎥

⎥

⎦

≤ 0;

iii. 𝜃𝑇 (𝑡 − 𝜅)𝜃 (𝑡 − 𝜅) ≤ 𝑔 ⋅ 𝑧𝑇 (𝑡)𝑧 (𝑡), 𝑡 ∈
[

𝜏0, 𝜏0 + 𝜅
]

, 0 < 𝑔 ≤ 𝜌−11 ;

iv. max
𝑖=𝑚(𝑘−1)+1,...,𝑚𝑘

{(

𝑖−1
∏

𝑗=𝑚(𝑘−1)
𝛽𝑗

)

𝑒𝛼(𝜏𝑖−𝜏𝑚(𝑘−1))
}

≤ 𝜌𝑘 < 1;
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v.

(

𝑚(𝑘−1)−1
∏

𝑖=𝑚(𝑘−2)
𝛽𝑖

)

𝑒𝛼(𝜏𝑚(𝑘−1)−𝜏𝑚(𝑘−2)) ≤ 𝜍 < 1, 𝑘 ≥ 2;

then the high-dimensional ellipsoid set 𝜀 ( , 1) =
{

𝑧 ∈ ℜ𝑛 ∶ 𝑧𝑇𝑧 ≤ 1
}

is a RAS of the origin of nonlinear fuzzy hybrid
control systems with saturation and time delay (8).

Proof. Consider the quadratic Lyapunov function  (𝑧 (𝑡)) = 𝑧𝑇 (𝑡)𝑧 (𝑡), ∀𝑡 ≥ 𝜏0 − 𝜅, and we let 0 = sup𝑠∈[𝑡0−𝜅,𝑡0]  (𝑧 (𝑠)).
The deductive process can be categorized into three steps as follows:

a. To deduce the two fundamental conditions𝐷+ (𝑧 (𝑡)) ≤ 𝛼 and 
(

𝑧
(

𝜏+𝑘
))

≤ 𝛽𝑘
(

𝑧
(

𝜏𝑘
))

in the subsequent part, utilizing
sector inequalities;

b. The stability criterion of the hybrid control system (8) will be established within the framework of step-function approach;

c. To confirm the requirement for the generalized local sector condition.

Firstly, when 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

,

𝐷+ (𝑧 (𝑡)) = 𝑧̇𝑇 (𝑡)𝑧 (𝑡) + 𝑧𝑇 (𝑡) 𝑧̇ (𝑡)

=
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡)) 𝑧𝑇 (𝑡)

[

𝐴𝑇𝑖  + 𝐴𝑖
]

𝑧 (𝑡) −
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡)) 𝑧𝑇

(

𝑡 − 𝐽1 (𝑡)
)

𝐾𝑇
𝑖 𝑧 (𝑡)

−
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡)) 𝑧𝑇 (𝑡)𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

− 𝜑𝑇1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

𝑧 (𝑡)

− 𝑧𝑇 (𝑡)𝜑1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

(57)

We assume that 𝑧
(

𝑡 − 𝐽1 (𝑡)
)

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

 −1
|

|

, 𝑢01
)

holds for all 𝑡 ≥ 𝜏0, according to the generalized local sector
conditions, we have

𝜑𝑇1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

1

[

𝜑1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

+1𝑧
(

𝑡 − 𝐽1 (𝑡)
)

]

≤ 0 (58)

Therefore, we obtain

𝐷+ (𝑧 (𝑡)) =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡)){𝑧𝑇 (𝑡)

[

𝐴𝑇𝑖  + 𝐴𝑖 − 𝛼
]

𝑧 (𝑡) − 𝑧𝑇
(

𝑡 − 𝐽1 (𝑡)
)

𝐾𝑇
𝑖 𝑧 (𝑡) − 𝑧

𝑇 (𝑡)𝐾𝑖𝑧
(

𝑡 − 𝐽1 (𝑡)
)

− 𝜑𝑇1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

𝑧 (𝑡) − 𝑧𝑇 (𝑡)𝜑1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

− 𝜑𝑇1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

11𝑧
(

𝑡 − 𝐽1 (𝑡)
)

− 𝜑𝑇1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

1𝜑1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

+ 𝛼𝑧𝑇 (𝑡)𝑧 (𝑡) }

(59)

It follows that,

𝐷+ (𝑧 (𝑡)) ≤
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))

[

𝑧𝑇 (𝑡) 𝑧𝑇
(

𝑡 − 𝐽1 (𝑡)
)

𝜑𝑇1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

] ]

⋅ ℵ⋅

⎡

⎢

⎢

⎢

⎣

𝑧 (𝑡)
𝑧
(

𝑡 − 𝐽1 (𝑡)
)

𝜑1

[ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

]

⎤

⎥

⎥

⎥

⎦

+ 𝛼𝑧𝑇 (𝑡)𝑧 (𝑡)

≤ 𝛼 (𝑧 (𝑡))

(60)



14 AUTHOR ONE ET AL

Then, as for the impulsive instants, similar to the demonstration of Theorem 1, we can obtain


(

𝑧
(

𝜏+𝑘
))

= 𝑧𝑇
(

𝜏+𝑘
)

𝑧
(

𝜏+𝑘
)

=
[

𝑧𝑇
(

𝜏𝑘
)

+ 𝑧𝑇
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

𝑇
𝑘 + 𝜑𝑇2

[

𝑘𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))]]


[

𝑧
(

𝜏𝑘
)

+𝑘𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

+ 𝜑2
[

𝑘𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))]]

(61)

In the case of 𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

𝑘 −2
|

|

, 𝑢02
)

, it yields


(

𝑧
(

𝜏+𝑘
))

≤
[

𝑧𝑇
(

𝜏𝑘
)

𝑧𝑇
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

𝜑𝑇2
[

𝑘𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))] ]

Π𝑘

⎡

⎢

⎢

⎣

𝑧
(

𝜏𝑘
)

𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

𝜑2
[

𝑘𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))]

⎤

⎥

⎥

⎦

+ 𝛽𝑘𝑧𝑇
(

𝜏𝑘
)

𝑧
(

𝜏𝑘
)

≤ 𝛽𝑘
(

𝑧
(

𝜏𝑘
))

(62)

Combining (60) and (62), we can find that  (𝑧 (𝑡)) ≤ 𝑒𝛼(𝑡−𝜏𝑘−1)
(

𝑧
(

𝜏+𝑘−1
))

for any 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

. Hence, we can derive

 (𝑧 (𝑡)) ≤

(𝑘−1
∏

𝑖=1
𝛽𝑖

)

𝑒𝛼(𝑡−𝜏0)
(

𝑧0
)

≤

(𝑘−1
∏

𝑖=1
𝛽𝑖

)

𝑒𝛼𝑡0 (63)

Now, consider the Step b, which aims to verify the stability of the hybrid control system. We are going to check the three
conditions required by Lemma 4 under the assumptions made in Theorem 2. Consider the first step of the step function, that is
to say, when 𝑡 ∈

(

𝜏0, 𝜏𝑚
)

, we have

 (𝑡) = sup
𝑡∈[𝜏0, 𝜏𝑚]

 (𝑧 (𝑡))

≤ max
𝑖=1,2,⋯,𝑚

{

sup
𝑡∈[𝜏𝑖−1, 𝜏𝑖]

 (𝑧 (𝑡))

}

≤ max
𝑖=1,2,⋯,𝑚

{[(

∏𝑖−1

𝑗=0
𝛽𝑗
)

𝑒𝛼(𝜏𝑖−𝜏0)
]}

⋅ 
(

𝑧0
)

= 𝜌1
(

𝑧0
)

(64)

As 𝜌1 is a constant, the first condition in Lemma 4 is fulfilled. Then, as for the (𝑘 − 1)th step, when 𝑡 ∈
(

𝜏𝑚(𝑘−1), 𝜏𝑚𝑘
]

, 𝑘 ≥ 1,

 (𝑧 (𝑡)) ≤ max
𝑖=𝑚(𝑘−1)+1,⋯,𝑚𝑘

{

sup
𝑡∈(𝜏𝑖−1, 𝜏𝑖]

 (𝑧 (𝑡))

}

≤ max
𝑖=𝑚(𝑘−1)+1,⋯,𝑚𝑘

{[(

∏𝑖−1

𝑗=𝑚(𝑘−1)
𝛽𝑗
)

𝑒𝛼(𝜏𝑖−𝜏𝑚(𝑘−1))
]}

⋅ 
(

𝑧
(

𝜏𝑚(𝑘−1)
))

≤ 𝜌𝑘
(

𝑧
(

𝜏𝑚(𝑘−1)
))

≤  (𝑡)

(65)

which indicates that condition iii is satisfied. Furthermore, when 𝑡 ∈
(

𝜏𝑚(𝑘−1), 𝜏𝑚𝑘
]

, 𝑘 ≥ 1,


(

𝜏𝑚𝑘
)

−
(

𝜏𝑚(𝑘−1)
)

= 
(

𝑧
(

𝜏𝑚(𝑘−1)
))

− 
(

𝑧
(

𝜏𝑚(𝑘−2)
))

≤ −
[

1 − 𝛽𝑚(𝑘−1)−1 ⋯ 𝛽𝑚(𝑘−2)𝑒
𝛼(𝜏𝑚(𝑘−1)−𝜏𝑚(𝑘−2))

]


(

𝑧
(

𝜏𝑚(𝑘−2)
))

≤ − (1 − 𝜍) 
(

𝑧
(

𝜏𝑚(𝑘−2)
))

= − (1 − 𝜍)
(

𝜏𝑚(𝑘−1)
)

< 0

(66)

Because the inequity (66) holds for every 𝑘 ≥ 1, we can write

 (𝑡) = 
(

𝜏𝑚𝑘
)

≤ 𝜍
(

𝜏𝑚(𝑘−1)
)

≤ 𝜍𝑘−1
(

𝜏𝑚
)

≤ 𝜍𝑘−1𝜌1
(

𝑧0
)

(67)
Therefore,

0 ≤ lim
𝑡→𝜏∞

 (𝑡) ≤ lim
𝑘→∞

[

𝜍𝑘−1 𝜌1
(

𝑧0
)]

= 0 (68)
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According to the Squeeze Theorem, we finally arrive at

lim
𝑡→𝜏∞

 (𝑡) = 0 (69)

Now all the conditions in Theorem 2 is confirmed. Next, however, we need to verify the follow relations:

{

𝑧
(

𝑡 − 𝐽1 (𝑡)
)

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

 −1
|

|

, 𝑢01
)

,∀𝑡 ≥ 𝜏0
𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

∈ 𝜀 ( , 1) ⊂ 𝑆
(

|

|

𝑘 −2
|

|

, 𝑢02
)

,∀𝑘 ≥ 1
(70)

We shall first demonstrate that 𝑧 (𝑡) ∈ 𝜀 ( , 1), ∀𝑡 ≥ 𝜏0 − 𝜅. When 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

, and 𝑡 − 𝐽1 (𝑡) ∈
(

𝜏𝑘−1, 𝜏𝑘
]

, we suppose that

𝜏0 < ... < 𝜏(𝑎−1)𝑚 < 𝜏𝑘−1 < 𝑡 − 𝐽1 (𝑡) ≤ 𝑡 ≤ 𝜏𝑘 < 𝜏𝑎𝑚 < ... < 𝜏∞ (71)
then we get


(

𝑧
(

𝑡 − 𝐽1 (𝑡)
))

≤

( 𝑘−1
∏

𝑖=(𝑎−1)𝑚
𝛽𝑖

)

𝑒𝛼(𝑡−𝐽1(𝑡)−𝜏(𝑎−1)𝑚)
(

𝑧
(

𝜏(𝑎−1)𝑚
))

≤

(𝑎−1
∏

𝑗=1
𝜌𝑗

)

⋅

( 𝑘−1
∏

𝑖=(𝑎−1)𝑚
𝛽𝑖

)

𝑒𝛼(𝑡−𝐽1(𝑡)−𝜏(𝑎−1)𝑚)
(

𝑧0
)

(72)

As 𝛼 > 0, it yields that

 (𝑧 (𝑡)) ≤

(

𝑎−1
∏

𝑗=1
𝜌𝑗

)

⋅

(

𝑘−1
∏

𝑖=(𝑎−1)𝑚
𝛽𝑖

)

𝑒𝛼(𝜏𝑘−𝜏(𝑎−1)𝑚)
(

𝑧0
)

≤

(

𝑎
∏

𝑗=1
𝜌𝑗

)


(

𝑧0
)

(73)

Because 
(

𝑧
(

𝑡0
))

≤ 1,

 (𝑧 (𝑡)) ≤

( 𝑎
∏

𝑗=1
𝜌𝑗

)

≤ 1 (74)

That is to say, 𝑧
(

𝑡 − 𝐽1 (𝑡)
)

∈ 𝜀 ( , 1). When 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

, 𝑡 − 𝐽1 (𝑡) ∈
(

𝜏𝑖−1, 𝜏𝑖
]

, 1 ≤ 𝑖 < 𝑘. We suppose that

𝜏0 < ... < 𝜏(𝑏−1)𝑚 < 𝜏𝑖−1 < 𝑡 − 𝐽1 (𝑡) ≤ 𝜏𝑖 < 𝜏𝑏𝑚 < .. < 𝜏∞ (75)
One can find that


(

𝑧
(

𝑡 − 𝐽1 (𝑡)
))

≤

(

𝑏−1
∏

𝑗=1
𝜌𝑗

)

⋅

(

𝑘−1
∏

𝑖=(𝑏−1)𝑚
𝛽𝑖

)

𝑒𝛼(𝑡−𝐽1(𝑡)−𝜏(𝑏−1)𝑚)
(

𝑧0
)

≤

(

𝑏
∏

𝑗=1
𝜌𝑗

)


(

𝑧0
)

≤ 1 (76)

Moreover, when 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

, 𝑡 − 𝐽1 (𝑡) ∈
(

𝜏0 − 𝜅, 𝜏0
]

,


(

𝑧
(

𝑡 − 𝐽1 (𝑡)
))

= 𝜃𝑇
(

𝑡 − 𝐽1 (𝑡)
)

𝜃
(

𝑡 − 𝐽1 (𝑡)
)

≤ 𝑔 ⋅ 𝑧𝑇 (𝑡∗)𝑧 (𝑡∗) ≤ 𝑔 (𝑧 (𝑡∗)) (77)
where 𝑡∗ = 𝑡 − 𝐽1 (𝑡) + 𝜅 ≥ 𝜏0. Hence, we obtain


(

𝑧
(

𝑡 − 𝐽1 (𝑡)
))

≤ 𝑔 (𝑧 (𝑡∗)) ≤ 𝑔

( 𝑛
∏

𝑖=1
𝜌𝑖

)

, 𝑛 ≥ 1 (78)

Since 𝑔 ≤ 𝜌−11 , we can get


(

𝑧
(

𝑡 − 𝐽1 (𝑡)
))

≤ 1 (79)
Combing (74), (76) as well as (79), it yields that

𝑧
(

𝑡 − 𝐽1 (𝑡)
)

∈ 𝜀 ( , 1) ,∀𝑡 ≥ 𝜏0 − 𝜅 (80)
Moreover, note that the scope of 𝑡− 𝐽1 (𝑡) covers the entire region of 𝑡− 𝐽2

(

𝜏𝑘
)

can possibly cover, except
[

𝜏0 − 𝜅, 𝜏0
)

. As a
consequence, we only need to consider the case when 𝑡 − 𝐽2

(

𝜏𝑘
)

< 𝜏0. Specifically, we derive


(

𝑧
(

𝑡 − 𝐽2
(

𝜏𝑘
)))

= 𝜃𝑇
(

𝑡 − 𝐽2
(

𝜏𝑘
))

𝜃
(

𝑡 − 𝐽2
(

𝜏𝑘
))

≤ 𝑔
(

𝑧
(

⌢
𝑡
))

(81)
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where,
⌢
𝑡 = 𝑡 − 𝐽2

(

𝜏𝑘
)

+ 𝜅 ≥ 𝜏0. With the third condition in Theorem 2, it follows that


(

𝑧
(

𝑡 − 𝐽2
(

𝑡𝑘
)))

≤ 𝑔
(

𝑧
(

⌢
𝑡
))

≤ 1 (82)
Combing (80) and (82), we therefore arrive at

𝑧 (𝑡) ∈ 𝜀 ( , 1) ,∀𝑡 ≥ 𝜏0 − 𝜅 (83)
Finally, in the Step c, we need to prove

𝜀 ( , 1) ⊂ 𝑆
(

|

|

 −1
|

|

, 𝑢01
)

(84)
𝜀 ( , 1) ⊂ 𝑆

(

|

|

𝑘 −2
|

|

, 𝑢02
)

(85)

which is actually very similar to the proof of Theorem 1 considering Assumption 1. By applying Schur Complement Theorem,
from (46) it can be shown that

 − 1
𝑢201(𝑖)

[

(𝑖) −1(𝑖)
]𝑇 [(𝑖) −1(𝑖)

]

≥ 0 (86)

Substituting 𝑧 (𝑡) ∈ 𝜀 ( , 1), into (86), we find that

|

|

|

(

(𝑖) −1(𝑖)
)

𝑧 (𝑡)||
|

≤ 𝑢01(𝑖) (87)

which means that 𝜀 ( , 1) ⊂ 𝑆
(

|

|

 −1
|

|

, 𝑢01
)

. When it fulfills that Ω(1)
𝑘 (𝑖, 𝑗) ≤ Ω(2)

𝑘 (𝑖, 𝑗), which indicates that the set
𝑆
(

|

|

 −1
|

|

, 𝑢01
)

is not fully included in the set 𝑆
(

|

|

𝑘 −2
|

|

, 𝑢02
)

. In this case, as a consequence of (47), we derive

 − 1
𝑢202(𝑖)

[

𝑘(𝑖) −2(𝑖)
]𝑇 [𝑘(𝑖) −2(𝑖)

]

≥ 0 (88)

which follows by

𝜀 ( , 1) ⊂ 𝑆
(

|

|

𝑘 −2
|

|

, 𝑢02
)

(89)
Now, we have verified all the assumptions made in the process of proof of stability. Eventually, the proof of Theorem 2 is

finished, and we can claim that the 𝜀 ( , 1) is a ellipsoid RAS of the delayed saturated hybrid control system (8).

Remark 3. The condition iv and v derived under the framework of step-function method, gain an advantage over most current
studies in reducing the conservatism of the sufficient conditions. Moreover, Theorem 2 in this paper takes some cases into
account which have attracted little attention in the previous research. For example, the impulsive gain matrix can be varying
with the increase of the number of impulses, and the hybrid control system with impulsive controller exhibiting Zeno behavior,
which is further demonstrated using the numerical examples in the next section. The theorem also eliminates the restriction that
the delays have to be smaller than the impulsive internal.

Overall, this section contributes to the development of new methodologies for designing hybrid control systems that can
effectively cope with the challenges posed by actuator saturation and time delay, while ensuring local stability.

5 NUMERICAL SIMULATION

Two numerical examples are presented in this section based on the theoretical results. We first consider a two-dimensional fuzzy
hybrid control system. The stabilization of the system is analyzed and the RAS is estimated applying Theorem 2. In the second
example, the stability of Chua’s circuit system is investigated under saturated delayed hybrid control, which further verifies the
validity of the proposed theorem.
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Figure 1 The RAS of delayed saturated hybrid control system (21).

5.1 Hybrid control for a class of nonlinear system
Consider a fuzzy state feedback system

𝑧̇ (𝑡) =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))

(

𝐴𝑖 −𝐾𝑖
)

𝑧 (𝑡) (90)

where,𝐴𝑖 =
[

0.1 −0.1
0.1 −0.3

]

,𝐾𝑖 =
[

0.1 0
0 −0.2

]

, 𝑖 = 1, 2, ..., 𝑞. Note that the system (90) is asymptotic stable itself. However, when

considering the time delay and actuator saturation which are generally inevitable in state feedback controller, the system may
be not stable. To stabilize the system, an impulsive controller is then designed, which is also assumed to be subject to saturation
and delay. The overall delayed saturated hybrid control system is presented as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧̇ (𝑡) =
𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐴𝑖𝑧 (𝑡) − 𝑆𝑎𝑡1

{ 𝑞
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1
)

}

, 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

Δ𝑧
(

𝜏𝑘
)

= 𝑆𝑎𝑡2

{ 𝑞
∑

𝑖=1
𝑑𝑖
(

𝑒
(

𝜏𝑘
))

𝑖𝑘𝑧
(

𝜏𝑘 − 𝐽2
)

}

, 𝑡 = 𝜏𝑘

𝑧
(

𝜏0 + 𝜉
)

= 𝜃
(

𝜏0 + 𝜉
)

, 𝜉 ∈ [−𝜅, 0]

(91)

We let the thresholds of saturation 𝑢01 =
[

0.03 0.02
]𝑇 , 𝑢02 =

[

0.08 0.06
]𝑇 , fixed time delays 𝐽1 = 0.6, 𝐽2 = 0.5. Suppose

that function 𝜃(𝑗) (𝑡) =
𝑧𝑗(𝜏0)
𝜅

(

𝑡 − 𝜏0 + 𝜅
)

, 𝑗 = 1, 2, 𝑡 ∈
[

𝜏0 − 𝜅, 𝜏0
]

, and the impulsive interval is fixed, satisfying 𝜏𝑘 − 𝜏𝑘−1 ≡
𝛿 = 0.2, 𝑘 = 1, 2, ....

Let positive definite matrix  = 𝑑𝑖𝑎𝑔 [0.15, 0.8], We can further compute that the impulsive gain matrix 𝑖𝑘 =
𝑑𝑖𝑎𝑔 [−0.5,−0.5] satisfying the conditions given in Theorem 2, which also exhibits a stabilizing effect on the system. There-
fore, we derive the estimation of region of attraction 𝜀 ( , 1) in Figure 1, where the rectangles denotes the constraints presented
by the conditions in Theorem 2.

According to Theorem 2, system (91) is asymptotic stable when the trajectory starts from any point within ellipsoid 𝜀 ( , 1).
Let the initial states fulfil 𝑧(1)0 =

[

0.5 0.2
]𝑇 ∈ 𝜀 ( , 1) and 𝑧(2)0 =

[

5 0.2
]𝑇 ∉ 𝜀 ( , 1), then the time response curves, with or

without impulsive controller, are shown in Figure 2 and Figure 3, respectively. Apparently, the impulses play an indispensable
role in stabilizing the system (91). Take the trajectory starts from 𝑧(1)0 as example, the simulations show that the number of times
that saturation of impulsive controller occurs is 10. We further suppose that the impulsive intervals varies with the number of
impulses and satisfies that 𝜏𝑘 = 4.6 − 3.8

𝑘
, 𝑘 ≥ 1. It is obvious that the system will exhibit Zeno behavior, as shown in Figure 4.
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Figure 2 The time response curve of system (91) starts from 𝑧(1)0 .
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Figure 3 The time response curve of system (91) starts from 𝑧(2)0 .

5.2 Stabilization of nonlinear Chua’s circuit system
Consider a typical nonlinear circuit system, Chua’s circuit, which can exhibit chaotic behavior with appropriate conditions. The
Chua’s oscillator is expected to be described as17

⎧

⎪

⎨

⎪

⎩

𝑧̇1 (𝑡) = −𝛼̃
[

𝑧1 (𝑡) − 𝑧2 (𝑡) + 𝑔
(

𝑧1 (𝑡)
)]

𝑧̇2 (𝑡) = 𝑧1 (𝑡) − 𝑧2 (𝑡) + 𝑧3 (𝑡)
𝑧̇3 (𝑡) = −𝛽𝑧2 (𝑡)

(92)

where, 𝛼̃ = 10, 𝛽 = 14.86, and the piece-wise function 𝑔 (⋅) is assumed as

𝑔
(

𝑧1
)

= 𝑏𝑧1 +
1
2
(𝑎 − 𝑏)

(

|

|

𝑧1 + 1|
|

− |

|

𝑧1 − 1|
|

)

, 𝑎 = −1.27, 𝑏 = −0.68 (93)

For simplifying the results, we construct the T-S fuzzy model for Chua’s oscillator. Suppose that 𝑧 =
[

𝑧1, 𝑧2, 𝑧3
]𝑇 represents

the state vector, the fuzzy model rules considering hybrid control combining a continuous state feedback controller and an
impulsive controller are presented as below:

Module Rule 1: IF 𝑧1 (𝑡) is M1, THEN
{

𝑧̇ (𝑡) = 𝐴1𝑧 (𝑡) −𝐾1𝑧 (𝑡) , 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

𝑧
(

𝜏+𝑘
)

=
[

1 + 1𝑘
]

𝑧
(

𝜏𝑘
) , 𝑘 = 1, 2, ... (94)
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Figure 4 The time response curve of system (91) starts from 𝑧(1)0 exhibiting Zeno behavior.

Module Rule 2: IF 𝑧1 (𝑡) is M2, THEN
{

𝑧̇ (𝑡) = 𝐴2𝑧 (𝑡) −𝐾2𝑧 (𝑡) , 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

𝑧
(

𝜏+𝑘
)

=
[

1 + 2𝑘
]

𝑧
(

𝜏𝑘
) , 𝑘 = 1, 2, ... (95)

where, M𝑖 denotes the fuzzy sets. The matrices in fuzzy linear subsystems are given as follows:

𝐴1 =
⎡

⎢

⎢

⎣

(𝜔 − 1) 𝛼̃ 𝛼̃ 0
1 −1 1
0 −𝛽 0

⎤

⎥

⎥

⎦

, 𝐴2 =
⎡

⎢

⎢

⎣

− (𝜔 + 1) 𝛼̃ 𝛼̃ 0
1 −1 1
0 −𝛽 0

⎤

⎥

⎥

⎦

, 𝐾1 = 𝐾2 =
⎡

⎢

⎢

⎣

2 0 0
0 1 0
0 0 1.5

⎤

⎥

⎥

⎦

(96)

where, 𝜔 = 1.8. The membership functions can be described as14

1
(

𝑧1 (𝑡)
)

= 0.5 − 1
2𝜔
𝜓
(

𝑧1 (𝑡)
)

2
(

𝑧1 (𝑡)
)

= 0.5 + 1
2𝜔
𝜓
(

𝑧1 (𝑡)
) (97)

where 𝜓
(

𝑧1 (𝑡)
)

=
{

𝑔
(

𝑧1 (𝑡)
)

∕𝑧1 (𝑡) , 𝑧1 (𝑡) ≠ 0
𝑎, 𝑧1 (𝑡) = 0

.

Taking the actuator saturation and time-varying delays into consideration, the nonlinear fuzzy hybrid control system is thus
derived as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑧̇ (𝑡) =
2
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐴𝑖𝑧 (𝑡) − 𝑆𝑎𝑡1

{

2
∑

𝑖=1
𝑑𝑖 (𝑒 (𝑡))𝐾𝑖𝑧

(

𝑡 − 𝐽1 (𝑡)
)

}

, 𝑡 ∈
(

𝜏𝑘−1, 𝜏𝑘
]

Δ𝑧
(

𝜏𝑘
)

= 𝑆𝑎𝑡2

{

2
∑

𝑖=1
𝑑𝑖
(

𝑒
(

𝜏𝑘
))

𝑖𝑘𝑧
(

𝜏𝑘 − 𝐽2
(

𝜏𝑘
))

}

, 𝑡 = 𝜏𝑘

𝑧
(

𝜏0 + 𝜉
)

= 𝜃
(

𝜏0 + 𝜉
)

, 𝜉 ∈ [−𝜅, 0]

(98)

where the saturation thresholds are set as 𝑢01 =
[

2 1.5 2
]𝑇 , 𝑢02 =

[

0.3 0.1 0.2
]𝑇 , the impulsive interval 𝛿 = 0.1, function

𝜃 (⋅) is same as it in the first example.
Now, we consider a relatively complicated case in which the impulsive gain matrix and time delays in (98) are both time-

variant, which, as far as we know, has rarely been studied before. Suppose that

𝑖𝑘 = 𝑑𝑖𝑎𝑔
[

−0.5 × (𝑘 + 1)−0.1 ,−0.2 × (𝑘 + 1)−0.2 ,−0.5 × (𝑘 + 1)−0.1
]

𝐽1 (𝑡) = 0.05, 𝐽2 (𝑡) = 0.05 × (𝑘 + 1)−1.1
(99)

According to the conditions given by Theorem 2, the initial state of system (98) is chosen as

𝑧0 = 𝑧
(

𝜏0
)

=
[

0.5 0.2 0.3
]𝑇 (100)
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Figure 5 The time response curve of Chua’s circuit system under delayed saturated hybrid control.
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In this situation, the time response curve of (98) with hybrid control is shown in Figure 5, and the curves with only one
controller are given in Figure 6, where SFC represents the continuous state feedback controller, and IC denotes the impulsive
controller. The numerical results show that both SFC and IC have the effect of stabilizing Chua’s circuit system, and the system
can not achieve asymptotic stability without any of the two controllers.

6 CONCLUSION

In this paper, the local stability of a nonlinear fuzzy hybrid control system considering both saturation and time-varying delays
in both impulsive controller and continuous controller has been studied for the first time. The stability conditions in the form of
LMI has been derived using the step-function method and extended local sector condition, and improved sufficient conditions
with less conservatism have been provided which guarantee the stability when the system is subject to double saturation and
time delays. The stability theorem proposed in this paper relaxes some common requirements of lengths of time delays and can
be applied to systems with variable impulsive gain and impulsive intervals, as well as the systems exhibiting Zeno behavior.
Simulation examples have been proposed for the demonstration of theoretical findings.
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