ESTIMATING ASYMPTOMATIC AND SYMPTOMATIC TRANSMISSION OF NOVEL CORONAVIRUS DISEASE 2019 IN SELENGE PROVINCE, MONGOLIA

Davaalkham Dambadarjaa¹, Tsogt Mend², Andrew Shapiro³, Undram Mandakh¹, Temuulen Enebish⁴, Linh-Vi Le⁴, Darwin Bandoy⁴, Ambaselmaa Amarjargal², Bilegt Altangerel², Tuvshintur Chuluunbaatar², Uugantsetseg Guruuchin², Oyuntulkhuur Lkhagvajav², Oyunsuren Enebish⁵, and Mark Handcock³

¹Mongolian National University of Medical Sciences ²National Center for Communicable Diseases ³University of California Los Angeles ⁴World Health Organization Regional Office for the Western Pacific ⁵Mongolia Ministry of Health

July 20, 2023

Abstract

Background: Following a locally transmitted case in Sukhbaatar city, Selenge province, we conducted a study with two objectives. First, we aimed to estimate the basic reproduction number of COVID-19, leveraging the epidemiological and clinical characteristics observed in the first 67 confirmed cases. Second, we aimed to model the outbreak considering different patient profiles - asymptomatic, symptomatic, and pre-symptomatic - with the goal of predicting the ultimate scale of the epidemic in the scenario of uninterrupted transmission. Methods: We conducted a prospective case study following the WHO FFX cases generic protocol. The rapid response teams collected the surveillance data from November 14–29, 2020. We created a stochastic process to draw many transmission chains from this greater distribution to better understand and make inferences regarding the outbreak under investigation. Results: The majority of the cases involved household transmissions (35, 52.2%), work transmissions (20, 29.9%), index (5, 7.5%), same apartment transmissions (2, 3.0%), school transmissions (2, 3.0%), and meetup transmissions (1, 1.5%). The posterior means of the basic reproduction number of both the asymptomatic cases, R_0^Asy and pre-symptomatic cases. Conclusion: Our study highlights the heterogeneity of COVID-19 transmission across different symptom statuses and underscores the importance of early identification and isolation of symptomatic cases in disease control. Detailed contact tracing data with advanced statistical methods, can be applied to other infectious diseases, facilitating a more nuanced understanding of disease transmission dynamics.

Hosted file

MNG_Cluster_Manuscript_2023_July.docx available at https://authorea.com/users/641368/ articles/655744-estimating-asymptomatic-and-symptomatic-transmission-of-novelcoronavirus-disease-2019-in-selenge-province-mongolia

R₀ Posterior Distributions

Cumulative Deaths

Mean on given da Lower boundary Median Upper Boundary	ay Legend
--	--------------