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Structural biology has been undergoing an unprecedented transformation recently thanks to major break-
throughs in experimental methods such as cryogenic electron microscopy (cryo-EM) and ground-breaking
computational approaches for predicting the 3D structure of proteins based on cutting edge deep-learning
methods.

Owing to spectacular advances in detector technology and software algorithms, cryo-EM has revolution-
ized biology by enabling the determination of complex biomolecular structures at near-atomic resolution[1]:
Over less than a decade, the number of near-atomics-resolution structures solved using cryo-EM has grown
exponentially [2]. Foregoing the need for crystal formation, it has enabled to elucidate the structures of
important receptors and membrane proteins, historically refractory to crystallographic studies [3]. Further-
more, increasingly sophisticated computational and experimental cryo-EM methods are making it possible
to unveil different conformational and/or compositional states of the systems under study [4-6], thereby
providing valuable information on the dynamic properties of these systems underpinning their biological
function.

In parallel, the progressive introduction of new generation methods in deep learning - a subfield of machine
learning- to a maturing protein modelling field has recently culminated with the phenomenal success of
AlphaFold2 (AF2), the deep-leaning engine developed by Google DeepMind, in predicting the 3D structure
of single chain proteins to an accuracy rivaling with that of experimentally determined structures [7, 8].
This achievement has been a game changer with immense repercussions across the fields of computational
and experimental structural biology [9, 10]. The software of these algorithms was made freely available to
the public [11] [https://github. com/deepmind/alphafold] setting the stage for rapid further developments
[12]. Additionally, DeepMind has partnered with the European Bioinformatics Institute (EBI) to create
AlphaFold-DB [13], offering open access to over 200 million protein structures predicted by AlaFold, providing
broad coverage of UniProt [14].

The vast increase in high accuracy coverage of protein structure space is already having a major impact in
many areas of scientific research, including elucidating aspects of evolutionary relationships and protein func-
tion [15], identifying potential drug targets[16] and greatly aiding experimental structure determination[17].
However, AF2 as designed, and hence also AlphaFold-DB, provide no information on the dynamic proper-
ties of proteins nor on the alternative conformations that proteins sample to carry out their function [18].
Information is also lacking on functionally important bound small molecule ligands, and on the oligomeric
structure of native proteins, where two or more proteins (subunits) form higher order complexes[19]. Of
these essential areas the prediction of protein complexes, has received special attention in the last two



years. Viewed as the next frontier for deep learning—based structure prediction methods, the community
devised ways of extending the power of AF2 to the prediction of protein complexes. Creative uses of AF2
and AlphaFold2-Multimer, the inference engine of AlphaFold directly trained on protein complexes from
the PDBJ[20], which include aggressive sampling of candidate solutions combined with effective scoring and
ranking models, helped yielding high-quality models for 40% of the assembly targets in the CASP-CAPRI
(Critical Assessment of Structure Prediction -Critical Assessment of PRedicted Interactions [21] ) blind
prediction challenge of 2022 compared to the mere 8% produced in previous challenges [Lensink et al. (un-
der review)]. These are very encouraging results, suggesting nevertheless that significant room remains for
improvement [21].

Free access to the code of AF2 and similar deep-learning based software like RoseTTAfold [22], offered by
various community-based resources such as ColabFold [12] played a key role in these advances. Access to
these resources is also having a resounding impact on the experimental determination of protein structures.
In several instances, hard-to- solve X-ray and cryo-EM structures have been elucidated by using AlphaFold
predicted structures in molecular replacement protocols [23, 24]. AlphaFold and RoseTTAFold models have
been used successfully to fit residual electron density in cryo-EM maps, most notably in a recent assembly
of the human nuclear pore complex [25].

This special issue of Proteomics features seven contributions showcasing how the new wave of deep-learning
tools and generated data are being leveraged and integrated into cutting edge research in the life sciences and
how the frontier between experimental and computational approaches is increasingly blurred. Contributions
to this issue also underscore the importance of free access to the data generated by both experimental and
computational approaches. These data are inherently complex and noisy, hence the crucial role of tools for
extracting useful information from these data, a key step in generating new knowledge.

Varadi and Velankar, the team at the PDBe (Protein Databank Europe), developing and managing the
AlpfaFold-DB, in close collaboration with Google DeepMind, describe the specifics of the database, the
key meta-information it includes and the impact it is having across the fields of life-sciences research and
development. They discuss the challenges of organizing analyzing and providing meaningful user access to
214 million unique protein structures, compared to around 200,000 PDB structures corresponding to 60,000
unique protein sequences. Our attention is attracted to the specifics of the new body of data, including the
confidences scores associated with the predicted models, the new insights they provide and some important
limitations. Also highlighted is the important role public data providers play in integrating the new structural
information with other key biological data and disseminating it across other key resources such as UniProt
and more specialized databases such as and InterPro [26] and Pfam [27]among others.

Tiiting et al. , describe how AlphaFold predicted structures enables the interpretation of cryo-EM maps
from native cell extracts. Combining data on crosslinking mass spectrometry[28] with other proteomics
techniques and systematic fitting of predicted structures of single chain proteins from AlphaFold-DB into
medium-resolution cryo-EM maps of yeast native cell extracts, enabled the team to derived models of the
large multi-component heterogenous and plastic protein assembly of the 2.6 MDa complex of yeast fatty acid
synthase, the closest one can come today to characterising such assemblies in-situ using cryo-EM.

The study of Pei et al . al, is another edifying example of how AlphaFold predicted structures are being used
to generate new knowledge on cellular processes, in this case providing insights into the critical regulatory
roles played by PARylation (the posttranslational modification of proteins by linear or branched chains of
ADP-ribose units). To this end the study gathered data on sites modified by PARylation on acidic residues
(Asp (Asp (D)/Glu (E)) in more than 300 human proteins. Following the example of an earlier study|[29],
the joint multiple sequence alignments generated for these proteins were fed to the AlphaFold2 inference
engine to predict a set of 260 confident interaction interfaces. Mapping the PARylation sites of interest into
these interfaces revealed these sites to occur preferentially in coil and disordered regions and that interaction
interfaces featuring these sites involve short linear sequence motifs[30] in both disordered and globular
domains. More specifically, D/E-PARylation sites were found in the interfaces of key components of the
RNA transcription and export complex, suggesting that systematic PARylation-based regulation intervenes



in multiple RNA-related processes.

Deep Learning methods are also making headway in other areas of structural and systems biology. Cohen
and Schneidman-Duhovnyreport a new deep learning model for improving the information on the spatial
proximity of residues in multi-subunit complexes derived from crosslinking mass spectrometry (XLMS),
which the cryo-EM study of Tiitinget al . in this issue critically relied on to model the large yeast fatty
acid synthase complex from cryo-EM data. Chemical crosslinking followed by mass spectrometry [28] is
increasingly used to derive distance constraints or restraints in integrative modeling techniques used to build
models of large multi-component protein assemblies. One of the challenges in interpreting crosslinking data is
designing a scoring function capable of quantifying how well a candidate model fits the data. Most available
approaches set an upper limit on the distance between a cross-linked residue pair and compute the fraction
of satisfied crosslinks, neglecting the crucial influence of the spatial neighbourhood on the distance spanned
by the crosslinker. This shortcoming is addressed by the deep learning model XlinkNet, trained to predict
the optimal distance range -instead of only an upper limit- for a crosslinked residue pair based on their
spatial environment of the predicted structure. The model trained and validated using many thousands
protein structures from the wwPDB and AlphaFoldDB, and XLMS data on tens of thousands of crosslinks,
was shown to accurately classify the distances ranges of most of the tested crosslinks and provide valuable
insights into the associated structural determinants. The authors also stress the pressing need for better
curation and seamless links to publicly available structural information forin-vitro crosslinking data (mainly
deposited in the PRIDE database [31]).

Accounting for the dynamic properties of proteins or modeling the alternative conformations that proteins
sample to carry out their function, is a long-standing challenge that main-stream protein modeling techniques
have been struggling with and deep-learning methods still do not master. Christoffer and Kihara propose
an approach for modeling conformational changes often associated with the formation of protein complexes,
which they apply to protein-nucleic acid complexes. These are very challenging complexes to model because
their formation is associated with a large flexibility of the components (see for example ref [32]). The proposed
approach focuses on modeling this type of motion for the protein components alone, starting from the
unbound version of the corresponding structures and considers systems where this motion involves the
reorientation and displacement of relatively rigid domains linked by flexible segments. A customized protein
docking algorithm designed to handle this type of motion [33] is used to predict the most likely collective
binding modes of all individual domains to the nucleic acid component. Next, an anisotropic network model
(ANM) [34] is employed to deform the full protein structures to match the docked domains, and further
refine the resulting models to optimize interactions with the nucleic acid component(s). Benchmarking this
approach on a limited set of protein-nucleic acid complexes where such large-scale collective motions take
place, and illustrating representative examples, suggest that it represents a promising strategy for tackling
this difficult modeling problem.

Reliably scoring and ranking candidate models of protein complexes and assigning the oligomeric state of
proteins are other important challenges unmet by current modeling algorithms, including deep learning-based
methods such as AlphaFold. The latter rely primarily on various confidence scores to rank models whose
relation to the physical properties of the protein remains uncertain [35]. Schwekeet al. report a community-
wide efforts to tackle these problems. This effort exploits QS-Align [36] and ProtCID [37], two noteworthy
specialized resources that characterize protein complexes and their interfaces. Using these resources the study
produces a carefully crafted benchmark dataset of “1700 homodimer protein crystal structures, which inclu-
des both physiological and non-physiological complexes. This dataset is used to evaluate the performance of
protein interface scoring functions in discriminating between both types of complexes. The unique features
of the dataset stems from its size, accuracy, and the fact that it contained particularly challenging complexes
to segregate correctly. Evaluating 252 scoring functions developed by 13 expert groups, this study demons-
trates the complementarity of these scoring function and shows that the combined power of these functions
outperforms individual scores, paving the way for further optimizing such functions. This has important
implications for the development of improved methods for the prediction of protein-protein interactions. The
benchmark dataset and its analysis should serve as a valuable resource for such future work.



The last 2 decades have seen an explosive growth of protein-protein interaction (PPI) data derived from
both small-scale and proteome-scale interrogations in organisms from bacteria to human [38] as well from
various computational methods [39] including AlphaFold [40]. Data from these studies have been used to
construct PPI networks, and various properties of these networks have been scrutinized to gain biological
insights. With the PPI data being inherently noisy, extracting meaningful information from these networks
requires cross referencing and integrating the PPI data with many other types of data, such as protein
and gene sequences, gene and protein expression levels, as well as structural data [41]. The availability of
tools and resources that facilitate such integration and ensuing analyses is therefore crucial, and particularly
relevant to the main topic of this Journal. LEVELNET the resource presented by Behbahani et al. is
such facilitator. Focusing on proteins whose 3D structures are available in the PDB, LEVELNET integrates
and explores PPI networks from multiple sources of evidence. It builds a grid of networks for each source
representing different views of the associated interactions. It allows to cluster interactions made by groups of
related proteins based on sequence identity and to infer interactions through homology transfer. Examples
of potential applications include the investigation of the structural evidence supporting PPIs associated with
specific biological processes, comparing the PPI networks obtained through computational inference versus
homology transfer, and creating PPI benchmark datasets with desired properties.

This transformational era is propelling structural biology to the mainstream of research in the life sciences
and beyond. This momentum will benefit from ensuring free access to data and tools, and from enhancing the
synergy between multidisciplinary research, data providers, and community-wide initiatives that critically
benchmark and evaluate progress in the field.
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