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Abstract

Hyperspectral images contain rich spatial and spectral information, which provides a strong basis for distinguishing different

land-cover objects. Therefore, hyperspectral image classification has been a hot research topic. With the advent of deep learning,

convolutional neural networks (CNNs) have become a popular method for hyperspectral image classification. However, CNN

has strong local feature extraction ability but cannot deal with long-distance dependence well. Vision Transformer (ViT) is a

recent development that can address this limitation, but it is not effective in extracting local features and has low computational

efficiency. To overcome these drawbacks, we propose a hybrid classification network that combines the strengths of both CNN

and ViT, names Spatial-Spectral Former(SSF). The shallow layer employs 3D convolution to extract local features and reduce

data dimensions. The deep layer employs a spectral-spatial transformer module for global feature extraction and information

enhancement in spectral and spatial dimensions. Our proposed model achieves promising results on widely used public HSI

datasets compared to other deep learning methods, including CNN, ViT, and hybrid models.
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Abstract
Hyperspectral images contain rich spatial and spectral information, which provides a strong basis for
distinguishing different land-cover objects. Therefore, hyperspectral image classification has been a hot
research topic. With the advent of deep learning, convolutional neural networks (CNNs) have become a
popular method for hyperspectral image classification. However, CNN has strong local feature extraction
ability but cannot deal with long-distance dependence well. Vision Transformer (ViT) is a recent development
that can address this limitation, but it is not effective in extracting local features and has low computational
efficiency. To overcome these drawbacks, we propose a hybrid classification network that combines the
strengths of both CNN and ViT, names Spatial-Spectral Former(SSF). The shallow layer employs 3D
convolution to extract local features and reduce data dimensions. The deep layer employs a spectral-spatial
transformer module for global feature extraction and information enhancement in spectral and spatial
dimensions. Our proposed model achieves promising results on widely used public HSI datasets compared
to other deep learning methods, including CNN, ViT, and hybrid models.
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1 INTRODUCTION

Hyperspectral remote sensing uses sensors/imaging spectrometers to capture images of a target area in hundreds of wavelength
bands, allowing for simultaneous acquisition of spatial and spectral information. Additionally, as spectral imaging technology
continues to advance, improvements in spatial and spectral resolution are being made continuously. Compared to standard
remote sensing images like multispectral remote sensing images, hyperspectral images provide a more comprehensive spectral
band coverage, capturing a vast amount of information through numerous wavelength bands. The resulting 3D data blocks
effectively capture and combine spatial and spectral information, making HSI classification techniques widely applied on
medical1, military2, agricultural3 and water resources management4 scenarios.

However, HSI is a powerful technology that captures an extensive range of spectral bands for each spatial pixel, providing
rich and detailed information about the Earth’s surface. While this abundance of data presents valuable opportunities for
ground object classification, it also poses challenges in extracting relevant and discriminative features effectively. Therefore,
researchers have been actively exploring various methods to tackle this feature extraction problem in HSIs. In the early stages of
HSI classification, traditional approaches mainly relied on shallow feature extraction techniques like Support Vector Machine
(SVM)5,6,7,8, Principal Component Analysis (PCA)9, and Morphological Profile (MP)10. These methods served as initial steps
in understanding the data and its characteristics, but they showed limitations when confronted with the complexity and intricacy
of real-world HSI data. One of the main issues with these early models was their shallow structures, which prevented them
from capturing the intricate patterns and relationships present in the high-dimensional HSI data. As a result, their classification
performance often fell short of expectations, hindering their broader applicability in practical scenarios.

Since 2012, deep learning has gained attention in the field of computer vision, and numerous deep learning-based hyperspectral
image (HSI) classification methods have been proposed. Deep learning-based HSI classification methods have achieved
impressive performance by efficiently extracting data features. Convolutional neural networks (CNNs) are the most commonly
used deep learning method for HSI classification due to their ability to capture the spectral and spatial information of HSI.
CNN-based approaches are typically categorized into 1D-CNN, 2D-CNN, and 3D-CNN, depending on their convolution types.
1D-CNNs are used to extract deep spectral features11,12, 2D-CNNs extract deep spatial features of pixels from spectrally
compressed HSI blocks13,14, and 3D-CNNs extract both spectral-spatial features15,16. HSI data is typically represented as 3D
structures, so 3D-CNNs are commonly used to extract spectral-spatial features without the need for any pre-processing or
post-processing15. Very recently, several variations of 3D-CNNs, such as migration learning17,18 and neural structure search19,20,
have been proposed for HSI classification, providing additional evidence for the effectiveness and versatility of 3D-CNNs in this
application. In summary, deep learning-based HSI classification methods have demonstrated superior performance, with 3D-CNN
being the most commonly used model due to its ability to extract both spectral and spatial information without any preprocessing.

Although 3D-CNN-based methods for hyperspectral image (HSI) classification have shown promise performance, there is
still room for improvement. While the local connectivity and shared weights of CNNs effectively capture local correlations
and promote high feature extraction efficiency, they also result in a limited effective receptive field. This limitation can hinder
the performance of CNN-based HSI classification methods. In 2020, Dosovitskiy et al.21 proposed vision transformer(ViT),
which is the first self-attention mechanism22 based image classification model. ViT achieves higher classification accuracy
on ImageNet-1k compared with previous various CNN models, thanks to the Transformer is able to process long-distance
dependencies effectively. Inspired by this, some researchers attempt to introduce ViT into HSI classification. For example, Hong
et al.23 proposed using grouped spectrum embedding to obtain neighboring spectra features, and the Transformer multiple
encoders with added jump connections to reduce the loss of valuable information during propagation. As CNN models can
effectively model local relationships and ViT can extract information globally, some researchers have combined the two to
create new structures. Methods like SSFTT24 and SST25 use CNN to extract shallow spatial features, treat each point in the final
feature map as a sequence of words, and apply the Transformer on it. These methods extract spatial features using CNN, and
spectral features using ViT, achieving higher classification accuracy than previous CNN-based algorithms.

Following the research line of combining the strengths of CNN and ViT, we attempt to design a more efficient hybrid model
for HSI classification. Unlike previous approaches that use the vanilla ViT structure designed for RGB images, our proposed
architecture is tailored for HSIs, resulting in better performance. In previous ViT-based HSI classification methods, ConvNets
and ViTs are typically combined to overcome the long-distance dependence problem. However, these approaches inherit the
disadvantages of raw ViTs, such as a large number of parameters, low computational efficiency, and difficulty in training.
Additionally, the vanilla ViT is designed for RGB images, which have different characteristics compared to HSI. Although using
the vanilla ViT for HSI classification is possible, it is not optimal.
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F I G U R E 1 The overall workflow.

Our approach starts with the structural features of HSI and tailors a hybrid model specifically for HSI classification. We
first use a 3D-CNN to extract local spectral-spatial features in shallow layers to compress the high dimension 3D data into a
compacted 3D cube. This design fully utilizes the computational efficiency of CNN and reduces the computational load of
ViT. We then design a tripartite-structure transformer block for HSI classification that includes multiple Spatial Attention, one
Spectral Attention, and a channel mixer of FFN. The shallow features are input to Spatial Attention, and the deep Spatial features
are extracted by multiple Spatial Attention. The deep Spectral features are extracted by inputting them into Spectral Attention.
The channel mixer interacts fully with the information extracted from each channel. Our experimental results on three typical
HSI classification datasets from Pavia Center, Pavia University, and Houston University validate the efficiency of our proposed
network.

The remainder of this paper is organized as follows. Section II reviews related work. A detailed description of our method is
given in Section III. Section IV gives the algorithm implementation details and compares the accuracy of our proposed SSF
method with that of other methods. Finally, we conclude this work in Section V.

2 RELATED WORK

2.1 Hyperspectral Image Classification via CNNs

In recent years, the technology of classifying hyperspectral images based on CNN has achieved impressive performance, and
CNNs have gone through three main stages for hyperspectral image classification.

From 2015 to early 2016, the focus of HSI classification was mainly on 1D-CNN and 2D-CNN. Classification methods based
on 1D-CNN typically use 1D-CNN to convolve the spectral directions of HSIs and extract spectral features11,26, which is known
as the spectral feature-based classification method. On the other hand, 2D-CNN-based classification methods downscale HSIs
on their spectral dimensions and extract neighborhood information while retaining its original spatial structure. The extracted
information is then processed at a deeper level using 2D-CNN to extract deeper spatial features, which are then used to complete
HSI classification27,28. These methods are known as spatial feature-based classification methods. However, methods that solely
use 2D CNNs for classification may not retain structural information well, resulting in much smoother visual results compared
to 1D CNN methods.

The second phase of HSI classification focused on combining 1D-CNN and 2D-CNN to improve accuracy. By taking
advantage of the strengths of both models, a two-channel CNN structure was constructed. Yang et al.29 used 2D-CNN to
extract spatial features from downsampled hyperspectral images, 1D-CNN to extract spectral features from spectral vectors, and
completed classification using fully connected layers and Softmax. Similarly, Zhang et al.30 used a pyramid structure to fuse
multilayer features and obtain spatial-spectral features.

The third stage of HSI classification is characterized by the increasing use of 3D-CNNs. Due to the 3D structure of HSIs, 3D-
CNNs are well-suited for extracting spatial-spectral features15. The key advantage of 3D-CNNs lies in their ability to process the
entire hyperspectral cube as a whole, treating it as a 3D volume. This enables them to capture the spatial-spectral relationships
present within each pixel, thus offering a more holistic understanding of the hyperspectral data. As a result, a series of optimized
3D-CNN structures, including residual networks, lightweight models, and migration learning, have become more mainstream.
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F I G U R E 2 Difference between standard 3D-CNN and Depthwise Separable convolution.

For example, Meng et al.31proposed a lightweight spectral-space convolutional HSI classification module (LSSCM) to reduce
network parameters and computational complexity, while Zhang et al.17 added migration learning strategies to a lightweight
model and proposed a model HSI classification module (LWNet) that achieved better classification accuracy using a deeper
network, fewer parameters, lower computational costs, and fewer training samples. Compared with 1D-CNNs and 2D-CNNs,
3D-CNNs are more intuitive and efficient in classification results, as they are better suited to the data structure of HSIs. Inspired
by these findings, in our proposed hybrid structure, we use 3D-CNNs in the shallow layer for spectral-spatial feature extraction.

2.2 Vision transformers

Vaswani et al22 introduced the Transformer structure for natural language processing (NLP) through a thorough examination
of the attention mechanism. Compared to the RNN structure, which was widely used in NLP previously, the Transformer can
process the sequence of elements in parallel, leading to significantly improved computational efficiency and better capturing the
relationships between any pair of elements in the input sequence. As a result, the Transformer structure has gradually replaced
the RNN structure and become dominant in the field of NLP.

In 2020, Dosovitskiy et al. introduced the Transformer structure to computer vision tasks with their proposed Vit model
based on image features21. The Vit model segments each image into patches, which are then used as input sequences for feature
extraction. A position embedding is introduced in Vit to ensure sensitivity to the position of the input patches, and an additional
class token is set to perform the final classification. This novel approach allowed the Transformer to excel in image-based
tasks, previously dominated by Convolutional Neural Networks (CNNs). However, despite its success, Vit had some limitations
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F I G U R E 3 Tripartite-structure Transformer.

that hindered its practicality in certain applications. One of the major drawbacks was its high parameter count, resulting in
substantial computational overhead. Additionally, training Vit was relatively challenging, requiring careful optimization to
achieve satisfactory results. To address these issues, a series of Vit variants were proposed. Hong et al.23 proposed the use of
grouped spectral embeddings instead of all spectral bands for feature extraction, to model local detailed spectral differences.
Cross-layer jump connections were added to multiple encoders of the Transformer to reduce information loss during layer-by-
layer propagation. Some researchers have attempted to optimize Vit by incorporating CNNs. PVT32 implements a pyramid
structure by inserting convolutions at each stage of Vit to construct a hierarchical multilevel structure and reduce the number
of tokens. Swin Transformer, proposed by Liu et al.33, reduces the computational cost of attention by limiting it to pixels
within a small window. It also introduces a shift-window-based MSA, which allows attention to span different windows. Swin
Transformer achieves higher accuracy than previous CNN models on tasks such as dense prediction.

2.3 Hybrid structures combining ConvNet and vision transformers

CNN effectively captures local correlations but cannot handle the long-range dependence of data well. Vit is good at extracting
features from the global. However, its classification results are unsatisfactory because the original Vit has the drawbacks of a
large number of parameters and low computational efficiency. Therefore, combining Vit and CNN to form new structures is
becoming popular. In LeviT34, Graham et al. combined ConvNets and transformers, resulting in a significant improvement in
the speed/accuracy tradeoff compared to previous ConvNet and ViT models. BoTNet35 utilizes multi-headed attention instead
of standard convolution in the last few blocks of ResNet. Vit-C36 applies convolution in the Patch Embedding step in the
traditional Vit architecture. ConViT37 employs a gated positional self-attentive mechanism with Soft convolution induction
bias. The CMT38 block consists of a local perceptual unit based on deep convolution and a lightweight Transformer module.
CoatNet39 introduces a novel transformer module that merges convolution and self-attention to effectively capture both local and
global information. In MobileViT40, the deeper stages of MobileNetv241 are replaced with their proposed MobileViT block. In
ParCNet42, Zheng et al proposed position aware circular convolution (ParC) to capture global features and combine the proposed
ParC operation with traditional convolution to design hybrid structure.

Very recently, researchers have explored the use of hybrid structures for hyperspectral image (HSI) classification. One
approach proposed by He et al.25 involves fine-tuning a convolutional neural network (CNN) pre-trained by VGG to extract
spatial features for each HSI band. The spatial features are then fed into a transformer to extract spectral features. To address the
issue of limited HSI samples, the authors incorporate a migration learning strategy. Another approach, proposed by Wang et
al.43, divides the HSI spectrum into several equal-length subbands and applies 3D convolution with different kernels to fuse
features. The fused features are connected to the residuals of the original image after linear embedding and classified using a
Transformer. The authors use a centre mask technique to reconstruct the same centre pixel as much as possible by a decoder,
which improves the learning of the relationship between the centre pixel and the domain pixel. However, this method only
extracts shallow spatial features and relies on self-attention to extract deep spectral features. A third approach, proposed in
the recent study by SSFTT24, employs 3D-CNN to extract shallow spectral features and 2D-CNN to extract shallow spatial
features. The extracted features are input into a Transformer module for feature learning after Gaussian weighted feature tagging.
However, the authors only consider deep feature extraction for spatial features and neglect deep spectral features.
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(a) (b)

F I G U R E 4 Indian Pines dataset. (a) False-color map. (b)
Ground-truth map.

(a) (b)

F I G U R E 5 Pavia University dataset. (a) False-color map.
(b) Ground-truth map.

3 THE PROPOSED METHOD

In this section, we provide a detailed description of our proposed method(SSF). First, we present the overall framework of
our classification architecture. Next, we delve into the two major modules that make up the framework: the depthwise 3D
convolution module and the tripartite-structure transformer module(TST).

3.1 The overall workflow

As illustrated in Figure 1, the overall workflow of our proposed classification framework consists of three major parts, including
sample extraction, spectral-spatial feature extraction and 3D adaptive average pooling based classification.

During the sample extraction stage, we extract a cube of size S × S × L as a sample, where S is the spatial size and L is the
number of spectral bands. Each cube is extracted from a neighborhood window that is centered around a pixel. Note that S is
typically an odd number to ensure that the center of the extracted cube corresponds to the pixel that needs to be classified. This
cube serves as the original features of the center pixel.

For the spectral-spatial feature extraction, we designed a hybrid structure that incorporates depth-wise 3D convolution in
the shallow layer and a tripartite-structure transformer module(TST) in the deep layer. Due to the high spectral resolution of
hyperspectral imagery (HSI), applying a vanilla transformer module to HSI samples would result in high computation costs. On
the other hand, 3D convolution is well-suited for extracting 3D features from HSI, and it has a development history of more
than ten years. Moreover, current GPUs and deep learning tools are highly optimized for convolution operations, making 3D
convolution highly computationally efficient. By applying 3D convolution in the shallow layer, we can leverage these advantages
to 1) extract preliminary spectral-spatial features, and 2) reduce the feature dimension to decrease computation overload, which
prepares the data for the transformer modules. After reviewing the spectral structure of HSI, we proposed a tripartite-structure
transformer module and applied it in the deep layer.

For the final classification step, we use 3D adaptive average pooling to adjust the size of the features to a fixed value. Using
adaptive average pooling is important to maintain a concise architecture. If we were to flatten the output of the last unit into a
vector, as is done in other conventional structures, we would have to adjust the dimensionality of every fully connected layer for
each HSI data set, as different HSI data sets have varying numbers of bands. By using adaptive average pooling, we can avoid
this problem and keep the architecture consistent across different HSI data sets.
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(a)

(b)

F I G U R E 6 Houston 2013 dataset. (a) False-color map. (b) Ground-truth map.

3.2 The depthwise 3D convolution

As mentioned above, we use 3D convolution in the shallow layer to extract primary spectral-spatial features as preparation
for using the transformer. While convolution is computationally efficient, the traditional 3D convolution can still lead to high
computation costs in this stage. To address this issue, we use depthwise 3D convolution instead. A comparison between the
traditional 3D convolution and our adopted depthwise 3D convolution is illustrated in Figure 2.

Suppose the input feature cube F has the shape (si, wi, hi, ci). The output feature cube, denoted as O, has the shape (so, wo, ho, co)
after convolution. Here, s, w and h refer to the length, width, and height of the matrix, respectively, and c denotes the number of
channels. When using conventional convolution, a convolution kernel K of size k × k × k is applied, where k is the length of the
filter. The output matrix of conventional convolution is calculated as follows:

Ox,y,z,n =
∑

a,b,c,m

Ka,b,c,m,nFx+a–1,y+b–1,z+c–1,m

where a, b, c and x, y, z denote the spatial locations of the elements for a conventational convolution kernel of size k × k × k ×
cm × cn.When using depthwise separable convolution, the input features are first passed through a depthwise convolution (one
convolution kernel is responsible for one channel, and the number of channels of the generated feature map is the same as the
number of input channels), The output matrix of depthwise convolution is calculated as follows:

Ôx,y,z,m =
∑

a,b,c,m

K̂a,b,c,mFx+a–1,y+b–1,z+c–1,m

where a, b, c and x, y, z denote the spatial locations of the elements for a depwise convolution kernel of size k × k × k × c. And
then passed through a pointwise convolution (a 1 × 1 × 1 sized convolution kernel that combines the maps of the previous layer
weighted in the direction of depth to generate a new feature map) for feature extraction.

In depthwise 3D convolution, each input channel is processed independently. As illustrated in Figure 2, if the input has 3
channels (denoted as m) and the output has 4 channels (denoted as n), the number of parameters for the conventional convolution
operation is k × k × k × 3 × 4, and the computation cost is k × k × k × 3 × Ho × Wo × So × 4. For the depthwise separable
convolution, the number of parameters required for the operation is k × k × k × 3 × 1 + 1 × 1 × 1 × 3 × 4, and the computation
cost is k × k × k × 1 × Ho × Wo × So × 3 + 1 × 1 × 1 × 3 × Ho × Wo × So × 4.

Compared to the standard 3D-CNN, the depthwise separable convolution reduces the number of parameters to approximately
1/4 and the computation cost to approximately (k3 + 4)/(4 × k3).

3.3 Tripartite-structure Transformer

After extracting the shallow features of hyperspectral imaging (HSI) using depthwise 3D convolution, as described in Section
3.2, the proposed method further learns the relationship between high-level semantic features using the tripartite-structure
transformer module(TST). This module comprises three main components, as shown in Figure 3.
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T A B L E 1 Training and Test sample

NO Indian Pines Pavia University Houston2013
Class Training Test Class Training Test Class Training Test

1 Alfalfa 5 41 Asphalt 332 6299 Healthy grass 125 1126
2 Corn-notill 143 1285 Meadows 932 17717 Stressed grass 125 1129
3 Corn-mintill 83 747 Gravel 105 1994 Synthetic grass 70 627
4 Corn 24 213 Trees 153 2911 Trees 124 1120
5 Grass-pasture 48 435 Painted metal sheets 67 1278 Soil 124 1118
6 Grass-tree 73 657 Bare Soil 251 4778 Water 33 292
7 Grass-pasture-mowed 3 25 Bitumen 67 1263 Residential 127 1141
8 Hay-windrowed 48 430 Self-Blocking Bricks 184 3498 Commercial 124 1120
9 Oats 2 18 Shadows 47 900 Road 125 1127
10 Soybean-notill 97 875 Highway 123 1104
11 Soybean-mintill 245 2210 Railway 123 1112
12 Soybean-clean 59 534 Parking Lot 1 123 1110
13 Wheat 20 185 Parking Lot 2 47 422
14 Woods 126 1139 Tennis Court 43 385
15 Buildings-Grass-Trees-Drives 39 347 Running Track 66 594
16 Stone-Steel-Towers 9 84

Total 1024 9225 Total 2138 40638 Total 1502 13527

The first part of the proposed method extracts the relationship between high-level semantic features from the input feature map
using spatial and spectral correlation extraction. After performing depthwise separable convolution, the HSI is transformed into
a 3D feature map of size H × W × S. We first perform multiple spatial feature extractions followed by a single spectral feature
extraction on the input features. To extract spatial feature relevance, we flatten the input 3D feature map into an S-dimensional
2D spatial vector of size HW and use position embedding to tag the position information of each semantic token. The Spatial
attention module, which is based on multi-head attention, then extracts the spatial relevance of the input feature map using
global information.

For spectral feature relevance extraction, we flatten the input 3D feature map into an HW-dimensional 2D spectral vector of
size S and tag the position of each semantic token using position embedding. We then use the Spectral attention module, also
based on multi-head attention, to extract the spectral feature relevance of the input feature map.

In both the spatial and spectral attention modules, three learnable weight matrices (WQ, WK , WV ) are predefined to learn
multiple meanings. The tokens are linearly mapped into 3-D invariant matrices by these matrices, including the query Q, keys K,
and values V . Attention scores are calculated using all Q and K, and score weights are calculated using the softmax function. In
summary, attention is defined as follows:

Attention (Q, K, V) = soft max
(

QKT
√

dk

)
V

dkis the dimension of Q or K.
The process of mapping query, key, and value to different learnable projections multiple times and then concatenating these

results is known as multi-head attention. In this process, each result of the parallel computation of these attentions is called a head.

MutiHead (Q, K, V) = Concat (head1...headh) WO

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
where h is the number of heads.WO is the parameter matrix. WQ

i ∈ Rdm×dq , WK
i ∈ Rdm×dk , WV

i ∈ Rdm×dv , WO
i ∈ Rdm×dv×h, where

dm is the number of tokens.
The second part of the proposed method is the Reshape and Downsampling module, which reshapes the output features from

the previous layer into cubes of size H × W × S. We also incorporate a pyramid structure into the network as it deepens, inspired
by the PVT architecture. The resolution of the feature map is reduced after reshaping, while the number of channels is doubled.

The third part is the Feed-Forward Network (FFN) module, which performs channel mixing to fully fuse information from
different channels.
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T A B L E 2 Results of Indian Pines classification

IndianPine

Models LSSCM SpectralFormer Vit Hybrid Vit SSF

1 0 77.74 58.38 97.56 1
2 78.67 90.18 74.11 81.48 97.5
3 79.65 92.85 75.00 76.57 98.68
4 91.08 89.26 83.89 66.67 1
5 74.02 93.4 76.33 87.13 97.9
6 91.63 96.36 97.72 97.26 99.66
7 0 86.27 57.63 1 1
8 1 71.84 49.79 93.49 1
9 0 77.84 40.25 66.67 1

10 71.09 1 95.06 86.63 98.3
11 91.67 93.89 83.04 94.66 95.66
12 69.29 76.97 43.33 64.61 98.42
13 27.03 97.78 1 95.68 1
14 96.75 69.23 87.18 97.63 1
15 66 90.9 72.73 91.07 98.21
16 0 1 60.00 79.76 1

OA 81.92 83.37 64.55 88.08 97.91
AA 58.56 87.72 72.15 86.05 99.02
k 79.24 81.14 60.16 86.36 97.57

4 EXPERIMENTS

Experiments are conducted on a server with an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz, 512 GB of memory,and Nvidia
Tesla V100 32 GB graphics card. The proposed model is implemented by using the opensource framework Pytorch 1.7.1.

4.1 Data Description

To verify the validity of our proposed hybrid structure, we use three public datasets: Indian Pines, Pavia University, and Houston
University. The false-color composites and ground truth maps of these three HSIs are presented in Figure 4, Figure 5, Figure 6.

Indian Pines Data: In 1992, the airborne visible/infrared imaging spectrometer (AVIRIS) sensor was captured at the Indian
Pines test site in Indiana, USA to generate the Indian Pines data set. It consists of 145 × 145 pixels, and the uncorrected data
contains 224 spectral bands ranging from 400 nm to 2500 nm. After removing 24 bands covering the absorption region, the
remaining 200 bands are used for 16 land-cover classifications. The false-color and ground-truth maps are shown in Figure 4(a)
and Figure 4(b), respectively.

Pavia University Data: In 2001, the reflective optics system imaging spectrometer (ROSIS) sensor was captured at Pavia
University in Italy to generate the Pavia University dataset. It consists of 610 × 340 pixels, and the uncorrected data contains
115 spectral bands ranging from 430 nm to 860 nm. After removing the 12 noisiest bands, the remaining 103 bands are used in 9
land-cover classifications.The false-color and ground-truth maps are shown in Figure 5(a) and Figure 5(b), respectively.

Houston2013 Data: The Houston dataset was acquired by the ITRES-CASI 1500 sensor at Houston University and its
surrounding area, initially for the 2013 IEEE GRSS Data Fusion Competition. It consists of 3491905 pixels and contains
144 spectral bands ranging from 364 nm to 1046 nm, which were used in 15 land-cover classifications. The false-color and
ground-truth maps are shown in Figure 6(a) and Figure 6(b), respectively.

Table 1 lists the land-cover category names, the number of training samples, and test samples regarding these three datasets.
For the Indian Pines and Houston 2013 dataset, the table indicates that a random 10% of the total sample number was used as
the training set, while the remaining 90% served as the test set. The dataset encompasses various land-cover categories, each
with a specific number of samples for training and testing. Regarding the Pavia University dataset, a slightly different approach
was adopted. Here, a random 5% of the total samples were selected as the training set, and the remaining 95% were designated
as the test set.
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(a) (b) (c)

(d) (e) (f)

F I G U R E 7 Classification maps of the Indian Pines dataset.(a) Ground-truth map. (b) LSSCM. (c) SpectralFormer. (d) Vit. (e) Hybird Vit. (f) SSF.

T A B L E 3 Results of Pavia University classification

Pavia University

Models LSSCM SpectralFormer Vit Hybrid Vit SSF

1 98.87 82.00 81.03 90.98 97.57
2 99.96 71.40 65.30 98.26 98.14
3 94.23 64.68 64.08 69.21 99.28
4 72.11 94.88 87.74 91.34 99.36
5 99.92 99.82 99.01 99.84 1
6 98.95 94.12 94.55 91.73 99.92
7 98.41 85.93 85.11 71.5 1
8 98.31 97.56 84.99 86.76 99.32
9 55.56 92.83 99.12 96.78 1

OA 96.22 80.74 76.45 92.64 98.64
AA 90.7 87.02 84.55 88.49 99.29
k 94.98 75.56 70.26 90.22 98.18

4.2 Implementation Details

We construct three networks with the same contour structure for the three different datasets, differing slightly in their parameters.
Specifically, all three datasets use a cube with a spatial resolution of 27 × 27 as the input sample, and all use AdamW as the
optimizer with a weight_decay of 1e-5. Since IndianPines and Houston are relatively challenging to train, their learning rate is
set to 1e-5, and Pavia According to the cosine annealing strategy, the first 30% of epochs of the three datasets are in the warm-up
stage. The learning rate gradually increases from 10% of the initial learning rate to the initial learning rate. The learning rate is
gradually increased from ten per cent of the initial learning rate to the initial learning rate. Then seventy per cent of the epoch
learning will gradually decrease, and the learning rate is minimized to one per cent of the input learning rate. In the training
process, we set the epoch of Indian Pine to 1200 and the batch size to 64 because of its slow convergence, and the epoch of the
other two datasets to 600 and the batch size to 128. The classification performance of each model is evaluated.
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(a) (b) (c)

(d) (e) (f)

F I G U R E 8 Classification maps of the Pavia University dataset.(a) Ground-truth map.(b) LSSCM. (c) SpectralFormer. (d) Vit. (e) Hybird Vit. (f) SSF.

4.3 Classification Results and Analysis

In this section, we select several representative methods for comparison experiments to demonstrate the effectiveness of our
proposed model. They are LSSCM31, Vit21, SpectralFormer23, and our proposed SSF model. LSSCM is based on convolution,
and Vit and SpectralFormal are based on Transformer; The authors of the corresponding papers provide all models. And we
add simple 3D-CNN modules to the original model of Vit to form Hybrid Structures of the most basic CNN and Transformer,
denoted as Hybrid-Vit. The original Vit representation is performed using the Vit model provided in SpectralFormer. Table 2,
Table 3, Table 4 shows the results of comparing these algorithms on the three datasets.

Table 2 represents the classification results of these algorithms on the Indian Pines dataset. As seen from the table, the
classification accuracy of our method is 97.91%, which is higher than the results of all the other CNN and Transformer variants.
Analyzing the results, we observe that ViT solely focusing on extracting spectral information resulted in the lowest accuracy
among all the methods. This outcome can be attributed to the limited capability of ViT to effectively capture spatial patterns,
which are crucial for accurate HSI classification. SpectralFormer, while an improvement over ViT, still primarily processes
spectral features and failed to deliver satisfactory results. Though LSSCM, an enhanced model based on 2D-CNN, demonstrated
better performance than ViT and SpectralFormer, its accuracy remained unsatisfactory. On the other hand, the Hybrid Vit method,
which combines elements of spatial and spectral information extraction, outperformed ViT, SpectralFormer, and LSSCM,
reinforcing the importance of considering both spatial and spectral features for HSI classification tasks. The comparison between
Transformer and CNN structures indicates that Transformer-based models generally exhibit better results than traditional CNN-
based models. However, the initial ViT approach was not fully suitable for HSI classification. Therefore, we need to customize
Vit according to the characteristics of HSI, such as spectralformer, but HybridVit with a hybrid structure has a better result. And
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 9 Classification maps of the Houston 2013 dataset. (a) Ground-truth map.(b) LSSCM. (c) SpectralFormer. (d) Vit. (e) Hybird Vit. (f) SSF.

T A B L E 4 Results of Houston 2013 classification

Houston 2013

Models LSSCM SpectralFormer Vit Hybrid Vit SSF

1 93.32 84.71 82.24 93.70 99.50
2 91.46 98.68 94.92 93.15 99.80
3 93.58 96.63 99.60 1 1
4 85.63 99.24 99.24 96.41 97.59
5 99.24 99.43 97.06 97.82 1
6 83.27 94.41 99.30 78.18 1
7 95.65 84.33 86.29 98.51 98.13
8 95.46 77.68 50.99 78.92 99.30
9 84.59 86.40 70.63 92.95 98.70
10 99.81 43.24 75.58 98.27 1
11 97.9 79.13 83.49 86.00 99.49
12 97.9 81.84 46.78 88.65 99.39
13 88.44 69.12 58.59 61.81 99.73
14 1 1 92.71 88.15 1
15 85.92 98.94 99.37 94.30 98.11

OA 93.46 84.82 80.51 90.99 99.23
AA 92.81 86.25 82.45 89.39 99.32
k 92.92 83.54 78.87 90.25 99.17

we combined CNN and customize ternary-Vit to achieve the best performance. The classification results of these methods are
shown in Figure 7.

Table 3 shows the classification statistics of the five methods on the Pavia University dataset, and our method beats the other
four algorithms based on three evaluation metrics. However, the classification accuracy of our proposed method for the "Asphalt"
and "Meadows" categories is not as good as that of LSSCM, probably due to the dominance of spatial information in these
two categories, which is not sensitive to spectral information. Some of the information in "Meadows" was misclassified, and
most was incorrectly assigned to "Bare Soil". Despite these challenges, it is essential to highlight that our proposed method
still achieved an impressive overall classification accuracy of 98.64%. This outstanding accuracy demonstrates the strength and
potential of our hybrid model, especially in handling the complexities inherent in HSI data. The classification results of these
methods are shown in Figure 8. The superior performance of our proposed method is evident in the distinct and well-separated
class boundaries, showcasing its ability to effectively capture both spectral and spatial information, thus leading to more accurate
and reliable classification outcomes.
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Table 4 represents the classification results of these algorithms on the Houston 2013 dataset. Due to the dataset’s complexity,
we recognized the need to enhance the training process by increasing the number of training samples, which was set to 15% of
the total samples. This augmentation aimed to provide the algorithms with a more robust and diverse training set, potentially
leading to improved classification accuracy. As expected, with the increase in training samples, the classification accuracy of
many methods demonstrated improvement. However, it is noteworthy that our proposed method consistently outperformed
several other algorithms, showcasing its robustness and effectiveness even in the face of increased complexity. Our method
achieved an outstanding classification accuracy of 99.23%, which speaks to its strong ability to handle the intricate spectral
characteristics and spatial patterns present in the Houston 2013 dataset. In some methods such as SpectralFormer and Vit, some
of the information in "Tennis Court" was misclassified, and most was incorrectly assigned to "Synthetic Grass", and LSSCM
misclassified some of the information in "Stressed Grass" assigned to "Healthy Grass", our proposed method achieved a good
classification of those information, further underlining its ability to discern subtle spectral differences and spatial patterns
crucial for accurate classification. Figure 9 provides a visual representation of the classification results obtained by the various
algorithms. The superiority of our proposed method is evident in the clear and well-defined class boundaries, showcasing its
ability to effectively leverage both spectral and spatial information to achieve highly accurate classifications.

5 CONCLUSIONS

In this paper, we propose a method SSF to improve the performance of HSI classification, which inherits the excellent local
feature extraction capability of ConvNet and the advantages of Vit in handling long-range dependencies and global context
understanding. Unlike the traditional hybrid structure, our structure first extracts the shallow features of HSI by a variant CNN
structure Depthwise separable Convolution, this initial step effectively captures essential local patterns and spatial information
present in the data. And followed by 3 TSTs for deep feature extraction of spectral features and spatial features of the data,
thereby enhancing the representation of rich spectral characteristics and spatial relationships in the data. The model performs
better on all three tasks than other ConvNet, Vit, and hybrid models. In future work, we hope to explore a new Token mixer and
channel mixer combined into a MetaFormer more suitable for HSI classification.
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