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Abstract

In this work, a novel technique to train machine learning models is introduced, which is based on digital simulations of certain

types of quantum systems. This represents a drastic departure from the standard approach which, to these days, is based on

the use of actual physical quantum systems. Thus, to provide a clear context, a proper introduction to the field of quantum

machine learning is first provided. Then, we proceed with a detailed description of our proposed method. To conclude, some

preliminary, yet compelling, results are presented and discussed. Although at a seminal stage, the author firmly believes that

this approach could represent a valid and robust alternative to the way machine learning models are trained today.
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On a quantum inspired approach to train machine
learning models

Jean Michel Sellier∗,∗∗

Abstract—In this work, a novel technique to train machine
learning models is introduced, which is based on digital simu-
lations of certain types of quantum systems. This represents a
drastic departure from the standard approach which, to these
days, is based on the use of actual physical quantum systems.
Thus, to provide a clear context, a proper introduction to the
field of quantum machine learning is first provided. Then, we
proceed with a detailed description of our proposed method. To
conclude, some preliminary, yet compelling, results are presented
and discussed. Although at a seminal stage, the author firmly
believes that this approach could represent a valid and robust
alternative to the way machine learning models are trained today.

Index Terms—Quantum machine learning, Quantum inspired
methods, Machine learning, Quantum computing, Optimization
problems, Artificial neural networks

I. THE NECESSITY FOR QUANTUM INSPIRED MACHINE
LEARNING TECHNIQUES

In 1965, Gordon Moore, co-founder of Intel Corporation,
was asked to contribute to the 55-th anniversary issue of
Electronics magazine with a prediction on the future of the
semiconductor industry over the next ten years. His response
was a brief, yet very influent, article entitled ”Cramming more
components onto integrated circuits” [1]. In that work, Moore
speculated that by 1975 it would be possible to contain as
many as 65, 000 components on a single chip. More generally,
he also predicted that the number of transistors that can be fit
on a computer chip would double every two years. In turn, the
computing power of the average chip would increase accord-
ingly and the cost to produce such device would come down
with time. Moore’s Law was correct and served as a guide
for innovation for over 50 years, helping to create effective
roadmaps in the field of semiconductor devices for decades, a
fact that surprised Moore himself, as mentioned in an interview
in 2015. Historically, the first Intel microprocessor, the Intel
4004, had only 2, 300 transistors while, in 2019, the same
company managed to pack over 100 million transistors in a
square millimeter (the smallest transistors can now reach active
lenghts of around 1nm). Today one can certainly debate on the
validity of Moore’s law but, without any doubt, it is certain that
it will cease to be a sustainable road at some point. In fact,
there are experimental indications to believe that we might
already have reached the physical limitations of silicon based
chips. For instance, in the process of miniaturization, quantum
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effects are now so prominent that, eventually, they prevent the
device to work properly, a problem that has shown to have
no simple solution. A further emerging factor threatening the
future of Moore’s Law is also represented by the growing
costs related to manufacturing. Today semiconductor process
technology is complex, three-dimensional, and devices require
multiple exposures of silicon wafers. Consequently, for either
physical or economical reasons, we have reached, or we are
going to reach soon, a computational plateau in terms of the
number of transistors that one can fit on a single chip. In other
words, we might already be living in the post-Moore’s Law
age, or very close to it, and, without a clear and practical
alternative, engineers can no longer increase the computing
power of chips. As a direct consequence, the increase in
processing power is already slowing down, with no clear sign
that this trend will change anytime soon.

Interesting enough, in spite of the current situation with
the manufacturing of modern semiconductor devices, com-
putational practitioners seem to happily continue to require
immense tasks to be performed, e.g., in the field of machine
learning (ML) with the treatment of huge amounts of data.
Clearly, a solution is required and many believe it could be
provided by the emerging field of quantum machine learning
(QML) [2], coming from the combination of ML and quantum
computing (QC). However, QML comes with its own set
of difficulties as well. For instance, a clear and generally
accepted definition is still to be provided, although it seems
that, today, the vast majority of the community is moving
in one specific direction based on the use of specific and
peculiar physical hardware such as quantum bits, or qubits,
to obtain computational advantages in ML tasks. All sort of
advantages are expected, for instance, execution speedups,
reduction of memory consumption, etc. The problem with
this approach, though, is that practical and reliable quantum
computing hardware is not at reach yet (most likely, not
any time soon) and for good reasons. These conclusions are
supported by experimental facts which are clearly and thor-
oughly described in [2], [3] and, if quantum effects must be
exploited in some way, a different approach might be needed
(at least at this very preliminary stage of this technology).
For instance, some proposed QML algorithms are based on
the use of typical quantum effects such as entanglement,
coherent transport, and tunnelling [2]. Now, it is very well
known that such physical systems are extremely difficult to
maintain in practical experimental settings as they require
(expensive and cumbersome) cryogenic facilities to cool these
systems down close to the absolute zero (i.e., −273.16 Celsius
degrees). Moreover, even supposing that such temperatures
would be easily reachable, it is well-known that decoherence
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eventually enters in the game and destroys the “quantumness”
of the system, rendering it to a classical one (therefore losing
any eventual quantum advantage). If one has to concretely
utilize quantum states to, say, train neural networks, much
more sophisticated technological advancements are going to
be required which will have to be based on less brittle physical
systems [3].

For the reasons depicted above, the main objective of
this paper is to introduce an alternative paradigm which, by
utilizing only off-the-shelf digital technologies, is capable of
providing practical quantum machine learning capabilities.
The solution presented in this work is rather simple, effective,
and does not exploit any physical quantum systems at all. In
more details, the main focus on this method is to train any kind
of artificial neural networks (ANN) to perform predictions
once provided with a certain amount of data (i.e., the data
set).

In practice, in such context, it is always possible to depict a
quantum system which can be simulated on a digital machine
and, consequently, which can train an ANN by simply reaching
its point of minimum energy by evolution in time; in other
words the point of minimum energy reached by the system
after some time represents the solution of the training problem
(i.e., it can final weights and biases of the ANN). In fact,
physical systems always evolve in a way that reduces their
internal energy, a well-known lesson of Physics. The philos-
ophy is, therefore, drastically different: rather than building
physical systems, one simulates such systems. Obviously, to
make simulations fast and useful, we must introduce some sort
of approximation which, in this work, is based on the density
functional theory (DFT), a very well known approach among
computational quantum chemists. As it will be (preliminary)
shown in this work, this actually represents a practical and
realistic way to obtain the quantum state corresponding to the
minimum energy of a system. As a matter of fact, in this
work, we can show that it is possible to train ML models in
practice, in a way that is unprecedented though (to the best
of the author’s knowledge). This, of course, opens the way
towards practical QML in spite of the current lack of quantum
computing devices.

In the next section, we start by showing the explaining
the field of QML, its current status, and what one could
expect from it in a not-too-distant future. We then introduce
our suggested approach which, in this work, we will refer to
as quantum inspired machine learning (QiML). Afterwards,
we present some preliminary, yet compelling, results obtained
by applying QiML to several different ML problems. Some
conclusions are discussed at the end.

II. QUANTUM MACHINE LEARNING

Although a definition of QML is yet to come, broadly
speaking, one could consider it as the point of convergence
between ML and QC, with the hope that this combination can
provide some advantages, e.g., in terms of memory usage,
execution speed, accuracy, etc. Therefore, in the following
sections, we start by introducing the main tenets of both ML
and QC, and discuss their possible combination afterwards.

A. Principles of machine learning

The theory of ML [4] plays an important role in both
artificial intelligence and statistics. In a broad sense, it can be
considered as the discipline which provides computing devices
with the ability to learn without having to be explicitly pro-
grammed. In practice, the input-output relation of a computer
program is derived from a set of training data.

Traditionally, in ML, the term ”learning” is usually divided
into three different classes: supervised, unsupervised and rein-
forcement learning. Being very well documented by others, we
limit this description to a few comments on these approaches:

• Supervised learning is achieved by means of an annotated
dataset {(xi, yi)} for i = 1, . . . , N which, usually, is
provided by a human. Each element xi is called an
input or a feature vector, while yi, the labels, represent
the ground truth utilized by the learning algorithm to
build knowledge. Thus, the main purpose of this class
of approaches is to produce a model that, given an
input vector x, can predict the correct value y. A good
example of application is represented by the task of
pattern recognition.

• Unsupervised learning is obtained by means of a unla-
beled dataset {xi} for i = 1, . . . , N . The main goal for
the methods in this class is to use the data to extract
some meaningful property out of it. Good examples of
applications are provided by clustering, dimensionality
reduction and generative models.

• In reinforcement learning, an agent is immersed in a
given environment which can be probed by performing a
certain set of actions. The agent is rewarded or punished
according to the series of actions it performs. The final
goal of the agent is to learn a policy/strategy which
is considered optimal when it maximizes the expected
average reward.

Although these three classes represent a rich family of
powerful and interesting methods, in this work we focus on
supervised learning problems only. Training phases are often
the most costly part of an ML algorithm and efficient training
methods become especially important when dealing with big
data, which makes it perfect for the approach suggested in this
work.

B. Principles of quantum computing

In a general sense, QC can be considered as the discipline
which tries to harness the dynamics of physical quantum
systems to achieve computational advantages [5]. While many
different paradigms exist, the main one in use is certainly
the gate or qubit paradigm. A foundational concept of such
approach is represented by the quantum bit or, shortly, qubit. In
this context, a bit becomes a physical system with two distinct
states and a qubit can be seen as a quantum system having two
distinct (orthogonal) states. These states are usually labeled as
|0⟩ and |1⟩ (Dirac notation), and a qubit can hold one bit of
information (just as a classical bit) but, also, a superposition
of them, i.e., the state:

a |0⟩+ b |1⟩
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where a and b are two complex numbers. One should note that,
so far in this discussion, no detail on how to physically realize
a qubit is provided. The (input) data is stored in the shape of a
register of qubits and processed by applying an ordered set of
quantum gates which transform the information stored on the
qubits in different ways, depending on the gate applied. The
(output) information is, then, extracted by measuring the state
of each qubit. Again, one should note that no detail is provided
on how these quantum gates are built or on how the extraction
of the final outcome (i.e., measurements) is performed.

From this perspective, one can classify QML algorithms
in four main families depending on the way they store and
process the data. The classification can be: 1) QQ, where
both the data and the way it is processed are of quantum
nature, 2) QC, where the data is stored as a superposition of
states (therefore, quantum) while it is processed by a classical
algorithms, 3) CQ, where the data is stored classically but
processed by some quantum algorithm, and finally 4) CC, i.e.,
both the data and the algorithm are classical [6].

While QC comes with great promises [5], it also is affected
by complex technical issues which need to be solved before
real QC devices, and not just expensive experimental settings,
can come to life. For instance:

• Decoherence: to scale properly, the physical system needs
to be in the total absence of decoherence effects. Without
this hallmark, only a small number of qubits can be built
and effectively utilized in practice.

• Measurements: any measurement performed destroys the
wave function of the quantum system being measured
(a puzzling effect known as the wavefunction collapse).
While measurements are absolutely necessary to probe
the solution embedded in the physical system, an unrea-
sonable number of them might be required to achieve
good accuracy [2].

• Entanglement: it is an extremely complicated state of
matter, difficult to create, and even more difficult to
maintain or process.

Therefore, not all methods proposed in the literature will
eventually see the light since many of them are likely to be
affected by one, or more, of the issues above. A practical
example of what is meant is reported in the next section for
the sake of clarity. For very clear details on these technical
difficulties, the Reader is, once again, invited to read [3].

III. THE QUANTUM RANDOM ACCESS MEMORY

The quantum random access memory (QRAM) is an hy-
pothetical quantum device to store information, suggested in
[7]. In more details, the QRAM is theoretically supposed to
encode information in superposition of states, by storing N d-
dimensional vectors into log(Nd) qubits in O(log(Nd)) 1 time
by making use of the so-called ‘bucket-brigade’ architecture.
However, in practice the number of physical resources needed
to build an actual QRAM scales as O(Nd) [2]. Moreover,
experimental evidences show that:

1The notation O(f(n)) means that the asymptotic scaling of the algorithm
is upper-bounded by a function f(n) of the number n of parameters
characterizing the problem, i.e., the size of the input.

• It is not clear if it has to be error corrected. In the
positive case, though, it has already been shown that an
exponential number of components would be required.

• The number of measurements to reconstruct the solution
can grow exponentially.

• QRAM do not provide any advantage when the data is
not uniformly distributed.

This, in turn, implies that any suggested algorithm based on
the use of QRAM is going to be affected by the same issues
above and, therefore, it is not going to work in practice. This
is the case, for instance, for the HHL method, also known
as quantum linear system algorithm (QLSA) [8]. The QLSA
is an algorithm which is supposed to solve systems of linear
equations such as AX = B with A an N × N real matrix,
X and B two N -dimensional real vectors. The best classical
algorithm known, in practical cases, is the well known QR-
factorization method which solves a system in O(N3) steps.
The QLSA promises to solve linear systems in logarithmic
time instead. In order to obtain the quantum speedup, though,
the following conditions must hold:

• The matrix A must be sparse.
• The classical data must be loaded in quantum superposi-

tions in logarithmic time on the QRAM.
• The output needs an exponentially growing number of

measurements to obtain a reasonable accuracy.

Clearly, these limitations, along with the issues affecting the
QRAM itself, prevent the development and practical use of
such algorithm [2].

We are now ready to introduce our suggested quantum
inspired machine learning method.

IV. QUANTUM INSPIRED MACHINE LEARNING

The solution suggested by the author of this work provides
a different paradigm: to avoid the difficulties connected to
the use of physical quantum systems, simulations of a certain
class of quantum systems, which can be performed on (com-
mercially available) digital computers, are utilized instead. In
practice, given an artificial neural network (ANN) to train on
a certain data set, we can show that it is always possible to
depict a corresponding physical system which can perform the
training process by reaching the point of minimum energy of
the system itself, by a simple evolution in time. In other words,
one exploits the fact that physical systems evolve towards
states which minimize their energy and, then, use these final
states to extract the solution of the training problem, i.e. it
provides the final weights and biases for the initial ANN.

Obviously, not every physical system can be efficiently
simulated on a digital machine and therefore, to reach practical
and reliable training of ANNs, one is forced to introduce some
approximations. In our specific case, it is inspired by the field
of density functional theory (DFT), which is a very well known
theory among computational quantum chemists (see, e.g., [9]
and [10]). In practice, this allows a practical and efficient way
to compute the quantum state corresponding to the minimum
energy of the system. In fact, in this paper, we are able to
show that this approach is capable of training ML models in
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a way that is unprecedented and this despite the current lack
of any actual quantum computing device.

Before proceeding with more technical details, and for the
sake of clarity, the Reader should note that the aim of this work
is not to obtain any quantum advantage in terms of execution
speed or memory usage (as usually promised by many different
works in the field of QC) but it is, instead, to introduce a
novel technique to obtain qualitatively different ML models.
In practice, it is known that QML could, potentially, provide
ML models capable of recognizing novel kind of patterns
(i.e., quantum) which are difficult (or practically impossible)
to recognize by means of classical approaches [11]. The
goal of the training technique presented here is to provide
a practical way to recognize those quantum patterns without
the need of any physical quantum system. To the best of the
author’s knowledge, this is the first time that approximated
digital simulations of quantum systems are proposed as a
practical way to train ANNs. Certainly, this represents an
important departure from the currently explored paradigm of
QML. Consequently, for the sake of clarity, this work does not
suggest the construction or utilization of any physical quantum
computing device.

This approach brings new and relevant advantages in prac-
tical applications:

• Because it utilizes simulated quantum states to train ML
models, it is not affected by any of the issues faced by
the QML community.

• It allows anyone to use commercially accessible comput-
ers to train models in a new qualitatively different way.
The method is utlzable right away, there is no need to
wait for the existence of any quantum computer.

• Although based on digital simulations of quantum sys-
tems, it exploits various quintessential quantum effects
such as, e.g., the tunnelling effect. Current (classical)
methods, usually some variant of the gradient descent
method, can rapidly get stuck into energetic valleys of
the loss function. This issue is completely avoided by
the proposed approach.

In the next following sections, we introduce every detail
required to understand the QiML method. To keep this pre-
sentation clear, thus, we start by introducing the problem of
training ML models as an optimization problem, with a special
focus on ANNs. We then proceed with a quick description of
one of the most common solver for optimization pronlems,
i.e., the gradient descent method. This allows, afterwards, to
introduce its physical interpretation which, in turn, brings to
the mathematical definition of the QiML approach.

A. Training ANN as an optimization problem

We start now by focussing on the problem of training an
artificial neural network, although this does not represent a
limitation of QiML and generalization to train different models
is easily obtained. In this context, an ANN is treated a math-
ematical abstraction of biological neural networks and can be
considered as a collection of connected computing units, or
artificial neurons, which connection strength is represented

by a number known as the weight; the more connections a
network has, the more weights are necessary. In particular,
feedforward ANNs are constituted of layers of neurons which
transfer information from one layer to the next, i.e., from the
input layer to the output layer through one, or more, hidden
layers.

Every neuron in an ANN is characterized by a discriminant
function and an activation function which acts on the discrim-
inant. In more details, if a neuron has a set of inputs x =
(x1, x2, . . . , xn) and a set of weights w = (w1, w2, . . . , wn),
a common choice for the discriminant function is the quantity

z =

N∑
i=1

wixi (1)

(for simplicity we embed the bias of a neuron in the sum
by enforcing the condition x1 = 1). There are plenty of
possible choices for the activation function, usually indicated
as a general (non-linear) function σ = σ(z).

Once the architecture of a network is defined (i.e., the
number of layers, the number of neurons per layer and their
connections, the discriminant and activation functions for each
neuron), it is possible to mathematically express any ANN as
a function of the type below:

y = y(x;w) (2)

with x representing the input, w the set of all weights and y
being an output value computed by the network (the Reader
should note that the variables x and y can be scalars or vectors
depending on the case, and one denotes vectors in bold style
and scalars in italic style respectively; for instance, in the
formula above, x is a vector and y is a scalar).

Thus, provided some sample set (xi; yi), for i = 1, . . . , Ns,
usually called the data set, describing the computational goal
to be achieved by the network, the problem of training an
ANN consists of minimizing some error function, also known
as the loss function, which formally reads:

E = E(y(x;w); (xi; yi)) (3)

and which depends on the whole set of weights. In practice,
this goal is accomplished by looking for the set w∗ which
minimizes the error function E = E(w) (in practical cases, the
error function is represented by an L2 norm of some shape).
Many different algorithms to reach this goal exist, one of the
most popular being the gradient descent method. For the sake
of clarity and completeness, in the following, we introduce its
the main tenets in the context of training ANNs.

B. The gradient descent method

One of the simplest training algorithms is the gradient
descent method, sometimes also known as steepest descent
method. One usually starts with some initial guess for the
weight vector, often random, denoted by w(0). The weights
are then iteratively updated so that, at the n-th step, one moves
in the direction of the negative gradient (i.e., the direction in
which the error decreases), evaluated at w(n):

w(n) = w(n−1) − η∇E(w(n−1)), (4)
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and the gradient is re-evaluated at each step. The parameter η
is called the learning rate, and provided its value is sufficiently
small, one expects that the value of E decreases at each
successive step, eventually leading to a weight vector at which
∇E = 0 is satisfied.

The updating rule above is reminescent of the well-known
Newton second law of Physics:

ma = F (5)

where m is the mass of a particle with acceleration a, and in
the presence of an applied force F which can be written as
the gradient of a potential U = U(x), i.e., F = −∇xU , with
x being the position.

In practice, by knowing that a is the second derivative of
the position x, exploiting the finite difference approach for
derivatives, and by integrating formula (5) with respect to time
in the range [t0, t], one gets:

x = x0 − λ∇U(x0) (6)

with λ = 1/m (t–t0)
2 (the approximation mv =

−
∫ t

t0
∇U(x)dx ≈ −∇U(x)(t − t0) = −∇U(x)∆t has been

introduced, which is a valid assumption for small temporal
ranges). Clearly, formula (6) has the same mathematical shape
of formula (4) utilized to update the weights (and biases) of
ANNs. Consequently, in a broad sense, one could interpretate
the gradient descent method as the simulation of a classical
physical system which evolves in time and which, in turn, re-
duces its internal energy. For instance, it could be interpretated
as a mass point falling in a N -dimensional energetic valley
represented by the error function or, equivalently, as a set of N
one-dimensional mass points each falling in a one-dimensional
energetic valley; the two systems, eventually, have to deal with
the same number of variables (weights to be trained).

In spite of the great success this method has obtained in
many different tasks, it is also affected by certain drawbacks
which are difficult to get rid of. For instance, one of its most
troubling limitations, or any variant of it for that matter, is
represented by the fact that the user is actually forced to
come up with a suitable value for the learning rate parameter
η, without any practical guiding principle at hand i.e., most
often, randomly. Unfortunately, the problems with this method
do not end here. For instance, a good initial guess for the
weights of a specific learning problem is practically unknown
and, in practice, must be set randomly. As a matter of fact, it
is well-knwon by the ML practitioners how this can trigger the
need for numerous tests to be performed eventually (until good
convergence is obtained, essentially). Another well-known
issue is represented by the so-called vanishing gradient. In that
case, the gradient descent method takes many (too) small steps
to reach the minimum and quickly becomes a very inefficient
procedure. Similar comments could be provided for the issue
of the so-called exploding gradient. The author firmly believes
that the approach presented in this work can avoid this sort of
issues.

In the next section, we are now ready to introduce the
quantum counterpart of the gradient descent approach which,

in turn, happens to provide a high-level guideline to understand
our suggested approach.

C. Towards a quantum inspired approach

The convertion of a classical system into its quantum coun-
terpart is usually performed by replacing the time-dependent
classical equation, in our case equ. (6), with its corresponding
Schrödinger equation evolving while keeping the same poten-
tial energy U = U(x) [12]. This equation reads:

ih̄
∂Ψ

∂t
= ĤΨ =

(
− h̄2∇2

2m
+ U(x)

)
Ψ (7)

with h̄ the reduced Planck constant, Ĥ the Hamiltonian of
the system, which is equal to the sum of the kinetic operator
and the applied potential. Therefore, instead of approaching
this problem by means of the gradient descent method, which
in this context roughly corresponds to the simulation of a
classical many-body system, one could alternatively utilize
simulations of corresponding quantum many-body systems.
Consequently, this enables the presence of quantum tunnelling
within a simulation, a phenomenon impossible to mimic in the
context of classical systems (this is well-known, for instance,
in the field of simulations of electrons in relatively semicon-
ductor devices). In turn, tunnelling can (and does) enable a
better search in the space of solutions since it is not affected by
the typical issues of the gradient descent method (e.g., because
of the presence of quantum tunnelling, the search for solutions
will not get stuck locally in a potential valley representing
some non-optimal local minimum).

Therefore, one can safely conclude that, for any given
ANN with N hyper-parameters to be trained, there are N
corresponding Schrödinger equations to be simulated, just like
there are N updating equations in the gradient descent method.
In a broad sense, this is very similar to what one observes in
the simulation of chemical systems which is usually performed
as a set of Kohn-Sham equations coupled through some
potential (in the context of density functional theory, or DFT,
[13], [14]). We describe the way these Schrödinger equations
are concretely coupled in the next sections.

We now proceed with the description of the discretization
scheme used in this work to numerically solve the Schrödinger
equation.

D. The finite-difference time-domain method

The Schrödinger equation described in the previous section
cannot be treated analytically due to the very complicated
shape of the applied potential. Thus, one must recur to
numerical methods to extract its time-dependent solution (i.e.,
the wave function Ψ = Ψ(x, t)). Many methods are nowadays
available, and, for the sake of a complete validation process,
the author of this work has selected the well-known finite-
difference time-domain (FDTD) method (see for example [15])
because of its relative simplicity and accuracy. Obviously,
this choice does not represent a limitation of the method
presented in this paper since other methods could be utilized
equivalently.
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The FDTD method has a long history in the field of
computational electrodynamics, and only recently it has found
use in the simulation of quantum mechanical systems as well.
In more details, in classical FDTD Maxwell equations are
discretized on a grid and solved explicitly using leap-frog
integration in time. Since the FDTD algorithm is explicit
and local, it is relatively straightforward to implement and
parallelize. In turn, applying FDTD to solve the Schrödinger
equation yields to a method that is generally straightforward
to implement and computationally efficient [15]. Although,
non-uniform grids have been utilized for the electrodynamics
FDTD method, which could be used for the Schrödinger
equation as well, we do not use them in this work for the sake
of keeping this presentation as simple as possible (in other
words, it does not represent a limitation for this method).

We now introduce the mathematical details of the FDTD
method applied to the Schrödinger equation. First, the complex
valued wavefunction is split into real and imaginary compo-
nents:

Ψ(x, t) = ΨR(x, t) + iΨI(x, t), (8)

with ΨR and ΨI the real and imaginary part of the wave
function respectively. The Schrödinger equation then becomes
(in a one-dimensional space):

∂ΨR

∂t
= − 1

2m
h̄2∇2ΨI + V (x)ΨI ,

∂ΨI

∂t
= − 1

2m
h̄2∇2ΨR − V (x)ΨR.

(9)

The time derivatives is approximated by using central finite
differences, which provides the discretized evolution equations
[15]. Due to the explicit discretization of the time derivative,
there is an upper bound for the time step for stability which
needs to be ensured and which depends on both the grid cell
size and the maximum absolute value of the potential within
the computational domain. Finally, this evolution method can
be used to solve general time-dependent problems, including
a time-dependent potential.

Although relatively simple, the Reader should note that this
is a very robust and accurate method. As a matter of fact, it has
been utilized to compute very sophisticated quantities such as
the spectrum of atoms and their wave-functions [15]. Having
introduced the tools and ideas needed to build and understand
the method proposed in this document, we can now proceed
with the description of the method itself.

E. Training ANNs by simulating quantum systems

In a previous section, it has been discussed how the problem
of training a given ANN can actually be reduced to the
problem of minimizing a corresponding error or cost function,
which reads E = E(y(x;w); (xi, yi)), and where (xi, yi),
for i = 1, . . . , Ns, represents the data set. In the case of
the gradient descent method, for example, if the ANN has
N hyper-parameters then a set of N corresponding updating
rules or equivalently, evolution equations, must be solved such
as the set of equations (4). Bearing in mind that these are
essentially equations describing classical systems, one can

logically observes that these equations could be replaced by a
set of N Schrödinger equations, such as (7). In other words,
they can be replaced by their quantum counterpart which can
be solved numerically by applying, for instance, the FDTD
method discussed in the previous section.

In practice, the set of N Schrödinger equations (in other
words, the new update rules) reads:

ih̄
∂Ψ1

∂t
=

(
− h̄2

2m

∂2

∂x1
2
+ U(x)

)
Ψ1,

ih̄
∂Ψ2

∂t
=

(
− h̄2

2m

∂2

∂x2
2
+ U(x)

)
Ψ2,

. . .

ih̄
∂ΨN

∂t
=

(
− h̄2

2m

∂2

∂xN
2
+ U(x)

)
ΨN .

(10)

where U = U(x) = U(x1, x2, . . . , xN ). The system described
by these equations can be interprated in physical terms as
an ensemble of N quantum objects, e.g. electrons, which
interact with each other through a given potential provided
by the error function U = U(x1, x2, . . . , xN ) (to be more
precise the potential U = U(x) should be multiplied by
the elementary charge constant q). For completeness, it could
alternatively be interpreted as a single N -dimensional quantum
object (although we do not make use of this fact in this work).

The precise shape of the coupling term U(x) still remains
to be specified. In this work, the way to obtain a precise shape
for it is provided by tailoring well-known techniques coming
from DFT for the training problem at hand. In practice, one
starts from the main problem of DFT, i.e. the simulation of the
many-body Schrödinger equation which represents a daunting
problem (even when approached by numerical techniques).
The issues related to this problem are typically approached
by introducing the so-called Kohn-Sham system which, in
practice, consists of a system of N single-body Schrödinger
equations which are coupled with each other by an exchange-
correlation potential term[14], introduced as a mathematical
approximation of the original problem [9]. Unfortunately, the
exact mathematical shape of this newly introduced potential
is unknown in practice, no general theoretical guidelines can
be provided, and many different approximations are possible
(with pros and cons). The Reader is suggested to read [16]
to have a thorough view on the state of the art and the
reasonings behind. The only prescription provided by DFT is
that exchange-correlation potentials can be made dependent
on the total density of the system only (rather than, for
instance, the full set of wave functions) which allows to depict
physically and chemically meaningful exchange-correlation
terms. More specifically, in this work, a new coupling potential
is proposed but with a different goal in mind (ML) compared
to the main goal of DFT (Chemistry): in practice, we are not
interested in obtaining very accurate simulations of chemical
systems; we are simply interested in obtaining, in some
efficient way, a good enough approximation of the quantum
states so to minimize the given error function (in other words,
the accuracy of this method is focusing on training an ANN,
not on computing accurate chemical quantities which can
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be computationally demanding). Therefore, one can depict
simpler exchange-correlation potentials in this novel task.

In practice, for a Kohn-Sham set of (Schrödinger) equations
issued from chemistry, the coupling for the i-th equation
describing the i-th body, or electron, of the physical system
has the following mathematical shape [9], [10], [14]:

V (xi) = Vext(xi) + Vxc

[
ρ
]
(xi), (11)

where the exchange-correlation potential depends on only one
variable at a time, therefore completely avoiding the problem
of simulating the many-body Schrödinger equation, and where
Vext = Vext(x) is a given external potential. Thus, in our
specific case, we set Vext(x) = 0 everywhere and, then,
introduce the potential below:

U(xi) = U(x̄1, x̄2, . . . , x̄i−1, xi, x̄i+1, . . . , x̄N ), (12)

where the symbols x̄i, for i = 1, . . . , N , represent the average
position of the i-th body, or electron, according to its wave-
function, i.e., in mathematical terms:

x̄i =

∫ LX

0

xΨ2
i (x)dx (13)

with LX being the length of the (one-dimensional) spatial
domain. The reason for such simple choice is quite intuitive.
One observes that the potential being applied to this system
essentially consists of one-dimensional quantum wells. As
such, the one-dimensional quantum body is expected to fall
into, or to be at least localized around, the bottom of those
wells and, consequently, reducing the total energy of the
system (thus providing the desired minimization scheme), until
the final condition U(x̄1, x̄2, . . . , x̄N ) = 0 is met. Obviously,
the potential suggested in (12) is of use for training ANNs only
and would not be of any use if applied to obtain accurate sim-
ulations of actual chemical/physical systems; this is certainly
acceptable since, once again, the purpose of this work is only
to train ANNs (more realistic exchange-correlation potentials
might happen to provide other advantages, but this is presently
out of the scope of this work). Finally, it should be noted that
the system of Kohn-Sham equations (10) coupled by means
of the term (12) provides a simulation problem which can be
tackled by a digital computing machine. In fact, every equation
represents a one-dimensional quantum system which is known
to be easy to simulate on even common personal computers
[15].

It is now possible to list the steps to perform the training
of a given ANN within the context of the tools presented so
far; for every step, comments are added for the sake of clarity
and completeness:

• An artificial neural network is specified along with a
dataset and its corresponding error function, with N
hyper-parameters to be computed to reduce the error (or,
equivalently, the energy of the system). These N hyper-
parameters are represented by the N average positions of
the N wave functions described in the steps below.

• A one-dimensional spatial domain is specified by the
user by means of its length LX . Other hyper-parameters
are defined as well, more specifically the number of
spatial cells NX , a time step ∆t, along with a maximum

number of steps to run ITMAX. Finally, a value RMAX is
specified which represents the numerical range in which
to look for the ANN weights and biases, i.e. [-RMAX,
+RMAX].

• N wave-functions Ψi are prepared in the same initial
conditions corresponding to a quantum object which
average position is equal to LX/2. In practice, this is
a Gaussian wave function with mean value in x = LX/2
and dispersion σ = LX/5. The boundary conditions for
such wave functions are 0 at x = 0 and x = LX . This
applies during the whole simulation of such quantum
objects.

• Then a main loop over the number of time steps ITMAX
is started. In this loop, several operations are performed,
among which: a) the computation of the current average
position for every wave function of the system, b) the
computation of the applied potential for every wave
function of the system, and c) the evolution of every wave
function by means of the FDTD method. During this
time dependent evolution, the total energy of the system,
represented by the quantity U = U(x̄1, x̄2, . . . , x̄N ), can
increase or decrease (since the exploration of the solution
space is quantum or, in other words, ergodic). Thus, the
best solution found, corresponding to the average position
(x̄1, x̄2, . . . , x̄N ) which minimally reduce the potential
(or, equivalently, the error function) U , is recorded for
future use. It is important to note that, during this
simulation, tunnelling effects will facilitate the search for
the best solution (just like it would happen, for instance,
in the simulated quantum annealing approach).

• The final best solution is then utilized to set the weights
and biases of the given ANN and to perform inferences.

In the next section we present a number of validation tests
which have been performed to validate the QiML approach
along with a discussion on the results obtained.

V. NUMERICAL VALIDATION

In order to numerically validate the approach suggested
in these pages, several validation tests have been performed.
Some of them are quite preliminary although very compelling.
The tests selected are: 1) the curve fitting problem, 2) the
reduced MNIST test, 3) the standard MNIST test and, finally,
4) a real life use case coming from the field of telecommunica-
tions. The reason for such selection is actually quite simple: 1)
the curve fitting is a quintessential test in ML which, in spite
of its simplicity, embed the tenets of a proper ML problem [4];
2) the reduced MNIST provides a way to test generalization
capabilities of training methods; 3) the MNIST and CIFAR-
10 data sets are considered standard tests to assess a training
method and/or a ML model; and 4) the telecommunication
data set because it is constituted of realistic measurements.
All these problems comes from both families of regression
and classification problems.

For every test shown in this section, the activation function
for the neurons in the hidden layers is represented by the
hyperbolic tangent while the output activation function is
either the softmax function or the identity function, depending
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on if the problem involves classifications or regressions. The
hyperparameters for the simulation of the quantum systems
are LX = 10 nm (total length of the physical one-dimensional
domain), NX = 5000 (where NX is the number of cells for
the spatial discretization), ∆T = 0.1 femtoseconds (simulation
time step), ϵQ = 1.e−3 (the simulation stops when the energy
is below this value), and Rmax = 2.75 (all weights are in the
range ]−Rmax; +Rmax[). When applicable, every network has
been trained in (random) batches with 128 samples per batch.
The architectures utilized for the various tests performed are
described in the subsequent sections.

A. The first test: curve fitting

This first test focuses on the curve fitting problem which
represents a quintessential problem of ML [4]. In fact, many
of the relevant issues concerning the applications of ANNs
can be introduced in this very simple context. In practice,
this problem consists in finding the parameters (weights and
biases) of an ANN such that it fits a function described through
a finite set of points.

In more details, two different kinds of neural networks have
been trained to fit two different functions, i.e., f(x) = x2

and f(x) =
√
(x), for x equal to 0.15, 0.60, and 0.80.

These are used as the training set while the solution found
is validated for the values x = 0.30 and x = 0.70. No pre-
processing transform, such as normalization, etc., is applied.
First, a mainstream ANN with one hidden layer is trained
on these two sets of points (one set at a time). The network
has one input neuron, 5 neurons in the hidden layer and,
finally, one output neuron. All neurons are connected in a fully
connected feedforward topology. The QiML method is then
utilized for the training phase (which coincides with the fitting
problem at hand). Furthermore, to show that QiML is agnostic
to the model in use, a neural network made of spiking artificial
neurons [17], or spiking neural network (SNN), is trained in
exactly the same way on the same sets of points. Even in this
case, the architecture is the same as before, i.e., one input
neuron, 5 hidden neurons and one output neuron, with the
only (important) difference that now neurons do not implement
any activation function but, rather, they take a train of spikes
as input and provide a train of spikes as output. The way
these trains are computed is based on the well-known leaky-
integrate-fire (LIF) model and any real number is encoded in
a train of spikes through the frequency, or rate, of the spikes
themselves [17].

In both cases, convergence using the QiML method is
reached on the two different datasets. Furthermore, for the
sake of comparisons, the same networks have been retrained
with the gradient descent method on exactly the same data.
The final learning curves are shown in Figs. 1 and 2. In
more details, Fig. 1 shows the evolution of the ANN cost
function w.r.t. time (i.e., in simulation steps or iterations,
depending on the method), while Fig. 2 refers to the function
f(x) =

√
(x). Similar results are obtained for the SNN (not

reported for a lack of space). From these plots, it is quite
evident how the QiML method decreases more rapidly than
the gradient descent method. This seems to be a characteristic

Fig. 1: Results for the curve fitting problem with ANNs for
the function f(x) = x2. Top: learning curve obtained using
the gradient descent method. Bottom: learning curve obtained
using the QiML method. Both: clearly, the two approaches
explore the space of solutions in drastically different ways.
Also, the QiML method seems to converge rapidly at the very
beginning of the search.

of the method, since it has been consistently observed in other
(different) tests as well. Finally, the Reader should note that
the numerical experiments performed in this paper make use
of multi-core CPUs only.

B. The second test: reduced MNIST

The purpose of this test, in reality a simple preliminary ex-
ploration, is to compare QiML and gradient descent in terms of
generalization capabilities. It is based on the Modified National
Institute of Standards and Technology (MNIST) data set which
is a large database of handwritten digits. It is commonly used
for training various image processing systems and also widely
used for training and testing in ML. Specifically, it contains
60, 000 training images (resolution 28x28) and 10, 000 testing
images [18].

Usually, in the field of ML, large and complex data sets are
of high interest since real life applications rely on them. From
a scientific perspective, though, small and simple data sets can
be equally important since they provide a way towards training
machines using only a small number of samples. In fact, it
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Fig. 2: Results for the curve fitting problem with ANNs for
the function f(x) =

√
(x). Top: learning curve obtained using

the gradient descent method. Bottom: learning curve for the
QiML method. Both: the two approaches, once again, explore
the space of solutions in drastically different ways.

is well known that biological intelligence does not require
to process the whole set of 60, 000 samples to recognize a
handwritten digit. Therefore, tests with just a few samples
can reveal both theoretical and applicative interesting insights.
In particular, one trains an ANN using a tiny subset of the
original MNIST data set, called reduced MNIST and denoted
by RMNIST. The subset RMNIST/N , with N an integer
number, is defined as the set which contains N samples of
every digit. Thus, it contains N × 10 elements in total. For
instance, the set RMNIST/1 contains 1 sample per digit, i.e.
10 samples, the set RMNIST/4 contains 4 samples per digit,
i.e. 40 samples, etc. Similarly, one can introduce the extended
version of the subset RMNIST/N , indicated by MNIST/N -ext,
and which contains the same elements of RMNIST/N plus
a translation of every single element in the fourth direction
(north, south, east and west) by 1 pixel. This allows a simple
and natural extension of the original data set since a digit
translated in one direction by one pixel is, obviously, still the
same digit.

Both QiML and gradient descent are utilized for the train-
ing. In more details, the ANN consists of 784 input neurons
(i.e., 28 × 28 pixels), 15 neurons in the hidden layer, with
hyperbolic tangent, and 10 output neurons on which the

test GD valid. err. QiML valid. err.
RMNIST/1 0.59 0.47
RMNIST/4 0.36 0.29

RMNIST/1-ext 0.44 0.33
RMNIST/4-ext 0.19 0.15

TABLE I: Tests performed with reduced MNIST data sets
RMNIST/1 and RMNIST/4 and their extended version as well.
These results provide an indication that QiML might be able
to generalize further than the gradient descent method.

architecture GD + ReLU QiML + SiLU
784− 300− 10 4.7 3.98
784− 1000− 10 3.8 3.06

TABLE II: Validation error for the standard MNIST test.

softmax function is applied. The training phase is very simple
and consists of using the sets RMNIST/N and RMNIST/N -
ext, with N = 1 and N = 4 until the best convergence is
reached. The sets RMNIST/1, RMNIST/4, RMNIST/1-ext and
RMNIST/4-ext are utilized for the training part while 10, 000
samples of the original MNIST data set are utilized for the
validation part. The final results are shown in table I. Although
one should consider this a very preliminary test, it seems to
indicate that the QiML method could provide some advantages
in terms of generalization capabilities.

C. The third test: standard MNIST

pre-processing: normalization, etc. architecture: ANN, num-
ber of hidden layers, etc.

Talk about convergence even before visiting a full epoch!!!!
The test described in this section is considered a de-facto

standard in the field of ML to validate novel approaches. We
now utilize the whole MNIST data set [18], described above,
and train an ANN to recognize handwritten digits. As usual,
the data is plit in two subsets, one for training purposes con-
sisting of 50, 000 samples, and one for validation purposes and
consisting of 10, 000 samples. Finally, the value for every pixel
is rescaled so to be in the range [0, 1]. Two architectures for the
network are tested which consists of 1) 784 (784 = 28× 28)
input neurons, 300 hidden neurons, 10 output neurons (for
softmax operations), and 2) 784 input neurons, 1000 hidden
neurons and 10 output neurons respectively. The activation
function in the hidden layer is the Sigmoid Linear Unit (SiLU)
function which reads:

S(x) =
x

1 + e−x
.

The outcomes of these numerical experiments are reported in
table II and, for a fair comparison (the Reader should bear in
mind that the QiML method is still in its infancy), the results
published in [19] are reported as well for two networks with
Rectified Linear Units (ReLU).

D. The fourth test: telecommunication use case

This final test involves the use of a real life data set coming
from the field of telecommunications. Due to the nature of
the data utilized, its specific details cannot be fully described
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architecture method train. err. valid. err.
26− 2− 2− 1 GD 0.024 0.024
26− 2− 2− 1 QiML 0.023 0.024

26− 2− 2− 2− 2− 1 GD 0.022 0.023
26− 2− 2− 2− 2− 1 QiML 0.023 0.023

26− 2− 2− 2− 2− 2− 2− 1 GD 0.022 0.023
26− 2− 2− 2− 2− 2− 2− 1 QiML 0.017 0.020

TABLE III

but it suffices to know that it consists of 420, 000 samples
made of 26 features each. The goal is to predict one value
corresponding to the 26 features at hand. The architectures
tested consist of 26 input neurons, 2, 4 and 6 hidden layers
(respectively ) with 2 neurons each (hyperbolic tangent), and
1 output neuron. These tests have been performed with both
QiML, in its infancy, and a gradient descent technique. The
results, for comparison purposes, are reported in III where
one clearly sees how the QiML is capable of providing good
results although relatively recent.

VI. CONCLUSIONS AND FUTURE WORKS

The last decade has seen an increase of interest in the
field of quantum ML. The decoherence-free approaches being
explored today, such as QRAM, still face important technical
issues and it is not clear when in the future these issues will
be solved [3]. The QiML approach proposed in this work is
certainly still in its infancy but it is already showing that it is
possible to train ANNs by means of simple digital simulations
of a certain class of quantum systems (i.e., electrostatically
coupled one-dimensional electrons), as shown in the tests
presented above. Certainly this approach can (and will) be
improved in many different ways; in this article we have
restricted ourselves to a proof of concept. For instance, some
improvement could be obtained by:

• introducing LDA-type of exchange-correlation terms,
• introduction different techniques in the simulation of the

Schrödinger equation,
and this will be the subject of further works. Once again, the
choices made in this document are not limitations but they
have been selected only for the purpose of simplifying the
discussion.

Although more tests are certainly required (and will be
performed) in the future, the following conclusions can be
already drawn:

• During the various numerical experiments performed, it
has been observed that some sort of mechanism for the er-
godic exploration of the space of hyper-parameters seems
to be taking place. In particular, the results obtained show
that the final result does not depend on the initial guesses
of the weights. Clearly, this is of extreme importance
for ML practictioners since, in this way, one completely
avoids the (time and resource consuming) typical cycle
of trial-and-errors to find the best trained ANN, which,
for classical methods, depends on the initial guesses.

• It can be easily shown that the QiML method scales
linearly with the complexity of the problem at hand.
In fact, it is an embarassingly parallelizable approach

(various levels of linear parallelization schemes can be
easily introduced in the system (10)). This can be of rel-
evance for big models which, necessarily, require parallel
computing devices.

• The QiML approach is model agnostic. In fact, we have
been able to train ML models beyond the usual ANNs.
For instance, it is possible to train spiking neural networks
which can have recurrent connections. This could be of
extreme importance for future models which could use
different types of artificial neurons.

The author firmly believes that this work can pave the
way towards a different and, possibly, better kind of machine
learning approach.
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