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Abstract

Microevolutionary processes shape adaptive responses to heterogeneous environments, where these effects vary both among and

within species. However, the degree to which signatures of adaptation to environmental drivers can be detected based on spatial

scale and genomic marker remains largely unknown. We studied signatures of local adaptation across different spatial extents,

investigating complementary types of genomic variants–single nucleotide polymorphisms (SNPs) and polymorphic transposable

elements (TEs)–in populations of the alpine model plant species Arabis alpina. We coupled high-resolution (0.5m) environmental

factors, derived from remote sensing digital elevation models, with whole-genome sequenced data of 304 individuals across four

populations. We demonstrate that responses of A. alpina to similar amounts of abiotic variation are largely governed by local

evolutionary processes and find minimally overlapping signatures of local adaptation between SNPs and polymorphic TEs.

Notably, functional annotations of high-impact genomic variants revealed several defence-related genes associated with the

abiotic factors studied, which could indicate indirect selective pressure of biotic agents. Our results highlight the importance

of considering different spatial extents and types of genomic polymorphisms when searching for signatures of adaptation to

environmental variation. Such insights provide key information on microevolutionary processes and could guide management

decisions to mitigate negative impacts of climate change on alpine plant populations.
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Abstract 27 

Microevolutionary processes shape adaptive responses to heterogeneous 28 

environments, where these effects vary both among and within species. However, it 29 

remains largely unknown to which degree signatures of adaptation to environmental 30 

drivers can be detected based on the choice of spatial scale and genomic marker. We 31 

studied signatures of local adaptation across different levels of spatial extents, 32 

investigating complementary types of genomic variants–single nucleotide 33 

polymorphisms (SNPs) and polymorphic transposable elements (TEs)–in populations 34 

of the alpine model plant species Arabis alpina. We coupled environmental factors, 35 

derived from remote sensing digital elevation models at very high resolution (0.5m), 36 

with whole-genome sequencing data of 304 individuals across four populations. We 37 

demonstrate that responses of A. alpina to similar amounts of abiotic variation are 38 

largely governed by local evolutionary processes, and we find minimally overlapping 39 

signatures of local adaptation between SNPs and polymorphic TEs. Notably, 40 

functional annotations of high-impact genomic variants revealed several defence-41 

related genes associated with the abiotic factors studied, which could indicate 42 

indirect selective pressure of biotic agents. Our results highlight the importance of 43 

considering different spatial extents and types of genomic polymorphisms when 44 

searching for signatures of adaptation to environmental variation. Such insights 45 

provide key information on microevolutionary processes and could guide 46 

management decisions to mitigate negative impacts of climate change on alpine plant 47 

populations. 48 

 49 

Key words: Arabis alpina, genomic variation, genotype–environment associations, 50 

high-resolution environmental variation, local adaptation, remote sensing  51 
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Introduction 52 

Local adaptation enables populations to evolve traits that confer a fitness advantage 53 

in their respective habitats (Kawecki & Ebert, 2004). Genomic variation may reveal 54 

signatures of such adaptive processes, but identifying the underlying environmental 55 

drivers and relevant spatial scale remains challenging (Savolainen et al., 2013). To 56 

improve our understanding of traits under selection and their underlying functional 57 

processes, one may decipher the imprints of local adaptation based on whole-58 

genome patterns of variation. However, to our knowledge, fine-grained sampling of 59 

individuals and environmental data, at a resolution matching genomic variation, has 60 

never been used to assess environmental drivers of adaptation. 61 

Studies investigating local adaptation often cover broad spatial extents 62 

(commonly referred to as scales), involving continent-wide sampling for example 63 

(Gougherty et al., 2021; Pais et al., 2017; Yeaman et al., 2016), but see (de 64 

Villemereuil et al., 2018; Eckert et al., 2015; Fischer et al., 2013). However, adaptation 65 

can be truly local (Rellstab et al., 2017), particularly in highly heterogeneous alpine 66 

landscapes where environmental conditions vary over short distances (Rellstab et al., 67 

2020). 68 

In their local study on the alpine Brassicaceae Biscutella laevigata, Leempoel 69 

et al. (2018) highlight the importance of considering the ratio between grain (spatial 70 

resolution) and extent of a study area to assess signatures of adaptation, which 71 

should match the spatial context at which selection operates (Dauphin et al., 2023). 72 

In rugged alpine terrain, an organism’s habitat can be adequately described using 73 

ecological data derived from digital elevation models (DEM; Kozak et al., 2008), which 74 

correlate significantly with climatic factors measured using ground-based sensors 75 

(Leempoel et al., 2015)(Pradervand et al., 2014). Such topography-derived 76 

environmental descriptors provide continuous information across habitats, reflecting 77 

long-term patterns of local site conditions, as compared to point-based 78 

measurements acquired on-site or interpolated from local weather stations, which 79 

provide short-term and often patchy environmental information.  80 

Whole-genome studies of adaptation in natural plant populations mostly 81 

remain restricted to model organisms like Arabidopsis thaliana (Exposito-Alonso et 82 
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al., 2018; Fournier-Level et al., 2011; Hancock et al., 2011) or crop wild relatives (e.g., 83 

Yoder et al., 2014). Additionally, they are often based on pooled sequencing (Fischer 84 

et al., 2013; Rellstab et al., 2020; Turner et al., 2010), or only consider a few 85 

individuals that do not necessarily represent the local populations (Laenen et al., 86 

2018). Moreover, structural variants, often involved in adaptation beyond what can 87 

be captured by commonly analysed single-nucleotide polymorphisms (SNPs), have 88 

been largely ignored in these studies. Transposable elements (TEs), for example, 89 

represent a major fraction of many plant genomes (Bennetzen & Wang, 2014; 90 

Quesneville, 2020) and are known to induce adaptive responses to abiotic stress 91 

(Baduel et al., 2021; Kalendar et al., 2000), yet have remained largely overlooked in 92 

studies of local adaptation. Indeed, biallelic SNPs and TEs are expected to have 93 

complementary effects on the adaptive responses of plants to local conditions. For 94 

example, polymorphic TEs are known to affect recombination along chromosomes, 95 

such that they may promote entire blocks of linked loci to reveal signatures of 96 

selection along chromosomes (Choudhury et al., 2019), while genomic variation in 97 

non-synonymous SNPs may induce rather subtle changes in the respective proteins. 98 

Therefore, it is expected that these marker types identify few common, but rather 99 

complementary signals of local adaptation. 100 

It is commonly assumed that similar environmental contrasts across sites 101 

leave consistent signatures of selection in plants with a common genomic background 102 

(Booker et al., 2021; Lotterhos & Whitlock, 2015) (Rellstab et al., 2020). However, for 103 

populations with limited gene flow, particularly in species with mixed mating systems 104 

or selfing, one may expect population-specific adaptive responses with limited 105 

convergence (Rellstab et al., 2017; 2020). 106 

Arabis alpina (Brassicaceae) has recently emerged as a model species for 107 

ecological genomics (Wötzel et al., 2022). Studies have provided empirical evidence 108 

of how local adaptation acts on the species’ genome (Laenen et al., 2018; Lobréaux & 109 

Miquel, 2020; e.g., Poncet et al., 2010), with notable effects on phenotypes (Chopra 110 

et al., 2019; de Villemereuil et al., 2018; Vayssières et al., 2020; Wang et al., 2009). As 111 

detailed in (Wötzel et al., 2022), several field studies, including reciprocal transplant 112 

experiments, substantiate the potential of A. alpina to adapt on small spatial scales, 113 

e.g., in response to elevational differences (Buckley et al., 2019; de Villemereuil et al., 114 
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2018; Wingler et al., 2015). Due to this species’ responsiveness to environmental 115 

conditions, and the availability of a high-quality reference genome, it is an intriguing 116 

organism to further investigate whether signatures of selection to fine-scale 117 

environmental drivers are found across the whole genome. 118 

Here, we re-sequenced 304 individuals of A. alpina, sampled in local 119 

populations with a common history, using a spatially explicit, hierarchical design 120 

(individuals in plots nested within four local populations, Figures 1 and 2). We 121 

computed the environmental factors at a very high resolution (0.5 m) to describe the 122 

local habitat for each individual. Through associations with genomic variation, we 123 

inferred drivers of local adaptation (i) at the regional level, i.e., among the four local 124 

populations, and (ii) at the local level, i.e., among plots within each local population. 125 

In parallel, we performed outlier detection analyses to identify possible genomic 126 

signatures of local adaptation irrespective of underlying environmental drivers. We 127 

focused on whether signals of adaptation between regional and local spatial extents, 128 

as well as between types of genomic markers (SNPs vs. TEs), show common or 129 

different patterns and functions, and to what degree patterns of local adaptation are 130 

driven by particular environmental factors at different spatial extents. 131 

Materials and Methods 132 

Study species and sampling 133 

Arabis alpina L. has a broad ecological niche covering a large altitudinal and 134 

latitudinal range, making it suitable for investigating adaptation to variation across 135 

heterogeneous environments (Wötzel et al., 2022). This perennial Brassicaceae is 136 

found throughout the Northern Hemisphere, predominantly on calcareous bedrock. 137 

In the European Alps, A. alpina is found across an elevation range of 400 m to 3200 m 138 

a.s.l. This species reproduces sexually, predominantly via selfing (Ansell et al., 2008; 139 

Buehler et al., 2012; Laenen et al., 2018; Tedder et al., 2011), though outcrossing 140 

populations can be found in parts of its range (e.g., Ansell et al., 2008; Tedder et al., 141 

2011). SNP-based estimates of individual inbreeding coefficients (F), as well as 142 

positive FIS values for both SNPs and polymorphic TEs, suggest substantial inbreeding 143 
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in the studied populations, likely due to extensive selfing (Choudhury et al., 2019; 144 

Rogivue et al., 2019b). 145 

We sampled four local populations of A. alpina from the western Swiss Alps in 146 

summer 2014 (Figure 1 and 2), from temperate alpine climates with generally 147 

abundant rain and snowfall (Drake et al., 2006). Individuals were sampled 148 

predominantly from calcareous bedrock in the alpine vegetation zone above 2000 m 149 

a.s.l. in the regions Para (N = 69), Pierredar (N = 69), Essets (N = 70) and Martinets 150 

(N = 96) (Table S1; see also Rogivue et al., 2019b). The four studied populations are 151 

considered descendants from the same refugial population and share a similar 152 

genomic background (Rogivue et al., 2018). Each population is situated within a 153 

different catchment valley (Figure 1a), presumably preventing regular gene flow 154 

between these populations. However, mating within each population can occur over 155 

large distances, as insects may transport pollen up to 1 km (Buehler et al., 2012) and 156 

their small, light seeds can be disseminated by wind. Within each population, we 157 

selected ten plots from contrasting habitat types to encompass large ecological 158 

gradients, within which we sampled the leaves of six to ten plants at least 1 m apart 159 

to avoid sampling families (Figure 1 and Table S1). We stored the samples in silica gel 160 

and extracted DNA as described elsewhere (Rogivue et al., 2019b). The precise 161 

geographic coordinates of each individual (± 2 cm) were obtained with a differential 162 

global positioning system (DGPS) receiver, using information provided by Real Time 163 

Kinematik (RTK) Global Navigation Satellite System (GNSS) (Table S1). 164 

 165 

Environmental factors 166 

Using SAGA GIS (Conrad et al., 2015), we computed 13 topography-derived 167 

environmental factors (Table S2) from a precise and high-resolution DEM at 0.5 m 168 

pixel resolution, based on light detection and ranging (LiDAR) data obtained from the 169 

regional authorities (Canton Vaud, Switzerland). These topographic factors are known 170 

proxies for ecologically relevant descriptors, including elevation (and therefore 171 

temperature), climate, hydrology, soil conditions, light availability and exposure 172 

(Guillaume et al., 2021; Lecours et al., 2017; Leempoel et al., 2015; Wilson & Gallant, 173 

2000). 174 
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Primary terrain attributes including slope, aspect as northness (AspC – cosine 175 

of aspect) and eastness (AspS – sine of aspect), and curvature are often used in 176 

species distribution models at local and regional scales, as they underlie multiple 177 

biophysical processes (such as water flow, snow movement, erosion and solar 178 

radiation (Guisan & Zimmermann, 2000; Lyon et al., 2008; Moore et al., 1991). Slope 179 

(Slo) describes the steepness of the terrain and aspect describes its orientation. Both 180 

are good proxies for solar radiation and temperature, especially when the 181 

surrounding relief is of minor importance (Leempoel et al., 2015). Horizontal 182 

curvature (Hcu) affects the convergence and the divergence of the water flow, while 183 

vertical curvature (Vcu) describes the acceleration and the deceleration of the water 184 

flow (Wilson & Gallant, 2000). 185 

Over the last two decades, more elaborate secondary terrain attributes have 186 

been developed as proxies to model specific biophysical features. Vector ruggedness 187 

measure (VRM) describes the degree of terrain unevenness and distinguishes 188 

between rocky and smooth terrain (Sappington et al., 2007). This descriptor 189 

correlates with soil moisture and is a surrogate for stony soil in the western Alps 190 

(Leempoel et al., 2015). Positive topographic openness (TOP) and negative 191 

topographic openness (TON) express the protection of a focal point from the 192 

surrounding relief (Yokoyama et al., 2002). These factors are based on the maximum 193 

angle found at the zenith (TOP) or nadir (TON) from the point over a defined radius. 194 

By describing the terrain convexities and concavities, these two factors reflect soil 195 

drainage as well as protection from wind (Doneus, 2013). 196 

Other factors have been designed to specifically model hydrological 197 

processes. The downslope distance gradient (DDG) quantifies the influence of slope 198 

on local water drainage (Hjerdt et al., 2004). The topographic wetness index (TWI) 199 

quantifies the topographic control of hydrological processes and is formulated as the 200 

logarithm of the ratio between the catchment area and the tangent of slope. It has 201 

been used to predict soil pH, snow cover and ambient humidity (Beven & Kirkby, 202 

1979; Böhner & Selige, 2006), where negative values were correlated with mean and 203 

minimum air temperature, while positive values were correlated with the daily range 204 

of air temperature (Leempoel et al., 2015). 205 
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Light availability and temperature can be described by secondary terrain 206 

attributes that account for surrounding terrain. The sky view factor (SVF) expresses 207 

the ratio of the radiation received by a planar surface to the radiation emitted by the 208 

entire hemispheric environment (Böhner & Antonić, 2009), such that SVF proxies for 209 

water and light availability. At a microclimatic level, SVF also describes wind 210 

protection. Finally, total insolation (Ti6, direct and diffuse radiation) and direct solar 211 

insolation in the growing month of June (Di6, direct radiation) account for sun angle, 212 

surrounding relief and the SVF. DEM-derived solar radiation is a direct proxy for light 213 

availability affecting photosynthesis rates and indirectly accounts for air and soil 214 

temperature, influencing evapotranspiration, snow melt and soil moisture (Tovar-215 

Pescador et al., 2006). 216 

As environmental factors often covary, we applied Spearman correlation tests 217 

to pairs of factors and retained only one factor of the pair if Spearman’s ρ > |0.8|. 218 

Finally, we performed a principal component analysis (PCA) on the retained 12 219 

standardised environmental factors at the locations of the 304 sampled individuals, 220 

using the ‘prcomp’ function in the stats package in R 4.1.0 (R Development Core 221 

Team, 2021). 222 

 223 

Genomic data 224 

We used genomic data described elsewhere (Rogivue et al., 2019a, b), representing 225 

SNPs and polymorphic TEs (presence/absence). In short, we sequenced each 226 

individual with Illumina HiSeq2500 (ATLAS Biolabs GmbH, Berlin, Germany; 125-bp 227 

paired-end reads). After filtering and mapping (BWA 0.7.12; Li & Durbin, 2010) to the 228 

high-quality, chromosome-level reference genome (Jiao et al., 2017), the remaining 229 

reads corresponded to an average coverage of 11.7x. We performed SNP calling with 230 

FreeBayes 1.0.2 (Garrison & Marth, 2012), with 291,396 biallelic SNPs remaining at 231 

the regional extent (across all four sites) after stringent filtering (excluding SNPs 232 

within TE sequences; Rogivue et al., 2019b). At the local extent, the number of SNPs 233 

retained were 220,214 in Essets, 113,900 in Martinets, 287,261 in Para and 160,322 234 

in Pierredar (minor allele frequency < 0.025). To describe the spatial genetic structure 235 

of the sampled individuals, we carried out an analysis of model-based ancestry, 236 
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implemented in the program Admixture (Alexander et al., 2009), on the retained 237 

SNPs at the regional level (N = 291,396) for K = 1–20. 238 

For the TEs, we genotyped presence/absence of polymorphic copies of long 239 

terminal repeat retrotransposons (LTR-RTs) using TEPID (Stuart et al., 2016) and 240 

inferred their zygosity from read coverage at breakpoints to treat them similarly to 241 

SNPs. Of the 20,548 identified polymorphic TEs (Rogivue et al., 2019b), 3,874 loci with 242 

no missing data were retained for subsequent environmental association analyses 243 

and outlier detection. 244 

 245 

Genotype–environment association analyses (GEA) 246 

We performed GEA analyses (Lasky et al., 2022; Rellstab et al., 2015) at two 247 

hierarchical levels (Figure 1): (i) the regional level, i.e., among the four studied 248 

populations; and (ii) the local catchment level, i.e., among plots within each 249 

population. We applied latent factor mixed models (LFMM; Frichot et al., 2013) 250 

implemented in the R package LFMM2 (Caye et al., 2019), a univariate GEA method in 251 

which neutral genetic structure is intrinsically considered. 252 

We used the ‘snmf’ function in the R package LEA to replace the missing 253 

observations (10%) in the SNP dataset with imputed data based on the population 254 

structure from the sNMF analysis (K = 1–10, entropy = T, and 10 repetitions). We then 255 

imputed the data with the ‘impute’ function in LEA, where latent factors (K) were 256 

obtained using the lowest genomic inflation factor (gif) value (method = ‘mode’). 257 

Once the SNP datasets were complete, we ran the LEA function ‘lfmm_ridge’ for 258 

latent factors K = 1–8 for each environmental factor. 259 

We defined the best number of latent factors (K) as the value with the 260 

genomic inflation factor (λ, averaged over the 12 environmental factors) closest to 1 261 

(Table S3), as suggested by Caye et al. (2019). We did not choose a specific K for each 262 

environmental factor, as K has no specific biological meaning. Therefore, for the SNP 263 

dataset at the regional level (i) we used K = 6, and at the local level (ii) we used K = 2 264 

for Essets, K = 3 for Martinets, K = 6 for Para, and K = 2 for Pierredar. For the TE 265 

dataset, we used K = 1 for all analyses. Following Rogivue et al. (2019b), we treated 266 

the two marker types (SNPs and polymorphic TEs) with different K values, reflecting 267 
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the differential patterns of variation observed among populations (e.g., 6% of SNPs 268 

were shared among populations, compared with 90% of polymorphic TEs; SNPs had 269 

higher pairwise FST values (0.09–0.18) than those for polymorphic TEs (0.03–0.09)). 270 

We ran the ‘lfmm_test’ function in LFMM2 (Caye et al., 2019) to calculate the z scores 271 

and p values based on the λ and χ2 distributions. To control for false positives, we 272 

applied the Benjamini-Hochberg algorithm (Benjamini & Hochberg, 1995) with a false 273 

discovery rate (FDR) of 1%. 274 

 275 

Outlier analysis 276 

To complement the GEA analyses, we used BayeScan 2.1 (Foll & Gaggiotti, 2008) to 277 

identify outlier SNPs and polymorphic TEs putatively under divergent selection, i.e., 278 

showing genetic differentiation above that expected for neutral markers. BayeScan is 279 

an FST-based approach that considers differences in allele frequencies between the 280 

common pool and each population. Outlier loci are those resulting from divergent 281 

selection beyond the level of what demographic processes, such as random genetic 282 

drift, may impose in terms of genetic differentiation. 283 

Like with LFMM, we ran BayeScan (i) at the regional level among the four 284 

populations, and (ii) at the local level among plots within each local population. We 285 

converted the SNP and TE datasets from LFMM to BayeScan format using a custom R 286 

script. We defined the prior odd at 100, with 5,000 outputted iterations, a thinning 287 

interval size of 10, 20 pilot runs of length 5,000, and a burn-in of 50,000. We 288 

visualised BayeScan results using Manhattan plots created with the R package qqman 289 

(Turner, 2018). 290 

 291 

GO term enrichment analyses among levels of spatial extent, statistical methods, 292 

and marker types 293 

We characterised the putative functions of candidate loci identified in the above 294 

analyses using the same annotation as in Rogivue et al. (2019b). For simplicity, we 295 

considered only the SNPs with a high impact on their respective protein based on 296 

SnpEff (Cingolani et al., 2012), where high-impact SNPs were those identified as 297 

missense, splice acceptor and splice donor variants, as well as start/stop codon loss 298 
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or gain. For similar reasons, we retained only polymorphic TEs located within 2 kb 299 

upstream or downstream of annotated genes as possibly high-impact due to either 300 

gene disruption or spreading of epigenetic marks lowering gene expression (Hollister 301 

& Gaut, 2009). 302 

We performed a gene ontology (GO) term enrichment analysis of the 303 

significantly associated SNPs and polymorphic TEs with topGO 2.44.0 (Alexa et al., 304 

2006). We established the significance of the terms according to Fisher’s exact tests 305 

(p value cut off at 0.01 and not adjusted for multiple testing, as recommended by the 306 

topGO authors). 307 

We compared the annotated genes and enriched GO terms between 308 

hierarchical levels (regional vs. local extents), statistical methods (GEA vs. outlier 309 

analyses), and marker types (SNPs vs. polymorphic TEs) to identify analogous signals 310 

of adaptation. We searched for common high-impact SNPs and clusters (see below) 311 

among local populations and between levels of spatial extent, which we visualised 312 

using upset plots created with the R package UpSetR (Conway et al., 2017). 313 

 314 

Clusters of loci identified as adaptive 315 

We further compared common clusters of high-impact SNPs across the genome by 316 

defining 6228 blocks of 100 kbp, with a step of 50 kbp. We counted the number of 317 

high-impact SNPs, identified using either LFMM or BayeScan, per block and per 318 

region, where a cluster was assigned if a block or region contained at least two 319 

significant SNPs. We note that we summed all the LFMM-derived high-impact SNPs, 320 

irrespective of their associated environmental factors. 321 

Results 322 

Spatial genetic structure 323 

The 291,396 SNPs retained at the regional level were used to determine the genetic 324 

structure across the studied populations. Using the program Admixture with K = 1–20, 325 

we found substantial genetic differentiation among populations despite the common 326 

genomic background reported in a phylogeographic study across the Alps (Rogivue et 327 

al., 2018). Admixture converged to a minimum cross-validation for 15 clusters, to 328 
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which 60% of individuals could be unambiguously assigned (membership coefficient 329 

> 0.8), whereas admixed individuals were typically found in a single population. All 330 

clusters were well nested within the four populations (3 in Essets, 4 in Martinets, 4 in 331 

Para, 4 in Pierredar) and contained < 4% of the variants originating from other 332 

populations (Figure 1). 333 

 334 

Environmental factors and genotype–environment association (GEA) analysis 335 

We evaluated 13 environmental factors derived from LiDAR-acquired DEMs at 0.5 m 336 

resolution. This spatial resolution matches our sampling grain, i.e., individuals’ sites 337 

within plots (minimum distance between sampled plants > 1 m). Among these 338 

environmental factors, direct insolation in June was highly positively correlated with 339 

total insolation in June (ρ = 0.99; Table S4), so we discarded it to reduce collinearity 340 

between explanatory variables in subsequent analyses. A principal component 341 

analysis (PCA) on the retained 12 environmental factors indicated that the 342 

environmental conditions across the four sampled populations were similar overall, 343 

with the habitat conditions of sampled individuals spanning similar gradients along 344 

the environmental factors considered (Figure S1). This finding substantiates the 345 

reasoning that our sampling scheme provides optimal premises for investigating 346 

convergent signatures of adaptation across populations (Rellstab et al., 2020) based 347 

on genomic and environmental variation. 348 

In GEA analyses (Figure S2), horizontal curvature was most prominently 349 

associated with genomic variation across all analyses, while eastness (with only a few 350 

significant associations) and slope (with none) seemed to be uninformative regarding 351 

signatures of selection (Table 1, Table S5). Notably, the environmental factors with 352 

the largest number of significant associations differed substantially among the local 353 

populations (Table S5). 354 

The specificity of the environmental descriptors in driving local adaptation 355 

was assessed through patterns of interaction between the markers and the 356 

environmental factors. The majority of loci were associated with only one 357 

environmental factor, while up to 32.8% showed an association with multiple 358 

environmental factors in either the regional or local analyses (Figure 3a–e). The 359 
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spatial extent considered in the GEA analyses had a considerable effect on the 360 

number and relative frequency of significant associations per environmental factor; 361 

notably, each local population showed a distinct frequency distribution (Table 1, 362 

Tables S5 and S6). Accordingly, only 260 high-impact SNPs and polymorphic TEs were 363 

found to be significant between the regional and the four local analyses (Figure 2f). 364 

These were located in 209 candidate adaptive genes shared among the two levels of 365 

spatial extent (Figure S3a). Only one gene was identified in all five GEA analyses. 366 

However, no ortholog of this gene is known from A. thaliana and, hence, its function 367 

remains unknown. 368 

For the two marker types, SNPs and polymorphic TEs, we found similar 369 

percentages of loci that were significantly associated with at least one environmental 370 

factor at the regional level: 2.46% of the SNPs and 2.48% of the polymorphic TEs. 371 

Despite such broad variation, only one candidate gene (Aa_G559430), homologous to 372 

the terpenoid cyclase AT3G14490 in A. thaliana, was highlighted by both SNPs and 373 

polymorphic TEs. 374 

 375 

Outlier analysis 376 

At the regional level, BayeScan identified only two outlier SNPs, of which only one 377 

was identified as high-impact. Conversley, between 15 (Essets) and 134 (Martinets) 378 

high-impact SNPs significantly exceeded the neutral expectation at the local level (q 379 

values < 0.1; Figure 4, Figure S4, Table 2, Table S7), though only one SNP was 380 

detected across all local populations. Most of the outlier SNPs identified were tightly 381 

flanked by other SNPs in linkage disequilibrium, which is known to extend across a 382 

considerable physical distance (Rogivue et al., 2019b). Conversley, outlier analyses for 383 

polymorphic TEs showed an inverted trend: few significant outliers were identified at 384 

the local level (between zero in Essets and three in Martinets), while 108 significant 385 

outliers were detected across the regional level (Table 2 and Figure S5). Comparing 386 

the two statistical methods, GEA and outlier analyses, found neither common SNPs 387 

nor genes at the regional level, with a few SNPs detected with both analyses at the 388 

level of local populations (Table 2). 389 

 390 
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GO term enrichment 391 

To substantiate the functional relevance of the loci putatively involved in divergent 392 

selection, we performed tests for gene ontology (GO) term enrichment. We followed 393 

the advice of the authors of topGO and did not apply any correction for multiple 394 

testing to avoid excessive false negatives, at the cost of obtaining false positives. 395 

Accordingly, the results of the enrichment analyses point towards, but do not 396 

necessarily substantiate, genes of interest for being involved in adaptive processes. 397 

Of the 7,180 associated SNPs identified by GEA at the regional level, we found 653 398 

high-impact SNPs across all 12 environmental factors occurring within 519 annotated 399 

genes (Table 1, Table S8), highlighting 42 significantly enriched GO terms (Table S9). 400 

In turn, the 15 polymorphic TEs occurring within 2 kb upstream or downstream of 401 

annotated genes highlighted 11 significantly enriched GO terms (Table 1, Tables S9 402 

and S10). At the local level, high-impact SNPs and genes highlighted 22 significantly 403 

enriched GO terms that were shared among three or four local populations (Figure 404 

S3b). No gene flanking an associated polymorphic TE was identified in Essets or 405 

Pierredar, whereas one was detected in Martinets and 62 in Para (Table S5). GO term 406 

enrichment analyses were not considered for polymorphic TEs, as only a few linked 407 

genes were identified. 408 

At the regional-level, GEA analyses identified only two enriched GO terms 409 

based on more than five genes comprising of at least one high-impact SNP, and these 410 

were therefore considered top candidates (Table 1, highlighted in Table S9): ‘defence 411 

response’ (GO:0006952) and ‘innate immune response’ (GO:0045087). The remaining 412 

40 SNP-based significant GO terms and all 11 TE-based ones indicated a weaker signal 413 

of selection (Table S9). Of the two outliers detected at the regional level, the SNP at 414 

position 145,431 on chromosome 7 is a missense variant located in the gene 415 

Aa_G219310 (orthologous to AT4G38420 in A. thaliana), encoding a ‘copper ion 416 

binding’ protein involved in the oxidation–reduction process (GO:0055114, 417 

http://atgenie.org/transcript?id=AT4G38420.1). The outlier SNP located on 418 

chromosome 8 is a synonymous variant situated in the gene Aa_G499380 419 

(orthologous to AT5G16970 in A. thaliana; Table S11) involved in responses to 420 

oxidative stress; however, as a synonymous SNP it is likely not the locus directly 421 
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under selection, but may be linked to the causative variation (i.e., not captured 422 

possibly for statistical reasons). No GO term analysis was possible because only one 423 

high-impact SNP was annotated (Table 2). 424 

At the local level, few GO terms were classified as top candidates: two in 425 

Essets (‘defence response’ (GO:0006952) and ‘innate immune response’ 426 

(GO:0045087)), one in Martinets (‘protein phosphorylation’ (GO:0006468)), three in 427 

Para (three times ‘protein phosphorylation’ (GO:0006468)), and none in Pierredar 428 

(Tables S5a and S9). Among the 134 identified high-impact outlier SNPs in Martinets 429 

(Table S11), we found two top candidate GO terms: ‘response to oomycetes’ 430 

(GO:0002239) and ‘defence response to fungus, incompatible interaction’ 431 

(GO:0009817); Table S12). The three other regions presented no top candidate GO 432 

terms (Table S12), despite the occurrence of several high-impact outliers (Table S11). 433 

 434 

Common clusters of adaptive loci 435 

We identified 12 common blocks (genomic regions spanning 100 kbp, with a step of 436 

50 kbp) of high-impact SNPs detected by GEA analyses, most of which were shared 437 

between at least two local populations (Figure 5). Only one genomic block was 438 

common among three populations, and two (consecutive) genomic blocks were 439 

shared between all four populations. Based on the outlier loci identified with 440 

BayeScan, we found three common blocks, two of which were consecutive on 441 

chromosome 3, which were common to the same two populations (Essets and 442 

Pierredar) and in common with one population based on LFMM (Pierredar). The 443 

remaining block was shared between Para and Pierredar. These 15 common blocks 444 

comprised 211 significant associations in GEA analyses for 94 SNPs. 445 

Discussion  446 

Investigating the genes and functions that are under selection and identifying the 447 

factors driving selection are essential for understanding local adaptation, particularly 448 

in view of global change. The high-quality and high-resolution genomic and 449 

environmental data now available provide increasing insights into the evolution of 450 

species and how environmental conditions can shape evolution. By assessing genomic 451 
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variation at the whole-genome level at both single nucleotides (SNPs) and TE markers 452 

for 304 individuals, and by characterising each individual’s micro-habitat, we found 453 

that environmental factors describing soil water availability and solar radiation are 454 

important drivers of local adaptation in A. alpina. While we detected loci showing 455 

signals of local adaptation in the genic (high-impact SNPs and polymorphic TEs) and 456 

non-genic (polymorphic TEs near to genes) genome regions, the detected signals 457 

differed substantially among the four local populations, with inconsistencies across 458 

the regional and local spatial extents. These findings highlight the specificity of local 459 

adaptation for populations, despite these populations sharing a common genomic 460 

background and experiencing similar environmental conditions (Fig. S1; Rogivue et 461 

al., 2018). Such truly local responses to abiotic environmental cues may reflect in part 462 

the high frequency of selfing observed in Alpine populations of A. alpina (Buehler et 463 

al., 2012; Tedder et al., 2011), which could reinforce genomic imprints of local 464 

adaptation once they have become established (Trickovic & Glémin, 2022). This 465 

finding provides evidence that convergent signatures of selection, even within closely 466 

situated populations of a given species, may only be expected under particularly 467 

strong selective pressure and, thus, are rarely realised in populations of mostly selfing 468 

individuals, as investigated here. 469 

 470 

Singular signals of genomic adaptation across levels of spatial extent 471 

In our hierarchical study design, we identified few gene candidates for local 472 

adaptation common between the regional and local analyses (Figure 3f). While the 473 

literature about the spatial extent of adaptation is still limited, two recent studies on 474 

forest trees also showed that adaptation at different levels of spatial extent appears 475 

complementary (Brousseau et al., 2021; von Takach et al., 2021). These authors 476 

concluded that such scale issues are important to consider for understanding 477 

genomic signatures of local adaptation, which is in line with our findings. The very 478 

local adaptive response of populations reported here was already highlighted by 479 

Rellstab et al. (2017) in a study on the strictly outcrossing Arabidopsis halleri. There, 480 

only 31% of previously identified candidate adaptive SNPs were confirmed in an 481 
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independent set of populations, underlining the truly local nature of adaptation in 482 

response to a highly heterogeneous environment. 483 

The low degree of overlapping results between the two marker types, SNPs 484 

and polymorphic TEs, implies that their respective variation reflects adaptive 485 

responses involving complementary candidate genes and gene functions. We cannot 486 

exclude potential effects of using different bioinformatic tools to characterize each 487 

marker type, steming from fundamental differences between the types of 488 

polymorphisms. For example, SNP-derived estimates of population-specific 489 

inbreeding coefficients FIS were lower than respective values calculated from 490 

polymorphic TEs (Rogivue et al., 2019b). By ignoring sequence variation, we 491 

underestimate heterozygosity in TEs, resulting in inflated FIS values. Nevertheless, our 492 

findings highlight the relevance of incorporating structural polymorphisms, such as 493 

TEs and copy number variants, when studying complex evolutionary responses to 494 

changing environments. Similar findings have been reported previously for 495 

Brassicaceae (Niu et al., 2019; Quadrana et al., 2016), emphasising the need to 496 

consider TE variation when investigating adaptation to global warming (Rey et al., 497 

2016). The present study is, to our knowledge, the first to show that SNPs within 498 

genes and polymorphic TE copies indicate complementary candidates of local 499 

adaptation. 500 

Unsurprisingly, the two statistical methods used (GEA and outlier detection) 501 

revealed complementary outcomes and did not point to the same candidate genes. 502 

To some degree, this inconsistency may be attributed to the smaller number of 503 

candidates found in the outlier analysis (Table 2). Such a result may be associated 504 

with sampling individuals in plots of contrasting environments, rather than along 505 

abiotic gradients (Richardson et al., 2014). Additionally, the fundamental differences 506 

between the two methodological approaches (statistical, environment-related GEA, 507 

population genomic outlier detection) suggest that one should expect 508 

complementary, rather than overlapping, signals of adaptation. Our results indeed 509 

integrateeffects of selection across various abiotic and (unaccounted for) biotic 510 

factors. Accordingly, conditional neutrality (Mee & Yeaman, 2019) might might at 511 

least partly explain the small number of outliers detected that contrasts with the 512 

numerous loci associated with environmental heterogeneity. Relatively high genetic 513 
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load was indeed detected within those expending alpine populations (Zeitler et al., 514 

2023), and corresponding loci may be conditionally deleterious to a large extent, 515 

hence showing limited allelic differentiation despite significant genotype-by-516 

environment interactions. As simulations show that GEA analyses have a high power 517 

of detection under scenarios of weak selection and low dispersal (Forester et al., 518 

2016), such approaches may be sensitive enough to identify conditionally neutral loci 519 

(Lasky et al., 2022; Yoder & Tiffin, 2018). 520 

 521 

Selective factors are distinct among SNPs and polymorphic TEs, and are 522 

predominantly consistent between levels of spatial extent 523 

In our study, the type of genomic marker investigated considerably affected the 524 

relative importance of the associated environmental factors (Table 1, Figure 3). 525 

Horizontal curvature, a proxy for drainage and hydrological processes, detected the 526 

most candidate SNPs. Conversely, GEAs using polymorphic TEs highlighted that the 527 

factor with the largest number of significant candidates was total insolation in June 528 

(or the highly correlated direct insolation in June), a factor representing solar 529 

radiation. Although mechanistic underpinnings remain out of scope, this finding again 530 

highlights the complementarity of SNPs and polymorphic TEs in revealing responses 531 

to different environmental cues.  532 

Across the two hierarchical levels of spatial extent, the order of importance of 533 

the environmental factors differed slightly, while the top environmental factors 534 

largely remained consistent (Table 1 and Table S5). This result suggests that the 535 

studied populations inhabit similar environments and that our study design was 536 

appropriate for detecting potentially convergent signatures of adaptation (Figure S1). 537 

Nevertheless, environmental contrasts such as (indirectly accounted for) differences 538 

in biotic interactions as well as restricted gene flow, and hence large effects of 539 

genetic drift, likely contributed to overruling selective effects to impose a common 540 

signal in the genomes of A. alpina individuals. 541 

 542 
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Defence-related functions are key in heterogeneous alpine environments 543 

In alpine environments, plants must deal with harsh, highly variable conditions to 544 

survive. In our study, high-impact polymorphisms in genes related to defence 545 

responses are overrepresented among candidates of local adaptation (Table S9). 546 

Likewise, loci identified by the outlier analyses also highlighted defence-related 547 

functions under selection, though outlier loci did not directly link to any 548 

environmental drivers. Biotic interactions are usually considered to play a minor role 549 

when compared to abiotic environmental factors for plants at high elevations 550 

(Zvereva & Kozlov, 2022). Nevertheless, despite our focus on potential abiotic drivers 551 

of local adaptation, our study indicated that genes with biotic-related biological 552 

functions are key in adaptive responses in alpine plants. Therefore, we advocate also 553 

including biotic drivers in future environmental association analyses to better 554 

represent potential environmental drivers of adaptation. 555 

The two biological functions under selection at the regional level, i.e., ‘defence 556 

response’ and ‘innate immune response’, were also found at the local level in Essets. 557 

No other common biological function was found among the two levels of spatial extent, 558 

again stressing the notion that local adaptation is truly local. Moreover, adaptive 559 

functions previously described in studies on A. alpina, e.g., related to survival, 560 

flowering and fecundity (de Villemereuil et al., 2018; Toräng et al., 2015; Wötzel et al., 561 

2022), were not found in our analyses. This discrepancy might be due to differences in 562 

the spatial extent and resolution of the studies, the complementary methodological 563 

approaches, and the different types of environmental factors considered. Beyond this, 564 

high levels of selfing encountered in Alpine populations of A. alpina may amplify 565 

population-specific adaptive responses, though such an effect depends on various 566 

conditions such as patterns of dominance, levels of selective pressure, and migration 567 

rate (Trickovic & Glémin, 2022). 568 

In conclusion, by combining whole-genome re-sequencing data with high-569 

resolution descriptions of environmental factors, our study pointed to several genes 570 

and biological functions potentially under selection. These findings pave the ground 571 

for a better understanding of adaptive processes and could guide further 572 

investigations of A. alpina and related (alpine) species. Further, our findings suggest 573 
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that signatures of local adaptation are dependent on the spatial extent of the study, 574 

the type of genomic markers employed, and the statistical methods used. The 575 

common genomic blocks indicative of imprints of adaptation (Figure 5) refer to 576 

regions in the genome that are under sufficiently strong selection to overcome the 577 

presumed high level of genetic drift induced by demography and life-history traits of 578 

A. alpina in our study regions. Taken together, our results suggest that 579 

microevolutionary processes may likely result in non-overlapping signatures of local 580 

adaptation across spatial scales. 581 
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Tables and Figures 910 

TABLE 1 Results of environmental association analyses in Arabis alpina at the 911 
regional level (latent factor mixed model, LFMM). The number (#) of significant 912 
single-nucleotide polymorphisms (SNPs), high-impact SNPs (i.e., missense, splice 913 
acceptor and splice donor variants, as well as start/stop codon loss or gain) and 914 
polymorphic transposable elements (TEs) within 2 kbp of a gene, as well as the 915 
number of associated genes and significantly enriched gene ontology (GO) terms 916 
associated with each environmental factor, with less (†) or more (‡) than five genes 917 
significant. The three environmental factors most frequently associated with SNPs 918 
and polymorphic TEs are highlighted in bold and italics, respectively. 919 
 920 

 

 

# associated loci 

 
# associated 
genes 

 # significantly 
enriched 

GO terms † 

Environmental factor SNPs 
 High- 
impact 
SNPs 

TEs 
 

From 
SNPs 

From 
TEs 

 
From 
SNPs 

From TEs 

Total insolation in June 0 0 42  0 9  0 5 

Sky view factor 243 31 0  17 0  5 0 

Topographic wetness index 52 1 0  1 0  0 0 

Neg. topographic openness 151 6 0  6 0  0 0 

Pos. topographic openness 82 21 13  9 4  7 6 

Vector ruggedness measure 1767 179 3  148 0  5 0 

Downslope distance gradient 224 16 0  14 0  5 0 

Horizontal curvature 3355 286 36  236 0  8 0 

Vertical curvature 924 78 0  62 0  6 + 2‡ 0 

Northness 382 35 0  26 0  4 0 

Eastness 0 0 2  0 2  0 0 

Slope 0 0 0  0 0  0 0 

Total 7180 653 96  519 15  42 11 

† p < 0.01, < 5 genes significant  921 
‡ p < 0.01, > 5 genes significant 922 
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TABLE 2 Number of outlier loci detected by BayeScan in Arabis alpina. The number of significant single-nucleotide polymorphisms (SNPs) and 923 
polymorphic transposable elements (TEs) at the regional level and for each of the four local populations, the number of high-impact SNPs and 924 
TEs, the number of genes containing SNPs or TEs, and the number of significantly enriched gene ontology (GO) terms for SNPs and TEs, with 925 
less (†) or more (‡) than five genes significant. 926 
 927 

Spatial 
extent 

Local 
population  

# outliers 
(q value < 0.1) 

  # 
high-impact 

  # genes   # enriched 
GO terms † 

  # common 
with LFMM 

  # common gene 
with LFMM 

SNPs TEs   SNPs TEs   SNPs TEs   SNPs TEs   SNPs TEs   SNPs TEs 

Regional  2 108   1 2   1  0   0 0    0 6    0  1 

Local Essets 176 0   15 0    14 0    4 0    0 0    0 0  

 Martinets 2032 3   134 0    134 0   5 + 2‡ 0    26 0    24 0  

 Para 1193 2   100 0    100 0    6 0    1 0    2 0 

 Pierredar 599 1   27 0    27 0    5 0    2 0    3 0  

† p < 0.01, < 5 genes significant 928 
‡ p < 0.01, > 5 genes significant 929 
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 930 
FIGURE 1 Schematic illustration of the study design and analyses. Four local 931 
populations were selected (illustrated by rectangles), each comprising ten plots 932 
(circles) with six to ten plants each. Individual plants were sampled and sequenced to 933 
identify single-nucleotide polymorphisms (SNPs) and polymorphic transposable 934 
elements (TEs). Environmental data used to characterise the habitat of each 935 
individual were computed from a regional high-resolution digital elevation model 936 
(DEM) at 0.5 m pixel resolution, based on light detection and ranging (LiDAR). Two 937 
types of analyses were performed to search for genomic signatures of selection: (i) 938 
genotype–environment association (GEA) analyses using a latent factor mixed model 939 
(LFMM; Frichot et al., 2013) and (ii) outlier analyses using BayeScan (Foll & Gaggiotti, 940 
2008). Both types of analyses were performed at two hierarchical levels differing in 941 
spatial extent: (i) at the regional level among the four local populations and (ii) at the 942 
local level among plots within each population. 943 

 
 

 
Extended Data Figure 1: Schematic illustration of the study design and analyses. 
Four local populations were selected (illustrated by rectangles), each comprising ten plots 
(circles) with six to ten plants each. Individual plants were sampled and sequenced to identify 
single-nucleotide polymorphisms (SNPs) and polymorphic transposable elements (TEs). 
Environmental data used to characterise the habitat of each individual were computed from 
a regional high-resolution digital elevation model (DEM) at 0.5 m pixel resolution, based on 
light detection and ranging (LiDAR). Two types of analyses were performed to search for 
genomic signatures of selection: (i) genotype–environment association (GEA) analyses using 
a latent factor mixed model (LFMM, Frichot et al. 2013) and (ii) outlier analyses using 
BayeScan (Foll & Gaggiotti 2008). Both types of analyses were performed at two hierarchical 
levels: (i) at the regional level among the four local populations and (ii) at the local level among 
plots within each population. 
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 944 
FIGURE 2 Locations of the four local populations of Arabis alpina and genetic 945 
assignment. (a) The study region situated in the western Swiss Alps, with four local 946 
populations (b) Para, (c) Pierredar, (d) Essets and (e) Martinets. Pie charts in (b)–(e) 947 
represent the proportions of assignment probabilities for each plot (black dot) within 948 
each studied region (delimited by a red line). 949 

950 
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 951 
FIGURE 3 Common associations between environmental factors and hierarchical 952 
levels. Combination and magnitude of intersections of the significantly associated 953 
single-nucleotide polymorphisms (SNPs, high-impact) and polymorphic transposable 954 
elements (TEs) from the latent factor mixed models (LFMM) comparing 955 
environmental factors within each analysis. (a) Regional level, (b)–(e) local level, and 956 
(f) between hierarchical levels. The number of loci involved in each category is given 957 
above the corresponding plot. 958 
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 959 
FIGURE 4 Manhattan plots showing BayeScan outliers. The analysis is based on the 960 
genome scan of single-nucleotide polymorphisms (SNPs) in Arabis alpina for the two 961 
levels of spatial extent: (a)–(d) local and (e) regional. Alternating black/grey dots 962 
mark detected SNPs within each of eight chromosomes (numbers); red lines 963 
represent the false discovery rate (FDR, 10%). Values of genetic differentiation FST as 964 
a function of the log(q value) can be found in Table S7. 965 
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FIGURE 5 Genomic regions indicating signatures of adaptation. Significant high-967 
impact single-nucleotide polymorphisms (SNPs) in Arabis alpina, identified in 968 
genotype–environment association (GEA) analyses, with common chromosomal 969 
blocks. Panels show the log p-value of all high-impact SNPs identified per local 970 
population (denoted with different colours) for each of the five (out of eight) 971 
chromosomes (CHR) of A. alpina for which common blocks could be found. Blocks 972 
are denoted if detected in at least two populations, with vertical lines in grey for GEA 973 
analyses and in brown for outlier analyses. Numbers in x-axis denote length of 974 
chromosome in Mbp.  975 
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Supporting Information 976 

Supportin information is available for this paper currently as a zip archive, except for 977 

Figure S2 shared via a link to Google Doc (see below). 978 

 979 

Table S1 Geographical coordinates and values of the 13 environmental factors for 980 

each sampled individual of Arabis alpina in the four local populations. 981 

 982 

Table 2 Definitions of the 13 environmental factors. 983 

 984 

Table S3 The genomic inflation factor λ, calculated using latent factor mixed models 985 

(LFMMs), for single-nucleotide polymorphisms (SNPs) and polymorphic transposable 986 

elements (TEs) in Arabis alpina. 987 

 988 

Table S4 Spearman’s ρ between pairs of 13 environmental factors, measured in the 989 

four local populations of Arabis alpina. 990 

 991 

Table S5 Summary results of the latent factor mixed models (LFMMs) for the single-992 

nucleotide polymorphisms (SNPs) and the polymorphic transposable elements (TEs) 993 

in Arabis alpina. 994 

 995 

Table S6 Associated single-nucleotide polymorphisms (SNPs) and polymorphic 996 

transposable elements (TEs) in Arabis alpina, based on the latent factor mixed 997 

models (LFMMs). (a) SNPs regional, (b) TEs regional, (c) SNPs local and (d) TEs local. 998 

 999 

Table S7 Results of the outlier detection analyses, using BayeScan, based on single-1000 

nucleotide polymorphisms (SNPs) in Arabis alpina at the regional and local levels. 1001 

 1002 

Table S8 Annotated single-nucleotide polymorphisms (SNPs) in Arabis alpina at the 1003 

regional and local levels, based on the results of latent factor mixed models 1004 

(LFMMs). 1005 

 1006 
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Table S9 Results of the gene ontology (GO) enrichment analysis for latent factor 1007 

mixed models (LFMMs) with single-nucleotide polymorphisms (SNPs) and 1008 

polymorphic transposable elements (TEs) in Arabis alpina at the regional and local 1009 

levels. 1010 

 1011 

Table S10 Annotated associated polymorphic transposable elements (TEs) in Arabis 1012 

alpina at the regional and local levels, based on the latent factor mixed models 1013 

(LFMMs). 1014 

 1015 

Table S11 Annotated single-nucleotide polymorphisms (SNPs) in Arabis alpina at the 1016 

regional and local levels, based on outlier detection analyses using BayeScan. 1017 

 1018 

Table S12 Gene ontology (GO) terms in Arabis alpina at the regional and local levels, 1019 

based on the results of outlier detection analyses of single-nucleotide 1020 

polymorphisms (SNPs) using BayeScan. 1021 

 1022 

 1023 

Figure S1 Principal component analysis (PCA) including the 304 individuals of Arabis 1024 

alpina from the four local populations, based on the twelve retained environmental 1025 

factors. 1026 

 1027 

Figure S2 Manhattan plots of the latent factor mixed model (LFMM) analyses for 1028 

Arabis alpina. 1029 

https://drive.google.com/file/d/1_VbJxP9xHOdYLqtuMdzN3rcrosPwjqeg/view?usp=s1030 

hare_link 1031 

 1032 

Figure S3 Shared genes and gene ontology terms between levels of spatial extent in 1033 

Arabis alpina. 1034 

 1035 

Figure S4 Plots of the results of the outlier detection analyses (using BayeScan), 1036 

based on the genome scan of single-nucleotide polymorphisms (SNPs) in Arabis 1037 
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alpina: (a) regional analysis and (b)–(e) local analyses. (b) Essets, (c) Martinets, (d) 1038 

Para and (e) Pierredar. 1039 

 1040 

Figure S5 Manhattan plots of the results of the outlier detection analysis (using 1041 

BayeScan), based on the genome scan of polymorphic transposable elements (TEs) in 1042 

Arabis alpina. 1043 


