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Abstract

Rigorous statistical methodology represents a vital framework for upholding research integrity and maximizing benefits in medi-

cal science. However, the misuse of statistical tools contradicts ethical tenets and compromises validity. Problematic trends like

p-hacking, hyping delicate results, and overemphasizing statistical significance relative to clinical meaning introduce prejudice

and impede reproducibility. Case studies, including hormone replacement therapy trials, exhibit how unsound statistics propa-

gate doubtful conclusions and potential injury. Resolving the ”reproducibility crisis” necessitates proper statistical techniques

such as sufficient power, preregistration, transparent data, and Bayesian approaches. Statistics and ethics are profoundly in-

tertwined in accountable medical inquiry. By prioritizing statistical meticulousness, investigators can satisfy their ethical duty

to generate reproducible discoveries that aid patients and society. Proper statistical application is indispensable for advancing

medically and socially impactful research.
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Introduction

Biostatistics, applying statistical methods to biological, medical, and public health research,

is fundamental to rigorous scientific inquiry. By providing robust data analysis and

interpretation frameworks, biostatistics ensures findings' validity, reliability, and

generalizability and profoundly influences clinical and policy decisions (1).

The 18th century marked significant strides in probabilistic reasoning and controlled

experiments. John Arbuthnot's 1710 evaluation of birth statistics in London using

probability was an early breakthrough when he found with high certainty that the birth

rate for males was greater than that for females (2). Concurrently, James Lind’s pioneering

1753 scurvy treatment experiment established essential foundations for controlled trials

by incorporating randomization and accounting for confounders (3,4). Later contributions

came frommathematicians like Daniel Bernoulli, who applied statistical thinking to

inoculation against smallpox (5), and Pierre-Simon Laplace, renowned for developing early

Bayesian inference in his 1814 seminal work, A Philosophical Essay on Probabilities (6).

These innovations demonstrated the growing power of statistics to produce actionable

medical insights.

Key 19th-century figures include Florence Nightingale, who effectively applied statistics to

demonstrate the critical role of sanitation (7), and Francis Galton, renowned for developing

statistical concepts like correlation and regression broadly applicable in biology (8).
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The 20th century marked increased formalization of ethical guidelines for clinical trials via

documents like the Nuremberg Code, the Declaration of Helsinki, and the Belmont Report.

Together, these guidelines underscored the need for rigorous statistical approaches to

minimize harm and maximize benefits (9). Karl Pearson and Ronald Fisher, two prominent

statisticians of the 20th century, played pivotal roles in formalizing the calculation and

interpretation of the p-value (10). The advent of card tabulators and electronic computers

marked a significant leap forward in statistical analysis capabilities (11). These

technological advancements laid the foundation for modern-day statistical methods that

continue to shape the landscape of scientific research. The advent of electronic computers

and sophisticated software in the 20th century marked a pivotal leap forward, providing

the computational power to develop and apply intricate statistical techniques like

multivariate regression, advanced predictive modeling, and real-time data analytics.

In summary, the evolution of biostatistics from Graunt's 17th-century contributions to the

technological leaps of the 20th century demonstrates its indispensable role in ensuring

scientific rigor and integrity, which are fundamental to the ethical conduct of medical

research. This ever-advancing field provides a moral, analytical foundation for quality

clinical trials.

As Pierre-Simon Laplace famously stated, "Probability theory is nothing but common sense

reduced to calculation." This succinctly captures how biostatistics brings rigor and

structure to analyzing uncertainty. Florence Nightingale underscored the life-saving

potential of biostatistics when she said, “To understand God's thoughts, we must study

statistics, for these are the measure of His purpose.” Finally, Ronald Fisher, a founder of
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modern statistical science, reminded researchers, "To call in the statistician after the

experiment is done may be no more than asking him to perform a post-mortem

examination: he may be able to say what the experiment died of.”

Statistical Hazards in Biomedical Research

In current biomedical research, statistical analyses are pivotal in validating findings and

drawing evidence-based conclusions. However, the ubiquity of high-powered computing

platforms has facilitated the effortless calculation of intricate statistical algorithms,

sometimes leading to inappropriate and overly complex applications of statistical tools. To

avoid the most common biostatistical errors, researchers should continually review the

fundamentals of basic statistics to understand potential pitfalls and how to address them

(12,13).

The following sections discuss several pitfalls in biostatistics that may not only skew results

but also raise ethical concerns due to improper statistical planning and analysis. This is not

an exhaustive list or an in-depth summary of each hazard but rather an overview of

multiple areas of biostatistics that can result in flawed research.

Overreliance on Statistical Significance Versus Clinical Significance

Statistical significance is often misconstrued as indicative of clinical importance.

Researchers frequently apply an arbitrary cut-off point of 5% (p < 0.05) to determine the
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"significance" of their findings (14). Such an approach can be misleading and lead to

suboptimal patient care when the focus should be on clinical significance instead. For

example, a drug may show a statistically significant reduction in blood pressure but only by

an average of 1 mmHg, which is clinically irrelevant.

Over-analysis of Data: Missing the Forest for the Trees

Another pitfall is the over-analysis of data, which can cause researchers to lose sight of the

broader implications of their work. With advanced computational capabilities, subjecting

data to numerous statistical tests and inappropriately selecting multiple variables becomes

tempting (15). However, this can result in "noise" overshadowing the "signal," thereby

diluting the actual message or findings the research aims to convey.

Failure to Address Fragility of Data

The reporting of statistical outcomes often omits mention of how fragile or robust the data

is. A study may tout significant findings, but the purported significance can be misleading if

the results are based on fragile data sensitive to minor adjustments. Fragility indices

should, therefore, be included to prevent over-hyping results (16).

Neglecting Effect Size

A common issue arises when large sample sizes are employed: p-values often fall below

0.05, thus appearing statistically significant. The reason is that statistical analysis considers

standard errors, calculated as the standard deviation divided by the square root of the
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sample size minus 1. Standard errors shrink as the sample size grows, and statistically

significant differences that are clinically irrelevant are more likely to be identified (17).

However, this can be associated with minuscule effect sizes, rendering the findings less

impactful than the p-value might suggest (18).

P-Hacking: Manipulating Data to Achieve Significance

P-hacking, or data dredging, is another concerning trend in biomedical research (19).

P-hacking involves manipulating data analysis to obtain statistically significant results,

usually a p-value below 0.05. This can involve techniques like testing many different

combinations of variables, excluding specific data points, and stopping analysis when

significance is reached. These practices inflate Type I errors, the false positive rate, and

undermine the validity of the findings.

Ignoring Prevalence Rates

Even when the difference in population means is statistically significant, the overall

prevalence rate in a given population can override this significance. For example, a

statistically significant improvement in treatment outcomes may only apply to a tiny

fraction of the patient population, making the finding less meaningful in broader clinical

practice (20).

7 of 30

https://sciwheel.com/work/citation?ids=7216592&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10265142&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14644023&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15274112&pre=&suf=&sa=0


Over-Reliance on Models

Statistical models are valuable tools for simplifying complex biological phenomena.

However, an unwarranted faith in models, especially without ongoing updates based on

new data, can lead to substantial errors in interpreting and applying research findings (21).

The responsible and ethical use of models requires testing and validation before

deployment.

Multiple Comparisons Problem

When a data set is subjected to numerous statistical tests, the likelihood of identifying at

least one "significant" result purely by chance increases. Without proper correction

methods like the Bonferroni correction or the Benjamini-Hochberg procedure, the false

discovery rate could be inflated, leading to incorrect conclusions (22).

Survivorship Bias

Survivorship bias occurs when researchers focus only on subjects that "survived" a process

or passed a selection filter, neglecting those who did not. It is a reporting bias that can occur

due to publication bias (only publishing statistically significant findings) or selective

reporting of a visible subgroup that gets mistaken for representing the entire group (23).

This can skew results and conclusions, as the full range of data is not considered (24,25).
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Confounding Variables

Failure to account for confounding variables can lead to incorrect inferences about causal

relationships. For example, if a study finds that drug A lowers blood pressure but fails to

account for lifestyle changes like diet, the study's conclusions might be inaccurate. This is a

common cause for medical research that subsequently gets reversed. Randomization can

help account for known and unknown confounding variables (26).

Autocorrelation

In analyzing time-series data, accounting for the likelihood of autocorrelation between

measurements taken in close temporal proximity is imperative for researchers. Overlooking

this statistical characteristic can bias estimates and reduce precision, compromising the

validity of subsequent scientific inferences. Specialized statistical techniques, including

Seasonal AutoRegressive Integrated Moving Average (SARIMA) models and Nonlinear

Autoregressive Neural Networks (NANN), are often employed to mitigate this. For example,

SARIMA and NANN were utilized to predict new patient admissions to a hospital so

resources could be better managed (27). They found that the linear model, SARIMA,

combined with NANN, was best at predicting monthly trends, but NANN alone was better at

predicting daily trends.

Heteroscedasticity

The assumption that the variance of the errors is constant across all levels of the

independent variables is crucial for many statistical tests. Violations of this assumption
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(heteroscedasticity) can distort findings and weaken the reliability of hypothesis tests. The

Harrison-McCabe test can be used to evaluate for heteroscedasticity (28).

Selection Bias

Selection bias occurs when the sample obtained does not represent the population

intended for the study. For example, if a study on a drug's effectiveness only includes

healthy young adults, the results may not generalize to older populations or those with

comorbid conditions. Sampling bias is one type of selection bias that can occur due to

non-random sampling approaches that systematically exclude certain members of the

target population. For instance, convenience sampling based on easily accessible subjects

may bias the sample. Another cause can be the exclusive analysis of research subjects with

complete datasets and throwing out those with missing data, which in the past was

common with trauma research (29). Because there is often a medical reason for missing

data, this practice can skew the results, leading to incorrect conclusions from the research.

Collinearity

When two or more variables are highly correlated, it becomes difficult to separate the

individual effects of these variables. This is particularly problematic in multivariate

regression analyses (30).
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Post-Hoc Rationalizations

After obtaining results, researchers might be tempted to explain unexpected findings with

reasoning not part of the initial study design. While not always inappropriate, it can often

be misleading and is generally considered poor scientific practice (31). This practice can

not only lead to poor medical care, but it can have legal ramifications as well. For example,

using vague symptoms at a later date to predict child abuse at an earlier date can result in

grave errors in legal decisions (32).

Simpson's Paradox

Simpson’s Paradox occurs when a trend that appears in separate groups disappears or

reverses when the groups are combined. It highlights the importance of stratified analysis

to understand subgroup effects. Adjusting disease prevalence rates appropriately can help

overcome this effect in many cases (20,33)

Peer-Review and Moral Hazards

Examining the role of pre-publication peer review in perpetuating certain statistical

shortcomings is imperative. Although peer review is designed to enhance research quality

and mitigate the spread of misinformation, the system has limitations and ethical concerns.

These include potential biases and a disproportionate emphasis on statistically significant

outcomes. The definition of a "peer" within this context exhibits considerable variability,

and reviewers frequently offer inconsistent feedback. The peer review process also
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manifests a notable "establishment bias," leading to differential treatment of research

papers based on institutional affiliation (34).

The misapplication of statistical methods can directly violate core ethical principles that

guide medical research. For example, p-hacking to achieve statistical significance when the

actual effect size is negligible goes against the principle of beneficence. Though it may

produce an impressive p-value, the clinical benefit to patients is likely minimal. Conversely,

failing to account for confounding factors correctly can overestimate an intervention's

effectiveness, violating non-maleficence if it leads to patient harm. Not recognizing the

fragility of findings could cause results to be over-generalized beyond what the data

supports, undermining beneficence. While ethical research requires meticulous study

design and execution, robust statistical practices provide the analytical framework to

uphold these ethical obligations. Turning a blind eye to limitations, flexibility in data

analysis, and selective reporting may achieve publication, but at the cost of breaching

principles meant to protect human subjects.

In summary, as the biomedical research community increasingly relies on statistical

methodologies, vigilance is essential to avoid the misuse of statistical tools. Accurate,

ethical research necessitates a nuanced understanding of the complex interplay between

statistical and clinical significance, among other factors, to truly advance the field.
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Case Studies

These case studies demonstrate the importance of statistics in ethical medical research.

The misapplication of statistical planning and analysis can result in significant harm by

coming to incorrect conclusions or a significant delay in medical advances.

Hormone Replacement Therapy

In a seminal study conducted in 1991, hormone replacement therapy (HRT) was associated

with reduced incidence rates of coronary heart disease among postmenopausal individuals

undergoing estrogen therapy (35). This observational investigation included a significant

cohort of nearly 50,000 women from the Nurses' Health Study (NHS). Over a decade-long

follow-up, this research meticulously recorded 224 cases of stroke, 405 events of major

coronary disease, and 1,263 total fatalities. The study's large sample size of nearly 50,000

participants provided considerable statistical power. Using multivariate regression to

account for age, smoking status, cholesterol levels, and other variables was a

methodological strength in assessing the independent effect of HRT on heart disease risk.

The relative risks were discerned by comparing participants who had undergone HRT and

those who had not. A Cox proportional hazards model was rigorously employed to control

for potential confounding variables.

Within the NHS study, multivariate regression methods were utilized to account for various

confounding variables, such as age (categorized in 5-year increments), cigarette smoking,

hypertension, elevated serum cholesterol, and a family history of myocardial infarction
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before age 60. While this methodological framework allowed for a detailed assessment of

HRT's impact on coronary heart disease, its limitations must be recognized. The exclusion

of data on physical activity, even when available, might have introduced bias, given the

known protective effects of exercise against heart disease. The dependence on self-reported

information, especially regarding crucial variables like smoking habits and medical history,

might have induced recall bias. Additionally, the categorization of age and the binary

distinction of specific risk factors could have led to potential misclassification, impacting

the research conclusions. However, it's significant that HRT became the standard of care for

postmenopausal individuals primarily based on this study's results during the 1990s. While

the categorical classification of some variables may have led to misclassification, including

multiple potential confounders improved upon simpler univariate analyses.

Subsequent research by the Women's Health Initiative (WHI) in 2002 contradicted these

earlier findings, determining that HRT was linked with an elevated cardiovascular risk (36).

This latter study employed a robust, randomized, placebo-controlled, double-blind

methodology. As a result, HRT is no longer advocated as a preventive measure against

cardiovascular disease.

The implications of the initial endorsement of HRT for postmenopausal individuals remain

intricate. The impact was undoubtedly significant, given the visibility of the NHS article in

the New England Journal of Medicine and its association with Harvard University. A more

thorough examination of the statistical limitations inherent in the NHS study could have

tempered the widespread, erroneous enthusiasm for HRT during the 1990s.
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In the 1991 NHS research, participants mainly consisted of registered nurses from 11 U.S.

states. Owing to their profession, these nurses likely had enhanced access to healthcare

services and medical information compared to the broader female population of that era.

This specific group might have introduced a selection bias, potentially affecting the study's

findings and applicability to a more diverse demographic.

The absence of randomization made it challenging to control for confounding factors

effectively. Moreover, although data on numerous variables and outcomes were

accumulated, the multivariate regression model omitted protective elements such as

physical activity. Paired with the biennial reset of outcome analysis, this might have

potentially led to statistical errors stemming from over-analysis and p-hacking (19).

A salient takeaway from the evolution of HRT guidelines is the need for transparently

addressing research limitations. Regrettably, the NHS research only provided a limited

discussion on its research constraints, a pattern still prevalent in medical research. For

instance, a dental literature review demonstrated that only 27% of randomized clinical

trials incorporated discussions of study limitations (37).

From a statistical perspective, there are numerous ethical considerations to consider. First,

observational studies suggesting significant shifts in medical therapy should be succeeded

by more stringent randomized clinical trials. When adjusting an independent outcome,

such as cardiovascular disease, by multivariate regression, it's imperative to include both

risk and protective factors. The conclusions might not apply broadly if a study's
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participants are relatively uniform. Finally, researchers should carefully examine and detail

in their manuscripts the statistical limitations inherent in their investigations.

Saturated Fats and Heart Disease

A study conducted in 1957 by Keys et al. revealed an association between saturated fats and

elevated cholesterol levels, prompting the recommendation in 1961 by the American Heart

Association to replace saturated fats with polyunsaturated fats (38,39). Subsequently, in

2013, a meta-analysis challenged this practice, suggesting it lacked cardiovascular benefits

(40). Then, a Cochrane review in 2020 concluded that there was some evidence of

cardiovascular benefits of reducing saturated fat intake but found no impact on overall

mortality (41). While randomized trials are more rigorous than observational studies, even

RCTs can be limited by adherence, attrition, short follow-up periods, and lack of

generalization to broader populations. This further emphasizes the need for caution when

interpreting the results of nutrition studies since perfectly controlling diet over the long

term is inherently challenging. The consensus among experts currently advocates for a

balanced diet, exemplified by the Mediterranean Diet, which protects against

cardiovascular issues and supports cancer prevention (42) (43). These evolving

recommendations underscore the statistical advantages of employing concrete endpoints,

such as diagnosed cardiovascular events, instead of surrogate endpoints. Surrogate

endpoints are measures that substitute for clinical endpoints of interest. For example, a

study may use a change in blood pressure as a surrogate marker for the risk of stroke.

Surrogate endpoints are convenient but can be misleading if the correlation with the
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clinical outcome is weak. Relying solely on themmay overestimate clinical benefits or

provide a false impression of efficacy. Hard clinical endpoints like mortality or

cardiovascular events provide more definitive evidence. The everyday use of surrogate

endpoints in dietary studies emphasizes caution when interpreting research that cannot

comprehensively control for confounding variables.

Vaccinations and Autism

A study involving 12 children in 1998 suggested a potential link between autism and the

measles, mumps, and rubella (MMR) vaccination (44). This study was retracted in 2010,

primarily due to ethical violations related to human subjects, but notably not for statistical

errors that led to poorly supported and controversial findings (45). In contrast, a

comprehensive 2014 meta-analysis encompassing ten studies, which included data from

over 1.2 million children, found no discernible association between the MMR vaccine and

autism (46). Nevertheless, concerns regarding a potential connection between the MMR

vaccine and autism persist among some parents, contributing to a significant decline in

MMR vaccination rates (47). This underscores the critical importance of promptly

identifying and addressing statistical errors to prevent the propagation of medical

misinformation.

Notably, the original 1998 study was hindered by a limited sample size, comprising only 12

children. Additionally, it lacked proper control groups and predominantly relied on parental

recall. The fact that it took 12 years to retract this study and that it continues to influence
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vaccine hesitancy emphasizes the vital necessity of stringent statistical rigor before

publication.

Arthroscopic Surgery for Knee Osteoarthritis

A randomized trial of 32 adults with moderate osteoarthritis found that arthroscopic knee

surgery provided pain relief but was not superior to saline joint lavage alone (48). A

follow-up randomized, placebo-controlled study of 180 adults with osteoarthritis in 2002

found that neither arthroscopic nor lavage was superior to sham surgery (49). These

studies highlight the importance of considering the substantial placebo effects that can

occur with invasive procedures (50).

Internal Mammary Artery Ligation for Angina Pectoris

Utilizing internal mammary artery ligation as a treatment for angina pectoris was widely

accepted before the 1960s. This acceptance was based on a plausible hypothesis

substantiated by an extensive study involving 304 patients (51) (52). An improvement was

observed over a follow-up period ranging from 3 months to 4 years in 85% of the patients.

However, it is essential to note that this study lacked a control group for comparative

analysis, lacked blinding or randomization, and did not conduct any statistical analysis of

the results.

In contrast, a follow-up study conducted in 1960, though involving only 18 participants,

offered a randomized, double-blind comparison of internal mammary artery ligation versus

a sham operation (53). In this study, all five participants who underwent sham surgery
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reported improvement, while nine out of thirteen who underwent internal mammary

ligation demonstrated improvement. Nonetheless, it is noteworthy that this follow-up study

also refrained from conducting a statistical analysis. Nevertheless, when subjected to the

Fisher Exact test, the data yields a p-value of 0.28, in line with the authors' conclusion that

no discernible benefit was associated with internal mammary artery ligation.

Another study from the same era, albeit with a relatively small sample size of 17

participants, also employed a sham surgery approach and gained high credibility owing to

its robust study design (54). In this study, five participants in the ligation group

experienced improvement, three worsened, and one succumbed. In the sham group, five

participants improved, two worsened, and one succumbed. Once again, this study refrained

from performing a statistical analysis. Nevertheless, when the results of these 17

participants were combined with those of the other sham surgery-controlled study, the

Fisher Exact p-value equated to 0.48, further supporting the notion that internal mammary

artery ligation did not confer any discernible benefit. Furthermore, it's worth noting that

the combined data has a robustness index of 5.75, consistent with robust statistical findings

(55).

Additional subsequent studies have corroborated the findings of the two sham

surgery-controlled studies, underscoring the importance of a rigorous study design. These

studies also clearly demonstrated the potent placebo effect associated with invasive

procedures.
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Conclusion

The term "reproducibility crisis" has emerged as a pressing concern in the medical research

community, spotlighting the alarming rate at which published studies—often deemed

statistically significant—fail to produce the same results upon replication. Several

statistical factors contribute to this ethical crisis, including but not limited to p-hacking,

small sample sizes, and a publication bias that favors positive findings (56). Poor

reproducibility is partly due to a lack of full access to complete data and incentives favoring

novelty over replication. The ramifications are substantial, from wasted resources to

suboptimal clinical guidelines and, most crucially, eroded public trust in science.

Reproducibility is not just a statistical or methodological issue; it's an ethical one. When

research cannot be reproduced, it threatens the core ethical imperatives of scientific

integrity and societal benefit.

In addressing this crisis, the proper application of biostatistics offers a foundational

solution. First, by adhering to rigorous study design and statistical planning, including

power analysis, to determine appropriate sample sizes, researchers can increase the

likelihood that their findings are statistically significant and clinically meaningful. Second,

embracing practices like pre-registration of studies can limit the temptation or

opportunities for p-hacking, thereby enhancing the validity of the findings. Transparent

reporting of methods and results, including so-called 'negative findings,' would allow for

more robust meta-analyses and systematic reviews, the cornerstone of evidence-based

medicine. Third, advanced statistical techniques such as Bayesian analysis can offer more
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nuanced interpretations of data, including integrating prior evidence. Ethical research

practices and robust statistical methodology are not mutually exclusive but are, in fact,

interdependent. By elevating statistical rigor, the reproducibility of research can be

improved, and the ethical caliber of the science can be elevated, reinstating confidence in

medical research as a trustworthy endeavor.

Upholding research ethics necessitates the proper application of statistical principles.

Several strategies can promote ethical statistical practices. Broader pre-registration and

data-sharing adoption fosters transparency and minimizes questionable research practices

undermining integrity. Preregistration should be incentivized or required by journals and

funders to limit data dredging and selective reporting. Sharing de-identified data and

publishing null or negative findings reduces publication bias. This upholds the ethical

obligation of disseminating all scientifically valid results, not just positive ones. Promoting

collaboration between biostatisticians and researchers reinforces rigorous, ethical study

design and analysis. Expanding training in statistical thinking, study design, and ethical

research conduct equips more scholars to apply statistics responsibly. Embracing Bayesian

approaches allows the formal integration of prior evidence, yielding more nuanced results.

Through these and other efforts prioritizing statistical rigor, the research community can

fulfill its ethical duty to produce reproducible findings that benefit patients and society.

Statistics and ethics are fundamentally intertwined in responsible medical research.
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