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Abstract

In this work, we consider a mathematical model of viscoelastic incompressible fluid governed by the Navier-Stokes-Voigt equa-
tions in a three dimensional thin domain 2 € , with damping term and Tresca friction law. First, we give the problem statement
and the weak variational formulation of the considered problem. Then we study the asymptotic analysis of the problem when

a dimension of the domain tends to zero. The limit problem and the specific equation of Reynolds are obtained.
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1 | INTRODUCTION

Fluid flow problems arise in several physical phenomena and play an important role in many industrial applications. Navier-
Stokes equations are well known to be effectively useful in modeling turbulence in fluid phenomena, which has been intensively
studied.

The Navier-Stokes-Voigt (or Navier-Stokes-Voight) model, is a modification of the Navier-Stokes equation by adding a pseu-
doparabolic regularization —vA (;" for the velocity field u. This model was introduced by Oskolkov2!. Recently proposed as a
regularization of the 3D-Navier-Stokes equation for the purpose of direct numerical simulations in®. The presence of the reg-
ularizing term —VAE is of great importance, because it changes the parabolic character of the limit Navier-Stokes equations,
into a damped hyperbolic system. This model has worked well in many applications where it has recently been used in image
processing (see '2). In fact, the Navier-Stokes-Voigt system is perhaps the newest model in the the so-called @-models in fluid
mechanics'?,

In recent years, this model has attracted the attention of many mathematicians. In'l® Levant et al, studied the statistical prop-
erties of the three-dimensional Navier-Stokes-Voigt system. Anh and Thanh'' proved the existence and uniqueness of solutions
for the Navier-Stokes-Voigt model, then they examined the mean square exponential stability and the almost sure exponential
stability of the stationary solutions.

Many interesting results on the existence and long-time behavior of solutions in terms of existence of attractors to Navier-
Stokes-Voigt equations can be found in (<,7,13,23)

Furthermore, the existence and time decay rates of solutions for Navier-Stokes-Voigt model have been studied in (2,24).
Layton and Rebholz1% studied analytically and numerically the relaxation time of flow evolution governed by the Navier-Stokes-
Voigt model.

It is known that partial differential equations in thin domains appear in many applications such as (thin elastic bodies, thin
rods, plates or shells) for solid mechanics, and (lubrication, meteorology, ocean dynamics) for fluid mechanics. When the study
of the three-dimensional Navier-Stokes equations in thin domains, Raugel, and Sell 14 investigated the Navier-Stokes equations
in a flat thin domain with a nonflat top boundary. Temam and Ziane%Z, looked at the Navier-Stokes equations with free boundary
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conditions in a thin spherical shell, to give a mathematical justification for the derivation of the primitive equations for the
atmosphere and ocean dynamics. In the work?Y, the author formally derived limit equations of the Navier-Stokes equations in a
thin tubular neighborhood of an evolving closed surface.

The study of asymptotic behavior of Stokes equations in a thin domain with Tresca friction law, is performed in (*,%17). The
reader is referred to some works related to the study of elastic and viscosity materials in a thin domain with Tresca friction law
(5’ 9 10)_

Motivated by lubrication theory, where the domain of flow is usually very thin, we examine in this paper the asymptotic
behavior of the solution of the boundary value problem of the Navier-Stokes-Voigt model, with damping term and Tresca friction
law in a thin domain Q°¢. Our ai is to know the behavior of the solution to this problem when one dimension of the domain tends
to zero. Besides, we will derive the Reynolds equation which allows to determine the operating characteristics of the system
such as load capacity, dissipative power, friction number, etc.

This article is organized as follows. Section 2 is devoted to the mechanical problem governed by the Navier-Stokes-Voigt
model. In section 3, we derive the variational formulation of the problem. In section 4, we use the change of variable z = x5 /€
to transform the initial problem posed in the domain QF, to a new problem posed on a fixed domain Q independent of parameter
€. Then we establish some a priori estimates for the velocity and pressure fields, independently of €. Finally, in Section 5, we
derive and study the limit problem when € tends to zero. Moreover we show that the limit pressure is given as the unique solution
of a Reynolds equation.

2 | SETTING OF THE PROBLEM

Let Q¢ be a bounded domain of R3 and T* = l_“i U 1:2 U , the boundary of Q°, such that I'{ is the upper surface of equation
x3 = €h(x;, x,), I'} is the lateral surface and w is a bounded domain of R? of equation x; = 0 which constitutes the bottom of
the domain Q¢. We suppose that £ (.) is a function of class C' defined on @ such that

0<h=h,, <hX)<h,, =hVx,0) € o
More precisely the domain of the flow given by
Qf = (¢, x5) €R? : X' = (x1,%,) €, 0 < x5 < eh(x')}.

In this thin domain, we study the asymptotic behavior of the following mechanical problem:
Find the velocity field u® : Q¢ X ]0,T[ — R3 and the pressure z° : Q°f X ]0,T[ — R, such that

% —div (¢® (uf, %)) + \/E(uE.VuE) +af (1 + uf)u® = ffin QF x10,T7T, H
¢ (U, 7°) = UVt + vV (%) — 250 in Q@ x 10, ], @)

div(@f) =0in Q¢ x 10, T, €)

u*=0onT* x10,TI, 4

u*=0onT% x10,T[, (5)

wn=00nwx]0,TJ[, (6)

lo€| < k€ = ut =0,
T T < 10.T[: ,
|O-‘Lg'| =k = Hﬂ > 0, such that u‘; = _ﬂgi, } onw ] [ ( )

where (1) represents the equation of the equilibrium of the fluid, f* is a given external force and a® the damping coefficient.
The relation (2)) represents the law of behavior of the fluid for the Navier-Stokes-Voigt model, such that > 0 is the kinematic
viscosity coefficient and v > 0 is the length-scale parameter characterizing the elasticity of the fluid. The equation (3)) describes
the condition of incompressibility of the fluid. The conditions @) — () are a non-slip boundary condition on I'l X ]0,T[ and
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FEL X 10, T'[, the condition @ is the non penetration on X ]0, T'[, and is the Tresca boundary conditions on @ X [0, T'[, with
k¢ the coefficient of friction, |.| is the R2 Euclidean norm, n = ( ny, Hy, n3) is the unit outward normal to I'®, and

ut =ut.n, ut =u® —ut.n, ot = (0'5) .n, 6 =o0fn— (65) N,
n T n n n T n

are the normal and the tangential velocity u¢, and the components of the normal and the tangential stress tensor o¢, respectively.
The problem consists in finding ¢ which fulfills (I) — (7), with the following initial condition

u (x,0) = ug, Vx € Q°. ®)

Remark 1. On w % ]0, T'[ the third component of the velocity is zero.
Indeed, according to condition (@ we have

ut.n= u“i.nl + uz.n2 + u;.n3 =0onwx]0,T],

where n = (ny,ny,n3) = (0,0, —1) is the unit normal to w. So i =0, 0nwx]0,T[.

3 | NOTATION AND VARIATIONAL FORMULATION

o L7 (QF) is the Lebesgue space with the norm

1

P

il = /|u|”dx L 1<p<w.
QE

« H' (Q)° is the Sobolev space
H'(Q ={ue L* (@) : Vue L* (@)},
with inner product and norm
1
(U, V) ey = /u.udx + / Vu.Vodx, |ull g = [IIulle(gé)a + ||Vu||L2(Q£)3x3] 2,
QE QE

. H& (Q¢)? is the closure of D (Q¢) in H' (Q¢)%, and H~! (Q¢)? is the dual space of H(} (Q9)>.

Let X be a real Banach space with the norm ||.|| y. We denote by L? (0, T'; X) the standard Banach space of all functions from
(0,T) to X , endowed with the norm

P

T
lell o 7o = / @I ds| . 1<p<o.
0

Lemma 1 (1), The condition of Tresca (7) is equivalent to
oful +kjus| =0 on wx]0,T[.

Let uf be the solution of (I) — (8); Multiplying the equation (I) by (¢ — u¢) and integrating the resulting equation over Q°,
then using the Green’s formula and the lemma above, we obtain the following variational problem:
Find (uf,z%) € L (0,7, V) x L? (0,T, L% (Q)) , such that
<%,(p - u5> +a, W, @—u)+a, <aai:,(p - u5> + \/gb(ug,ué,(p —ut)
+at ((1+ w ) e, @ = uf) = (2, div () + j(@) = j (u°) ©)
2 (ffo—u), VeV,
u (x,0) =ut, Vx e Qf,
with
VeE= {UE H'(Q5) : v=0onI{uUlY,v.n =00nw},

Vi, ={veVe idiv(v) =0},



L3 (@) = (peLz(Qf):/(pdx:o ,
Qs

aK(u,u)=K/Vu.Vvdx,jg(v)=/k5|v|dx (f,v) = /fvdx

Q¢

b(u,u,w):/uVuwdx— Z/u—w dx.

O i,j=1
The bilinear form a,(.,.) is continuous and coercive on Vi X Vi and j¢(.) is a convex and continuous function on Vi . The
trilinear form b (., ., .) satisfies
b(u,v,v)=0,Yu,v € Vd‘”:v

[b(u, v, w)| < lull p3qep 1IVUNl p2ey 10l psey > Yus v, w0 € V.

Theorem 1. Under the assumptions

fe, a;f € L*(0,T, L*(@°)),
uy € H' (), (4y), =0, (10)

kf € L® (w), k* > 0,

the problem (9) admits a unique solution u* € L? (0 T, Vd";v) such that
ou‘

. € L*(0,T,Vf).

Proof. The proof is based on the regularization method, which is based on an approximation of nondifferentiable term j (.) by
a family of differentiable once j, (.), where

jc(v)=/k5 (x") & (107) dx', with ¢, (v) = 1

[0]

and we build the approximate problem

(50) o (o) o (o) b ()
=(f9), Vo eV,

Using Galerkin’s method, we show that there exists a unique solution uz of (L1I) (see the works of Duvaut and Lions (”, 19).
Then, the limit of uz when ¢ tends to zero is a solution of (9). O

: lo]"™¢, ¢ >0,

)io)+ () o) an

4 | A PRIORI ESTIMATES

For the asymptotic analysis of the studied problem, we introduce the change of variable z = x;/€ to obtain a fixed domain
which is independent of ¢,
Q={(,2)eR’: (x,0) €Ew,0< z<h(x"},
and' =T, Ul'; U® its boundary.
Now, we define on Q new unknowns

(x’,z,t) us (x X3, ), i=1,2,
) =&l (¥ x3.1) (12)
7€ (x’,z,t) =elnt (x’,x3,t) )

f(x"z,t) =82f£ (x/’x3,t), } (13)



with £, k and & not depending on e. We now introduce the functional framework on € as follows
V={peH (Q)’:9p=00onT, UT|and p.n=00nw},
Viv =1{ep €V : div(p) =0},
NV)={eeH' (@’ : 9= (¢,.0,), 0, =00nT, UT},i=12},

L (Q) = ¢6L2(9)2/¢dx'dz=0 ,
Q

202 . U 2 .
V.,=1qv=(v,0,) € L*(Q) .a—EL(Q),1=1,2andv=OonF1 ,
Z

2 2
2
v — v, +
“ ”VZ (; <|| 1||L2(Q) ’ LZ(Q)>>

From and (13)), we deduce that the problem (9) is equivalent to the following variational inequality:
Find (2, %) € L? (0,T,Vy,) X L? (0,T, L} (€)) , such that

V, is a Banach space with the norm

o=

dv;
dz

oa oi

2 13
P P A ine A A o (o .«
622<—t,(pi—uf>+£4<a—;,qo3—u‘;>+a”(u5,(p—u6)+av(i,(p—u5>

2
#eb@. o - +a T ((1+ ) i o, - i) +a (24
i=1

— (#%,div (@) + J (§) — J @)

>”3’(”3 _”3> (14)

where

2 i€ £
+¢? Z/ﬁ;iz' (¢, — ) dx'dz + €* 2/12‘;—3 (@3 — ) dx'dz,
Q Q

and
2 N X

09; 0
@#.div@n =Y / A —ax'dz + / #2P30xaz.
— ox;
=t a Q
In what follows we will use the following inequalities
« Poincaré inequality

1 | 2y < R NVHE N L2y - (15)
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« Cauchy-Schwarz inequality Vu®, v* € L2 (QF)?

/ o dx < gy -1 ey (16)

Qs

« Sobolev’s inequality

A

||uE||L3(QE)3 < ¢ ||Vu8||L2(QE)3x3 , 17)
||u6||L6(Qg)3 < ¢ ”VuE”Lz(Qg)bG .
First, we will obtain estimates on the velocity 4° and the acceleration %.

Theorem 2. Let (uf,z¢) € L (0,T, V<§v> x L?(0,T, LS (©)) be a solution of the problem (9, where k¢ € LY (). Then,
there exists a constant ¢ independent of € such that

) 112 112 ) 2
ont 6u£ it
ol
Z( 5 ey >+ 2 oo 18)
P 2 2 Xillr2@) =1l 2%ill2e
o |I?
3 113 it
S + et
3(0,7,L3(Q)
0z || g &S ( ) L?(o T,15(Q))
<c,
) e 12 JU ) e 12
Z< 9 <d_uf> 521 <%> >+ Z 9 <d_uf> (19)
AN EZANCVA P ERNFT R P~ AR Ty
NRYLA S TN,
0z \ 0t [ o = 2@ o 2@
<ec.

Proof. Let u® be the solution of the problem @]); choosing ¢ = (0,0, 0), we obtain

(aaut )"'a(u u) +a, (aat ) + V/eb e, uf uf) + af (1 + [uf ) u, u) + j© () < (f5,uf)

Using the identity b (u®, u®,u®) = 0, and j* (u®) > 0, we deduce that

2 (I g+ a0+, 0 )+ 0 (04 i D) < (),

which integrated from O to ¢, leads to

t t

I g+ / WV )1 e s+ 5 1V g+ / I ()12, g

+af / I (I, g0

-2

1
~v||V
LZ(Qe) + 2V || “o

t
2
LZ(QE)3X3+//f (s).u® (s)dxds.
0 Q



On the other hand, applying Cauchy-Schwarz (16), Poincaré’s and Young’s inequalities, we find the following inequality

t t
//f’S (s).u® (s)dxds < // | f€ ()] [uf (s)| dx'dx5ds
0 O 0 Q

1

< —eh |1 £ Ol g IVus ()l 2 ey
/<\/ﬁ L2(Q)} >(\/_ L2(Qf) )

0

t t
1, :\2 . .
<L (@) [ Oy st [ I O
0 0

Whereupon,
t
L vae 2 I, L ds < = (eh) 17412 20
S IVU T e + @ [ I (D g ds < P’ (eh)"1If Ie2or. 220 (20)
Ll e 1 .
+ 2 1140]| L2y + 7Y “Vuo L@y
Now, as
S =/,
LZ(O,T,LZ(QE )3) LZ(O,T,LZ(Q)3) ’
out || oae ||*
a = a_ s i= 19 29
x3 LZ(Q*) Z LZ(Q)
multiplying the inequality (20) by &, we deduce that
Vu o [L e )? <A 21
5“ u ”LZ(QS 3%3 +a g ”u ||L3((),T,L3(Q‘)3) — & ( )

where A = —h2 L2(or 1@ +3 ||ﬁ0||2LZ(Q)3 + %v ||Vﬁ0||2Lz(Q)sx3 is a constant independent of ¢.
From @) we find G(ED

o
Differentiating (T1)) with respect to 7 and taking ¢ =

, we get

2., £ £ £ 2, € £ £

o2’ ot K\ ot’ ot Y\ 92’ ot t"f’ ot

0u ou out out ’ out

¢ € € ¢ ¢ 0<.£><5> 4

+ +/eb = + —,— |+ = , —

Ve <<f ot az> a< o] o az> (az Je) \"e )5

_ (o 2

“\ oot o )

Noting that b (uf, 25,25} = 0, and a, (25,25, a¢ ((1
oting tha (uc, at’ar)_ , an a#(az’ar)’a <( +

have
1d
2 dt

¢

Buz duz 9 . 4 . Buz .

) i >, > <j§) (uc> .= | are positive terms, so we
out ||? ()u ()u out e out
—= +a, +feb| —, s, — )< of ).
L2Qey 01 or ot~ ot

ot
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Integrating this inequality over (0, ), we find

ot ||? out ||?
% a—‘ +v va—c 22)
! LZ(QE)‘ ! L2(Qe)>3
eh ofe 6u (s)
S / ” HOl) ds+v / ds
L2(Q¢)} L2(Qe )
ou (0) aus (0) |
= v
20 9t | @) ot || ey
t
out (s) out (s)
¢ ¢
+/\/; b( ot ,ME(S),T ds
0
Using Holder and Sobolev’s inequalities, we obtain
<du (s) ous (s) ous (s) ous (s)
,ut (s), ds < / u (s) ds
§ ¢ )3
ey L2(Q) ot L5@y
BN
s s.
4 2(0e)3X3
0 L «@ )3 ’ at LZ(QE)3X3
Using the estimates above, the inequality (22)) leads to
out 2 out 2
% = +v|v== (23)
ot Lz(@f ot L@y
£ 2
ofe ou (s)
/H f (S) ds+/<v+c \/_HVu (s) m) d ds
L2(Qe )3 , L2(Qf) 01 LZ(QE)3X3
1 ou; (0) ) out (0) 2
2 ot L@y ot L@y

ot (0) ot (0)
(2.0 ) 0 (22,0 0, (0.0 #0000

+a5<<1+ ug(O)Dug(O),(p)
=(f(0),9),

using Cauchy-Schwarz’s and Poincaré’s inequalities, we obtain

ou (0) out (0)
(F5e) = (55)
ot v ot ’

su“w

2
p@%nwm@m+MHW

L2(Qsf )3><3 ” V @ | | L2(Qe )3><3

1
2

12(Qe)>3 (p”LZ(Qe 3x3 + — / |Ll0| dx dz ||V(p||L2(QE 3x3

+eh Ilfe (O)llLZ(Qs)3 ||V(p“L2(QE)3X3 .

+c \/_“Vu




Therefore

+ah? ”w

+c, \/_”Vu

L2(95)3><3 LZ(Q‘ 3%3

aug ((©)
at‘ 9 ¢
H'(Q¢)}

< (u]}v
:

ah .14 -
+ /|u0| dx'dz| +eh|lf® Ol gy | 1ol gy

a

Multiplying this inequality by \/E, we get

ou’ (0)
ot H](QE)
where Cy = (4 + ah?) [|dg|| 1 gy + ¢, (@R +1) ””0“111(9) , is a constant independent of &.

Now, passing to the limit in @ when ¢ tends to zero, we deduce that

Lo L g2
2 at LZ(Q{) at LZ(Q2)3X3
t
ous (s) || ou’
s/ [1 u(s) <v+c VE VU )l 2 H “ (s) ]ds
2 at L2 (Qs ) 12 (Qé )3><3

2
ds + (l + v> (CO)
LZ(QE)B 2 E '

/Haf‘ ®|?

Multiplying this inequality by & and use the fact that \/e || Vu® (8)| ;2.0c3¢ < 24 we obtain
plying quality by L2(QF) v

. 1 |lou® 2 v oue ||
2 ot LZ(QE)3 ot LZ(Q‘)3X3
t
out (s) ||* / v?
S/e l u (s) +| v+e,. u(s) ds + B,
2 ot LZ(QE)3 X LZ(QE)%G
0

w7 ||? 2
where B = — || =~ +(CGy)
v o ll2(or,22@°) (o)

Applying the Gronwall inequality to (24]), we have

€112

£ [ Ju + ”V
ot L2(Qe )3

where c is a constant independent of €. The proof is complete.

e 12
ou <e
ot L2(Q )3><3

Now, we are looking for a priori estimates on the pressure 7¢. For this we need to establish the following result.

Theorem 3. Under the hypotheses of Theorem [2] there exists a constant ¢ independent of € such that

~E
o7 <e
ox; L2(0.T.H-1(Q))
~E
% <gc
0x, 22(0.T.H-1(Q))
ore
<e.c.
9z |l 2(01,H-1(@)

Proof. According to (@), we have
( div ) = (Bey) + 0,6 w) +a, (B ) + Veb i w)
+at (1 + uDus,w) + (f5,w), Yy € L? (0T, H, (Q°)’).

1200 3xz> ”(p”Hl(QE

(24)

(25)

(26)

27)
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Using Cauchy-Schwarz (16)), Poincaré (I5), Sobolev and Young inequalities, we find

/ (z¢, div (w)) ds

ds
12 (Qe )3><3

< (u+ah?) /||Vu (s)||L2(Qé s ds+ (h*+V) /HV—(S)

ﬂ+v/||f6 O] 7 ds+2(1+/4+v)/||Vl//(s)||L2(QE wa d

¥e, / VE IV )1 g s IV (93 s+ / [ 1 e 0 ) axas
O I3

0

The last term of can be estimated as follows

t
aE//luf(s)lug(s)wdx’dx3ds <5
€

0 Q
t
& 1 . 3 a 3
Z/g”u O]/ . ds+§/||w(5)llwgé)3d
0

A a
+2 / W I g d

2 1
! 3 3

/ lw|?dx'dx; | ds

A
=
~ o\
\
=,
=
=~
(98]
U
x\
QU
S

IA

™ I

So, we get

t

[ divnas| < (u+ / 19 (S + (B V) / &

0

ds
LQ(QE )2><3

M+V/|If5(s)IILz(gg ds+2(1+u+v+e,) /uvw I g e d

1

A & 3
+e, / VA Ol g ds + 5 + 5 / [IZOTHTE
0

0

(28)

(29)

Now, we choose y = (w,0,0), w = (0,¥,,0), y = (0,0,ys3) respectively in (29), and change the variables, to get -

(27).

S | STUDY OF THE LIMIT PROBLEM

O

The aim of this section is to study the limit behavior of the sequences (i#°) and (7¢) as € — 0. We will demonstrate the weak

convergence of these sequences and give the limit problem that characterizes these limits.

Lemma 2. Under the hypotheses of Theoremand there exists u:‘ e1? (0, T, VZ), i=1,2and z* € L? (0, T, L(Z) (Q)) such

that

8¢ — uf,i=1,2, weakly in L* (0,T,V,)

it ou;
E N E i = 1,2, weakly in L* (0,T,V,)

(30)



jac) @ = Ju; | i = 1,2, weakly in L3 (0.7, L3 (@), (31)

oit 0 [oi 5 5
e— = 0,e— | — | = 0,i,j = 1,2, weakly in L* (0, T, L*(Q)) , (32)
dxj 6xj ot
ons PR
2 3 . . 2 2
o O"Ea_xi <7> —0i=1,2,weakly in L* (0,T, L* (Q)) (33)
o’ i
56—;—‘ ,6% <0—t3> — 0 weakly in L* (0,T, L*(Q)), (34)
€
i = 0, e~ — 0 weakly in L? (0.7, L7 (). (35)
# = z*, weakly in L* (0,T, L} (%)) . (36)

Proof. From (I8)) and (T9) there exists a fixed constant C; independent on € such that

g 2 e 112
94 @ 2 (%)
0z 0z \ ot 12(07.12(9)

S CTs
L2(0.T.L*(Q))

<Cpi=12.

Using these estimates with Poincaré’s inequality in the domain Q
it (s)

<h|—
0z

s (S)||L2(0,T,L2(Q)) =

k]

L2(0.T.L2(Q))

we obtain (30). The results (32) — (33) are deduced directly from (T8}, (I9) and (30). For (3T), we have

T T
//(||ﬁf|ﬁf|)%dx’dzds§/||ﬁf(s)||3L3(g)ds§CT.
0 Q 0

So |a¢| 4, i = 1,2 is bounded in L3 (0, T, L3 (Q)), then we conclude that |a¢| 25, i = 1,2, weakly converges to |u¥|u’ in

0,7, L: (@) ). Because div (&) = 0, by (T8) and with a particular choice of the test function, we obtain (34) and (33)) see®.
To find (36) we use 23) — and the following inequality

||7%£ ||L2(0,T,L2(Q)) < C/ ”V]%g”Lz(O’T’H_l(Q)S) .

O
Theorem 4. The weak limit (u*, 7*) satisfies the following properties
m* (X, z,1) =7 (x'.1) ,aeinQ, (37)
n o dx'dz = 0. 38
R + —_— =
/ﬂ<ax1 ax2>xz o9
Q

Also (u*, #*) is the solution of the variational inequality and the limit problem

du; 0 (¢ —up) 0 (o, —ur)
/ —
/ d+2/ az< ) S—dx'dz (39)
2
. B 0P 99, / Sl L g
Z/a L+ |uf|)ul (¢ —u') dx'dz / <0x1 ax2>dxdz+ (@] — |u*])dx
T Q Q

w

2
zZ/f @, —u’)dx'dz, Vp e TI(V),
=y

’ our a (1 Nt + P = F L*(Q) fori=1,2 40
+v.— | + + |u’ == f, i =1,2.
,uu V. ” a( |”1 |)ul o) ;» In L7 (L) fori 40)



1z |

Proof. From the formula (29), we have

t
0
//7[ (s) .gdx’dzds <ec,Vy € L*(0,T, H (@),
Z
therefore
t

lim/ / 7€ (s) .a—"’ (s)dx'dzds =0,Vy € L* (0,T, H) (Q)) .
-0 0z

0 Q

By using (36), we deduce (37).
As div(a?) = 0 in Q, we obtain for § € D (]0, T[ X w),

, 0u’1‘ du; , 3
0(x',s)( — +— ) dx'dzds = 0. 41
ox; 0x,

Using (37), #* is now in L? (0, T, L? (w)), then there exists (6,,) in D (10, T[ X w) such that §,, — z* in L? (0, T, L* (w)). So
from (1)), we obtain when m — oo.

By passing to the limit in (I4), using the result of the Lemma and the fact that J (.) is convex and lower semi-continuous,
we obtain

2 our 0 (o, —u’) > o [our\ o(¢,—u)
i 1 i ’ i 1 i 12
Z /M—az — dx'dz + E /\/—az <_6t ).—az dx'dz 42)
= a

2 . .
+2 &(1+|u;"|)u;" (@i—u:‘) dx'dz—/n'* <%+%> dx’dz+/1}(|¢|—|u*|)dx’

Lo}
g

Q
2
Z Z/ i (@ —ur)dx'dz, Vo e TI(V).
Q

Now, we choose in the variational inequality (42)
®; = u’ + w;, such that w; € Hy (Q),i=1,2,

we find

™o

1

ou* ou* \1 ow, 2
/[ya—z'+vaiZ (a—t')] a—zldx'dz+i2/a 1+ || uwdxdz—Z/ dxdz
Q Q
2
Z/f, dx'dz.

=la
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Using Green’s formula and choosing w, = 0 and w, € H(% (Q), then w, =0 and w, € HO1 (), we obtain

ou* au* «
_/% [Ma_zl—'- aaz ( 5 )]wdx dz+/&(1+|uf|)u;‘w,-dx'dz+/g—ziwidx’dz
o 2 J

=/ﬁwidx’dz, Vw, € Hy (Q).

Thus )
2 l/lfk * n
—% [y.uf + v.a—t’] +a (1+|uf])u + ‘;—’;i = f, in H'(Q) fori=1,2. (43)
Since f, € L?(Q), then is valid in L% (Q). 0O

Theorem 5. Let .
o (¥o1) = S5 (x,0.1) and 5* () =u” (,0.1).

be the traces of the velocity u* on w. The traces 7* and s* satisfy the following inequality

[t esi-isnax - [ @7 (@4
and the following limit form of the Tresca boundary conditions
|,ur + v <k=s=0,
ort aeonwXx]0,T]. 45)
|,ur +vm :s*:i(;u:*+vm>
Moreover, the pair (u*, z*) satisfies the weak generalized equation of Reynolds
h
h3 x’ h x’ * * ~ ~
/ 1(2 )Vﬂ*— (2 ) (us*+vaast )+/<uu*+vaait) (x',¢,1)d¢ + F + U [Vydx (46)
[ 0

=0, Yy € H' (w)*,

with
h h
(x',h,t) = /F X', z,1) dz—gF(x',h,t),fJ(x,h,t)=—&/U(x,z,t)dz+();—hU(x,h,t),
0 0
z ¢ z
x zt // X', n,t dndé’ U(xzt)—//(1+|u Du* (x,n,t)dnd{.
0 0

Proof. For {#4), {@3), it is enough to follow the same techniques of*. To prove we integrate over (0, z), we note that
ou’ o [ou’ ou; o [ou or*
—p— == —L(¥,0,t) +v— [ = ) (¥',0,1) + z=——
"oz V0z<at> Hoy (¥.0.1) "az<at>(x )+ o
z
= _&/(1 + |u* ) u (x’,n,t) dn+/f,- (x’,n,t) dn
0 0

By integrating between 0 and z, we obtain

ou; ot 0s* ;2 g+
<;4.u* + va—t’> (X', z,1) = pzt’ + vza—’ + s+ va—t’ + 22 Z’;i (47)

z

z ¢
+a//(1+|u Du* (x n,t dnd // ; X', n,t dﬂd(j.
0

0



4|

We replace z by h (x’ ), hence

¢

or* ost h(X)p [

h(x') ;wl.*+v7 +;4sf+v;+ 3 +&//( + ) ut (x,n,t) dndg (48)
0 0

ox;

1

h

¢
//fz x',n,1) dndg.
00

Integrating (@7) from 0 to & (x'), we obtain

h h

()u*
M/ X't dC+V/ dag 49)
0

0
h (x’)2 " 611.* h (x’)3 on*
) [ﬂr. + VW o

1

as*

I

or

usi +v + +

=h(x')

h ¢ ¢
+&///(1+|u D u* x,r],t)dndéjdz—/// s (X' n.t) dndldz.
0 0 0 (V]

0

From (@8) and {@9), we deduce O
Theorem 6. The solution (u*, z*) of the limit problem (39) — is unique in L? (0, T, VZ) x L? (0, T, LS (a))).

Proof. Let us suppose that there exist two solutions (u*!, 7*!) and (u*2, z*?) of the limit problem — (@0). We take ¢ = u*?
then @ = u*! respectively in (39), and by summing the two inequality, we obtain

2 our'  our? au*l au*.‘z
3 / it Bt - dx'dz
p 0z 0z oz

Q

1
0 au;."l 0u*2 6ul*1 ixd
v 0z \ or az oz oz )Y
Q

2
+ /&((1+ u! ) < )u ) —u?)dx'dz
i=1 )
<0.
Thus, we find , )
i (u*l _u*2) li ‘ i (u*l _ %2 S 0
0z L2(Q)? 2dt |0z L2(Q)
By integrating this inequality over (0, t), we obtain
2
‘ i (U*l _ u*2 < 0.
oz L2(0.7, L)’
Using the Poincaré’s inequality, we find
u*l _ u*2 —
L2(0.1.v;)

To prove the uniqueness of the pressure z* in L? (O, T, L(z) (a))), we use the Reynolds equation (46). We get first

t
3
//%V (n'*l (x/’s)—n-*z (x,as))Vde'ds=0,
0 o
1

then choosing y = 7*! — 7*2, and Poincaré’s inequality, we get

' =722 aeinwx10,T].
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