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Abstract

Free Space Optical Communication has emerged as a promising technology for high-speed and secure data transmission between

ground stations on Earth and orbiting satellites. However, this communication technology suffers from signal attenuation due to

atmospheric turbulence and beam alignment precision. Low Earth Orbit satellites play a pivotal role in optical communication

due to their low altitude over the Earth surface, which mitigates the atmospheric precipitation effects. This paper introduces

a novel data path control law for satellite optical communication exploiting Artificial Intelligence-based predictive weather

forecasting and a node selection mechanism based on Reinforcement Learning. Extensive simulations on three case studies

demonstrate that the proposed control technique achieves remarkable gains in terms of link availability with respect to other

state-of-the-art solutions.
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Abstract
Free Space Optical Communication has emerged as a promising technology for high‐speed and
secure data transmission between ground stations on Earth and orbiting satellites. However, this
communication technology suffers from signal attenuation due to atmospheric turbulence and
beam alignment precision. Low Earth Orbit satellites play a pivotal role in optical communication
due to their low altitude over the Earth surface, which mitigates the atmospheric precipitation
effects. This paper introduces a novel data path control law for satellite optical communication
exploiting Artificial Intelligence‐based predictive weather forecasting and a node selection mecha‐
nism based on Reinforcement Learning. Extensive simulations on three case studies demonstrate
that the proposed control technique achieves remarkable gains in terms of link availability with re‐
spect to other state‐of‐the‐art solutions.
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1 INTRODUCTION

In today’s ever‐connected world, the demand for high‐speed, reliable, and secure data transmission has never been greater. The proliferation of

data‐intensive applications, such as streaming video1, cloud computing2, and the Internet of Things (IoT)3, continues to place unprecedented

strain on traditional communication networks. To meet these growing demands, the development of innovative communication technologies has

become imperative. Among them, Free Space Optics (FSO) has emerged as a promising solution to address these challenges.

1.1 Free‐Space Optical Communication

In the telecommunications domain, FSO indicates all those wireless communications which, instead of making use of radio carriers in the form of

a radio communication, make use of electromagnetic carriers belonging to the range of optical or infrared frequencies or wavelengths, aimed at

transporting information between a transmitter and a receiver4.
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FSO offers several advantages over traditional radio frequency (RF) communication systemswhen used in space‐based applications. In particular,

the main benefit of FSO communication relies on data transfer rates. Indeed, a FSO system based on lasers can achieve much higher data transfer

rates with respect to RF communications. This is due to the fact that laser light has a much shorter wavelength than RF waves: the wavelength of

laser light falls within the optical spectrum, typically in the range of 400 to 700 nanometres (nm), while RFwaves can havemuch longerwavelengths,

ranging from millimetres to meters5. The shorter wavelength of laser light allows for higher frequency modulation, which means that data can be

encoded onto the carrier signal at much higher frequencies. This enables a more significant number of data bits to be transmitted per unit of time.

Moreover, laser communication systems can exploit a larger portion of the electromagnetic spectrum, including multiple wavelength channels,

to transmit data simultaneously. This multiplexing capability increases the total data capacity of the communication link.

Other advantages of FSO systems over the RF counterpart rely on (i) the smaller divergence of the laser beam, which enables a higher concen‐

tration of optical power6, (ii) lower interference thanks to a point‐to‐point communication with a direct line of sight7, (iii) lower latency over longer

distances 8, and (iv) more robust security due to the inherent difficulty to intercept FSO signals without being located precisely in the path of the

beam 9.

However, FSO communication systems come also with drawbacks and limitations related to atmospheric turbulence. The latter can significantly

impact the performance of FSO system, causing most of the time (i) scintillation of the received optical signal10, (ii) beam wander 11, and (iii) beam

divergence 12.

The FSO link is established by means of an optical ground station (OGS), a facility designed for the reception and transmission of laser signals

from and to space assets. In general, the effects of adverse weather conditions on FSO systems becomemore pronounced as the distance between

the transmitter and the receiver increases. This is why a FSO link between an OGS and a satellite is typically operated by means of Low Earth Orbit

(LEO) satellites.

1.2 LEO Satellites

LEO satellites play a pivotal role in the advancement of FSO communication. Situated at altitudes between 180 and 2,000 km above the Earth’s

surface 13, LEO satellites have relatively short orbital periods, typically completing one orbit around the Earth in 90‐120 minutes14: this frequent

orbiting allows for better coverage and faster data transmission.

Due to their relatively low altitude, atmospheric effects, such as signal attenuation due to rain fade and atmospheric turbulence, have a reduced

impact on a FSO system compared to GEO satellites. This results in more reliable and consistent FSO communication links, characterised by low

latency, high data throughput and improved signal strength, making them a preferred choice for real‐time, high‐data‐rate FSO applications15.

Moreover, this type of satellite can be deployed in large constellations16,17, which provide continuous global coverage and improve the overall

reliability of the FSO communication. This aspect is crucial for applications that require uninterrupted connectivity, such as satellite‐based internet

services.
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LEO satellites are commonly used in the space industry for scientific research and Earth observation purposes and for military operations, as

well as for communication, navigation, and remote sensing applications18.

On the other hand, LEO satellites present two main disadvantages compared with the GEO ones. The first one deals with their shorter lifespan,

requiring periodic orbital adjustments to maintain their position in the orbit, or replacements of units within the fleet19,20. The second one is related

with visibility issues: since LEO satellites’ rotation speed is much higher than the Earth’s rotational speed, FSO terrestrial signals have to be handed

over to another satellite within the fleet. A satellite handover is performed when the serving satellite is below a minimum elevation angle relative

to the corresponding OGS: this may have a significant impact on the communication quality, because of communication loss during the handover

process 21.

Despite these downsides, LEO satellites represent the ideal technology for optical satellite communications. However, problems related to laser

signal attenuation in the presence of adverse atmospheric conditions remain. To address these technological difficulties, various methodologies

have been proposed by the scientific community.

1.3 State of the Art

Researchers and engineers have created a variety of strategies and technologies to solve the problems of power attenuation in FSO systems due

to atmospheric fading. A standard procedure rely on adaptive optics22,23. Systems implementing this technology correct for turbulence‐induced

distortions by changing the geometry of optical components like mirrors or deformable lenses based on real‐time observations of air turbulence.

This technique aids in optical beam stabilisation and minimises scintillation effects.

Other techniques rely on filtering and error correction, in which proper filters and modulation methods try to filter out noise coming from the

interference of fog or clouds24. Since inmany situations it is not possible to filter out the noise, it is possible to employ broader laser beams to reduce

the effects of beam spreading brought on by turbulence12. This strategy, nevertheless, could result in slower data transfer rates25. Eventually,

another common standard approach is to implement redundant FSO lines, equipping satellites or OGSs with more than one laser communication

terminal (LCT) 26, or FSO/RF hybrid systems27, in order to enhance the communication system reliability.

The aforementioned fading mitigation techniques intervene at the hardware level on the individual receiver or transmitter, but do not take into

consideration any changes to the architecture or topology of the communication system.

In order to limit bad weather effects, it is possible to intervene at architecture level linking in a wired fashion two or more OGSs within a same

network. In this way, if the signal suffers some degradation in an area, the other OGSs, located in areas where the weather is favourable, may

compensate said attenuation. The communication loss is mitigated by continuously forwarding the signal to the OGS(s) under untoward weather

conditions, at least until the latter improve. This technique is called site diversity28.

The site diversity has proven to be a disruptive approach for the reliability of FSO communications, since it (i) enables geographical diversity to

reduce the likelihood of simultaneous signal degradation at all sites28, (ii) realises spatial separation to ensure that the OGSs locations are subject
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to different weather patterns and atmospheric conditions29, and (iii) involves using multiple antennas at each site, pointing in different directions

or at different elevation angles. This configuration allows the system to quickly switch between antennas to find the clearest signal path, thus

improving the link availability and reducing the number of outages or dead times30.

Although the site diversity technique adds complexity and high cost to the infrastructure, the benefits in terms of improved reliability and

availability often justify its implementation, particularly for mission‐critical applications.

Said technique employs sophisticated control and switching mechanisms to monitor the quality of signals received at different sites in real‐time.

When one site experiences signal degradation, the system automatically switches to an alternate site with better signal quality. These switching

mechanisms were initially manual and human‐driven, while nowadays are usually based on statistical analysis of weather forecasts31,32,33,34, with

the switching system being controlled by intelligent algorithms.

The choice of which OGS to point at or to transmit from is driven by a series of Key Performance Indicators (KPIs) and follows an optimal

routing/resource allocation logic35,36. The most important KPI for any satellite communication system is the link availability, but other design

drivers for the multi‐station site diversity algorithms may include (i) the energy consumption for the movement/re‐pointing of LCTs, which impacts

on the total power budget for the on‐board payload, (ii) the topology of the OGSs network (i.e., specific OGSs network topologies may prevent

the possibility to re‐route the user traffic from one OGS to the others), (iii) user plane latency and jitter, and (iv) on‐board switching capabilities.

Since the installation of redundant OGSs may represent a waste of investment for the network operator, several works focused on the minimi‐

sation of the number of required OGSs to guarantee a minimum given system performance37,38,39. A different optimisation approach relies on the

hypothesis that OGSs have been already positioned and the problem focuses on how to choose the set of OGSs to connect to in order to maximise

the availability. In 40 authors calculate the correlated and uncorrelated availability for OGS networks in the scenario of space‐to‐ground optical

communication links with GEO satellites. An efficient optimisation algorithm is presented, in order to choose the best OGS starting from five years

of cloud data. It is shown how many OGSs deployed in a very wide area can guarantee a network availability near to 100%. A complementary opti‐

misation approach is proposed in 41, with the selection of the minimum number of ground stations satisfying the monthly availability requirements

of the total network, so minimising service and maintenance costs. Eventually, in the scenario presented in42, the optimisation process consists

in selecting the best ground station among several candidates, trying to provide a reliable connectivity through large‐scale site diversity. Results

show that the optimal choice mostly depends on the altitude and the zenith angle of the set of ground stations.

Recent advancements in artificial intelligence (AI), particularly in the field of Reinforcement Learning (RL), have opened up new possibilities for

optimising satellite communication strategies. Authors in26 propose an AI‐based predictive handover strategy for optical communications between

a GEO satellite equipped with two LCTs and an OGS network, making use of machine learning–based weather forecasts. Other works making

use of AI and RL focused on the resource allocation and traffic splitting for RF satellite communications43,44,45,46, shifting attention from the OGS

network level to the one of the LEO constellation.

However, none of the above‐mentioned works have tackled the issue of defining an intelligent handover and path planning procedure for a

FSO–based point‐to‐point communication system between terrestrial OGS networks and a LEO fleet.
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In this paper a mixed Deep Learning (DL) for weather forecasts and RL approach for intelligent signal routing is proposed, in order to tackle the

problem of minimising the outage probability. The main innovations of the present work are:

• multi–hop data routing between two OGS networks that cannot communicate directly, but only passing through a LEO satellite fleet;

• weather predictions over the OGSs areas via Supervised Learning exploiting historical hourly weather data;

• a centralised control law realised through an intelligent agent exploiting the RL framework with an intrinsic optimisation of the link availability.

The remainder of this paper is organised as follows: Section 2 provides general background on time series machine learning and the RL founda‐

tions. Section 3 presents the mathematical modelling of LEO satellites’ and Earth’s dynamical motion. In Section 4 extensive simulations show the

effectiveness of the proposed approach with respect to other benchmark solutions, and, eventually, Section 5 sums up the carried out research,

pointing out the achieved results, describing as well its limitations and outlining future research directions.

2 PRELIMINARIES

In this section the mathematical foundations of Recurrent Neural Networks (RNNs) and RL control will be presented.

2.1 LSTM Neural Networks

An RNN is a type of artificial neural network designed for processing time sequences of data. Unlike traditional feedforward neural networks,

which have a fixed architecture, RNNs are equipped with loops or recurrent connections that allow them to store memory about previous inputs47.

This memory enables RNNs to process sequences of data, such as time series, natural language, or any other data with a temporal or sequential

structure.

The long‐short term memory (LSTM) network was first suggested in48 to address the well‐known problem of vanishing gradient that charac‐

terises RNNs. The LSTM structure is therefore ideally adapted to handle time‐series data, such as the one we are addressing in our work. By

specifying a certain time window Tp of length TW, the AI model tries to predict weather at time k+1 by looking at the actual weather encountered

in the TW previous time instants, i.e.:

Tp =
{
k, k – 1, . . . , k – TW – 1

}
. (1)

At their core, LSTMs are comprised of memory cells that enable them to store and manipulate information over extended sequences. These

memory cells have three crucial components:

1. Cell State: it is like a conveyor belt that runs through the entire LSTM network. It can transport information across time steps without much

modification. The cell state can be updated, allowing it to capture relevant information and discard irrelevant details;
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2. Hidden State: also known as the output state, carries information from previous time steps to the current one. It acts as a working memory

that helps LSTMs remember past information that is crucial for making predictions or decisions;

3. Gates: LSTMs employ three types of gates to control the flow of information:

• Forget Gate: this gate decides what information from the cell state should be discarded or kept. It takes as input the previous hidden state

and the current input and outputs a value between 0 and 1 for each component of the cell state, where 0means ”forget” and 1means ”keep”;

• Input Gate: this gate determines what new information should be added to the cell state. It computes a candidate cell state and decides

which parts of it should be added to the current cell state;

• Output Gate: the output gate controls what information should be output as the hidden state. It takes the current cell state and the input,

and it generates the new hidden state.

In this work, each LSTM network is trained on local OGS meteorological data, because if not so it would be difficult for a single predictor to

generalise across the various climates of the OGSs’ geographic regions, which can actually be located at very different latitudes.

2.2 Markov Decision Process and Reinforcement Learning

Reinforcement Learning is one of the branches of Machine Learning: it deals with intelligent agents performing actions over an environment and

then observing its state and the reward function49. The agents’ goal is to find a policy which maximizes the expected cumulative reward, without

being aware of the dynamical equations governing the environment (data–driven control). Usually, a RL problem is formalized through a Markov

Decision Process (MDP), defined through a tuple (S ,A, P, R, γ), where:

• S is the state space;

• A is the action space;

• P(s′|s, a) is the probability that the environment transitions from state s to state s′ when the agent chooses the action a;

• R(s, a, s′) is the immediate reward the agent gets when transitioning from state s to s′ after taking action a;

• γ ∈ [0, 1) is the discount factor, representing the agent’s preference for immediate rewards (γ ≈ 0) over the future ones (γ ≈ 1).

The objective of the agent in an MDP is to find a policy π : S → A that maximizes the cumulative function of the rewards over a (potentially)

infinite horizon 49. Usually, said function is defined as:

Gk =
∞∑
i=0

γkRk+i+1, (2)
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When the transition probability P(·) is not known, it is possible to rely on RL techniques, in which the agent learns the optimal policy through

the experience. All MDPs handled through RL require the estimation of a value function or an action‐value functionQπ(·) for a given policy π(·) 49:

Qπ(s, a) = Eπ [Gk|sk = s, ak = a], ∀s ∈ S , ∀a ∈ A. (3)

Action‐value functions satisfy recursive relationships through the Bellman Equation, which expresses a link between the action‐value function

of a state and the action‐value function of the next state:

Qπ(s, a) = Eπ [Gk|sk = s, ak = a]

= Eπ [Rk+1 + γGk+1|sk = s, ak = a]

=
∑
s′
P(s′|s, a)(R+ γ

∑
a′
π(a′|s′)Qπ(s′, a′)),

(4)

where (s′, a′) is the next state‐action couple with respect to (s, a). Hence, solving an MDP through RL means finding the optimal action‐value

function Q∗(s, a) = maxπ Qπ(s, a) for which it holds the Bellman principle of optimality49:

Q∗(s, a) =
∑
s′
P(s′|s, a)(R+ γmax

a′
Q∗(s′, a′)). (5)

One of the most popular and used RL algorithm to estimate Q∗(s, a) is the Q‐Learning 50; said algorithm updates the Q‐values according to the

following law:

Q(sk, ak)← (1 – α)Q(sk, ak) + α[Rk+1 + γmax
a
Q(sk+1, a)]. (6)

where α is the so‐called learning rate. A popular choice for the policy π(·) is the ε‐greedy policy through which the agent selects with probability

ε a random action and with probability 1 – ε the action associated to the maximum value in the Q table. For finite MDPs, it has been proven that

the Q‐Learning algorithm is able to converge to the optimal Q‐function if the Q‐Learning update rule given by (6) is used and if the learning rate

α satisfies the following conditions: ∑
k

αk =∞,
∑
k

α2
k <∞. (7)

This condition requires that α ∈ [0; 1) which translates in the fact that each state‐action pair is visited infinitely often. By adopting an ε‐greedy

policy, this condition can be stochastically satisfied. The pseudocode of the algorithm has been reported in Algorithm 1.



Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven Optical Communications 7

Algorithm 1 Q‐Learning
Inputs: learning rate α ∈ [0, 1); discount rate γ ∈ [0; 1]; small ε > 0

Output: Q(s, a)

1: Initialize Q(s, a), ∀s, ∀a
2: for all episodes do
3: reset s
4: for each step of the episode do
5: choose action a following ε-greedy policy
6: perform action a and observe s′, r′

7: perform Q-Learning update rule over Q(s, a)
8: s← s′

9: end for
10: end for

3 MODELLING

Let us consider a FSO–like communication system made by two OGS networks, one transmitting data from Ntr OGSs and the other one acting as

receiver with Nre stations. Each of the two zones can be subject to different atmospheric conditions, going from sunny to cloudy to stormy, which

affect the data delivery from the transmitting to the receiving zone. The two sets of OGSs cannot communicate using terrestrial wired or wireless

technologies, but they must rely on a LEO constellation composed of Nsat satellites. The communication is a point–to–point one realised through

laser beams. The system scenario is depicted in Fig. 1.

F I GUR E 1 System Scenario.

In what follows, a detailed mathematical modelling of the overall communication system is presented, including the formulation of the orbiting

LEO satellites equations of motion, the ground–to–satellite and inter–satellite visibility assessment, and the MDP characterisation.
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3.1 Satellite equations of motion

Low Earth Orbit satellites are considered one of the best options for satellite communication due to their short orbital period, which provides wide

coverage and an high service availability.

In order to define a LEO constellation of satellites, the orbit itself must be characterised. Given an inertial frame of reference and an arbitrary

epoch (a specified point in time), exactly six parameters are necessary to unambiguously define an arbitrary and unperturbed orbit. These are the

semi‐major axis a, the eccentricity e, the inclination i, the argument of perigee ω, the longitude of the ascending node Ω, also denoted as the Right

Ascension of the Ascending Node (RAAN) for geocentric orbits, and the true anomaly f 51, 52.

The orbital parameters can be used to compute, at every epoch, the position and velocity of the satellite around that orbit. To describe the

motion of satellites, it is usually used a coordinate frame which is inertial and fixed with respect to the stars, namely the Earth Centered Inertial

(ECI) reference frame53. In particular the x–y plane coincides with the equatorial plane of Earth. The x‐axis is permanently fixed in a direction

relative to the celestial sphere, which does not rotate as Earth does. The z‐axis lies at a 90◦ angle to the equatorial plane and extends through the

North Pole (see Fig. 2).

F I GUR E 2 Earth Centered Inertial reference frame



Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven Optical Communications 9

Let us define as Rx(ϕ), Ry(η) and Rz(ψ) the standard rotation matrices:

Rx(ϕ) =


1 0 0

0 cosϕ sinϕ

0 – sinϕ cosϕ


(8)

Ry(η) =


cos η 0 – sin η

0 1 0

sin η 0 cos η


(9)

Rz(ψ) =


cosψ sinψ 0

– sinψ cosψ 0

0 0 1


(10)

Algorithm 2 shows how to pass from the orbital parameters to the satellite position and velocity in the ECI coordinates.

Algorithm 2 Orbital Parameters to ECI coordinates
Inputs: a, e,Ω, i,ω, f
Parameters: µ = 3.986004418× 1014[m3/s2]
Outputs: r, v

p = a(1 – e2) ▷ semilatus rectum
cf = cos f, sf = sin f
r = p/(1 + e(cf)) ▷ Safe Division
v =

√
mi/p ▷ Safe sqrt and safe division

Define a rotation matrix based on angles and axes
ang =

[
ω i Ω

]T
axes =

[
3 1 3

]T
M = ang2mat(ang, axes)

Compute position and velocity in ECI
Transpose M
r← rM

[
cf sf 0

]T
v← vM

[
–sf e+ cf 0

]T

At this point it is possible to define the satellite equations of motion as a second‐order differential equation which is dependent on the satellite

position vector r:

r̈ = –µ
r
∥r∥3

(11)

where ∥r∥ is the euclidean norm of the position vector and µ = 3.986004418× 1014 [m3/s2] is the geocentric gravitational constant.
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3.2 Visibility Analysis

In order for the satellite to exchange information with an OGS or with another satellite there is a condition which needs to be analysed, the

visibility. The latter is a very important concept since it can determine if a certain information exchange can happen or not and how good is the

communication channel in terms of noises. Visibility can be of two kind: (i) geometric visibility, which is related to the fact that the relative position

vector between one satellite and the other does not have to intersect the Earth, and (ii) electronic visibility, which deals with analysing the elevation

angle and Carrier to Noise ratio (C/N0). The angle of elevation is the angle between the horizontal line and the line of sight which is usually above

the horizontal line. The C/N0 expresses how high is the noise component with respect to the information carrier: the lower the ratio is, the more

the noise is prevalent and vice‐versa.

Since this work does not focus on the quality of the communication link, some assumptions have been made to simplify the analysis:

1. The information exchanged between the satellite and the OGS and between one satellite and another one is always good with a negligible

amount of noise;

2. The satellite is visible by the OGS if the elevation angle is greater than a certain threshold, in order to exclude the case of interference of

buildings in the vicinity of the OGS;

3. The satellite is visible with respect to another one if the geometric visibility condition is satisfied.

In the following subsections the implementation of the visibility algorithms related to assumptions 2 and 3 will be detailed.

3.2.1 Ground Station to Satellite Visibility

As already explained, a satellite is considered visible from anOGS if the elevation angle is above a certain threshold. The elevation angle is computed

with respect to the horizontal plane of the OGS, so the East‐North‐Up (ENU) coordinate frame has been considered, which is the reference frame

of the ground station’s antenna. This implies a change of coordinates of the satellite position and velocity vectors from the ECI reference frame to

the ENU frame. This transformation can be performed by applying two rotations to the original coordinates: the first one to pass from the ECI to

the Earth Centered Earth Fixed (ECEF) coordinates, the second one to pass from the ECEF to ENU coordinates.

Since the ECEF reference frame is non‐inertial and is rotating along with the Earth, a new dynamic equation must be introduced to take this

rotation into account. Defining θ as the angle of rotation of the Earth, the latter’s rotational dynamics can be easily written as:

θ̇ = ωE (12)
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where ωE = 2π/86400 ≈ 7.29 × 10–5 [rad/s] is the angular velocity of the Earth. In Algorithm 3 and Algorithm 4 the steps to compute the two

rotations are detailed. In the following, the notation xRF with RF ∈ {ECI, ECEF, ENU} denotes the reference frame of the generic vector x, while the

notation xRF,c with c ∈ {x, y, z} denoting the three components of the generic vector x expressed in the RF coordinates.

Algorithm 3 ECI to ECEF coordinates transformation
Inputs: rECI, vECI, θ
Parameters: ωE

Outputs: rECEF, vECEF

R = Rz(θ)
rECEF = RrECI

a = vECI,x + ωErECI,y

b = vECI,y – ωErECI,x

c = vECI,z

ṽ =
[
a b c

]T
vECEF = Rṽ

Algorithm 4 ECEF to ENU coordinates transformation
Inputs: rECEF,ϕ, ν ▷ ϕ, ν: lat and long of the GS
Outputs: rENU

R =


– sin ν cos ν 0

– cos ν sinϕ – sin ν sinϕ cosϕ
cos ν cosϕ sin ν cosϕ sinϕ


rENU = RrECEF

As a last step, from the ENU coordinates it is possible to compute the Azimuth (A), Elevation (E) and Range (ρ) of the satellite with respect to the

OGS’s antenna. For our case only the elevation angle will be used in the visibility analysis. Algorithm 5 details the mathematical steps to compute

these three parameters.

Algorithm 5 ENU to Azimuth, Elevation, Range parameters
Inputs: rENU

Outputs: A, E, ρ

ρ = ∥rENU∥
σ = rENU/ρ
E = arcsinσz [rad]
A = arctan (σx,σy) [rad]
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3.2.2 Satellite to Satellite Visibility

Due to the short field of view of the LEO satellites, in order to exchange information between two sites far away from each other, a constellation of

satellites is needed. This implies the creation of a communication link between two satellites of the same constellation in order to reach the remote

site efficiently. The concept of visibility applies also in this case. To simplify the analysis only the geometric visibility is considered. Algorithm 6

details the procedure for the geometric visibility check.

Algorithm 6 Geometric Visibility Check between satellite A and B
Inputs: rA, rB
Parameters: REarth = 6378136.3 [m]
Outputs: isSatVis [bool]

Initialize output
isSatVis = False
norm = ∥rA∥

if rA == rB then ▷ Same point in space
isSatVis = True
return isSatVis

else
rC = rA – rB ▷ Relative position vector
min dist = Minimum distance between rC and the centre of the Earth
if min dist ≥ REarth then

isSatVis = True
end if
return isSatVis

end if

3.3 Markov Decision Process Formulation

The system dynamics described above has been translated to a MDP in order to exploit the RL framework.

The state space is

S =< t >, t = 0, . . . , T, (13)

where t is the generic time step and T is the final step within the transmission window period.

The action space is

A =< OGST, SAT1, SAT2, OGSR >, (14)

where OGST is the index of the transmitting OGS, SAT1 is the index of the first satellite receving data from the transmitter, SAT2 is the index of

the second satellite receiving data from the first one, and OGSR is the index of the receiver.
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Eventually, the reward function models the success rate of the end‐to‐end handover and is defined in the following way:

R =


+1, if transmission is successful

–1, otherwise

. (15)

4 SIMULATIONS AND RESULTS

In order to simulate and validate our control approach, two geographical areas from two different continents have been considered, namely:

1. the east coast of United States and Canada, with Ntr = 10 transmitting OGSs located in the main cities, as in Fig. 3;

2. the territory of Israel, with Nre = 6 receiving OGSs, shown in Fig. 4.

F I GUR E 3 Map of the transmitting OGSs in the east coast of North–America.

To perform the weather forecast for all the OGS zones, the LSTM deep neural network was trained on a publicly available weather dataset54

covering approximately 5 years of weather data (from October 1, 2012 to November 30, 2017), with temporal resolution TR = 1 h. The available

features for training are the following:

• humidity

• atmospheric pressure

• wind direction

• temperature

• wind speed

• month of the year
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F I GUR E 4 Map of the receiving OGSs in Israel.

• weather conditions within the time window prediction Tp.

The missing data for each feature was filled in by taking up the numerical value of the feature of the previous entry: this approach makes it

possible not to break the hourly time sequence of the meteorological data.

As per the weather, the dataset contains a very detailed description of the weather conditions. The latter have been mapped into binary labels

for training the model: label 0 has been assigned to clear sky, few/scattered clouds and haze, which correspond to mild weather conditions allowing

satellite–OGS communication, whereas the label 1 indicates inclement weather which does not allow a successful data transmission.

For the training phase, the data from October 1, 2012 up to December 20, 2016 have been selected. The model accuracy has been evaluated

by splitting the remaining part of the dataset with respect to the four seasons, in accordance with the 2016 and 2017 astronomical tables55.

The chosen LSTM model architecture is depicted in Fig. 5 and the selected hyperparameters are the following:

• number of epochs E = 5

• Adam optimizer with constant learning rate η = 0.001

• time window length TW = 24

• dropout rate ζ = 0.2.

The LSTM model performance on unseen data (from December 21, 2016 to November 30, 2017) against all seasons and per each city, in

terms of test accuracy, have been reported in Tab. 1. It is evident that the neural network model is able to predict correctly almost all the weather

conditions within the test set, thus representing a powerful tool to estimate in advance the precipitation or thick clouds probability over the zone

in which the OGS is located.
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F I GUR E 5 LSTM Neural Network Architecture. The network is made by two LSTM layers and two Dense layers, each one followed by a
Dropout layer, with the final output layer having one neuron representing bad weather probability.

TAB L E 1 LSTM accuracies per season

City Winter Spring Summer Autumn

New York 0.984 0.986 0.982 0.989
Montreal 0.988 0.981 0.963 0.974
Boston 0.993 0.989 0.987 0.989
Chicago 0.973 0.978 0.952 0.971
Charlotte 0.976 0.976 0.972 0.975
Pittsburgh 0.991 0.984 0.979 0.988
Detroit 0.997 1.000 0.996 0.998

Kansas City 0.992 0.990 0.983 0.990
Toronto 0.999 0.999 0.985 0.988

Indianapolis 0.992 0.986 0.981 0.992
Beersheba 0.944 0.956 0.966 0.998

Tel Aviv District 0.977 0.955 0.966 0.991
Eilat 0.932 0.923 0.968 0.999
Haifa 0.944 0.982 0.987 0.999

Nahariyya 0.989 0.985 0.945 0.997
Jerusalem 0.991 0.981 0.959 0.998

The RL–based controller hyperparameters for the training phase have been selected as follows:

• γ = 0.9

• ε0 = 1 with episodic decay law with respect to the generic episode η:

ε(η) = e
–
η

βNep ,

with β = 0.2 being the decay rate and Nep the number of episodes

• α0 = 1 with episodic decay law with respect to the generic episode η:

α(η) = e
–
η

1000 .

As for the evaluation phase, the controller performance has been figured out over a transmission period of T = 2 days.
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The AI‐based control law has been evaluated in terms of link availability, defined as follows:

LA =
NS
NT
, (16)

where NS is the number of times a successful data transmission is achieved, and NT is the total number of transmissions attempted.

Results with respect to the above–defined KPI have been compared with other benchmark routing approaches in the FSO domain, listed as

follows:

• B1. Both transmitting and receiving OGSs and both LEO satellites are chosen randomly;

• B2. Transmitting and receiving OGS are chosen with a reactive approach based on the current weather condition, and the satellites are chosen

with the min range technique, following the reasoning and modelling provided in56;

• B3. Transmitting and receiving OGS are chosen with a reactive approach based on the current weather condition, and the satellites are chosen

as those with the maximum elevation angle;

• B4. Transmitting and receiving OGS are chosen with the LSTM–based weather forecasts, and the satellites are chosen with the min range

technique;

• B5. Transmitting and receiving OGS are chosen with the LSTM–based weather forecasts, and the satellites are chosen as those with the

maximum elevation.

The proposed control approach has been tested over three different case studies, in which the communication between the twoOGSs networks

is realised with different LEO constellations:

• Case study 1. Nsat = 15 satellites from the Iridium constellation;

• Case study 2. Nsat = 15 satellites from the Starlink constellation;

• Case study 3. Nsat = 30 satellites given by the combination of satellites from case study 1 and case study 2.

The satellite orbital parameters and generic data have been gathered via Two–Line Elements (TLEs) files from57. A Two–Line Element file is a

data format encoding a list of orbital elements of an Earth‐orbiting object for a given point in time.

The propagation of the satellites motion over time is performed by using the 4‐th order Runge‐Kutta algorithm as integrator with fixed time

step dt = 1 minute.

All the simulations have been carried out using Tensorflow framework on Python3.10 on a machine equipped with an Intel Core i5‐10210U

CPU and 16GB RAM.
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F I GUR E 6 Season–related reward trend of the RL controller for the Iridium case study.
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F I GUR E 7 Season–related link availability comparison for the Iridium case study.

4.1 Iridium Constellation

In this case study the number of episodes for training the RL controller has been set as Nep = 100. The season–related cumulative reward trend

over the training episodes is shown in Fig. 6. In all the four cases, the reward converges to a steady–state value in terms of data transmission

success rate, which is higher in the autumn season due to the presence of a higher number of hours with favourable weather conditions both at

transmitting and receiving zone.

The comparison of the performance of the proposed approach with respect to the benchmark solutions is shown in Fig. 7. It is worth noting that

the RL controller together with a LSTM–based weather prediction achieves higher link availability with respect to the other standard techniques

for FSO communication.
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F I GUR E 8 Season–related reward trend of the RL controller for the Starlink case study.
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F I GUR E 9 Season–related link availability comparison for the Starlink case study.

4.2 Starlink Constellation

In this case study the number of episodes for training the RL controller has been set as Nep = 100. The cumulative reward trend is shown in Fig. 8.

For all seasons, the reward converges to a steady–state value in terms of data transmission success rate, as in the previous case study with the

Iridium constellation.

Fig. 9 depicts the comparison of the performance of the RL controller with respect to the benchmark solutions. The proposed control strategy

achieves the best performances in terms of link availability. However, it shall be noticed that the overall performances are worse with respect to

those achieved by means of the Iridium constellation. As an example, in the autumn season the RL controller guarantees LA = 0.401 using Starlink

satellites and LA = 0.499 with Iridium satellites: similar results hold for the other seasons. This is due to the fact that the Starlink constellation

orbits have been designed to cover mainly the North–American continent, thus guaranteeing poor coverage within the Israel territory.
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F I GUR E 10 Season–related reward trend of the RL controller for the mixed case study.
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F I GUR E 11 Season–related link availability comparison for the mixed case study.

4.3 Mixed Constellation

In the last case study the number of episodes for training the RL controller has been increased toNep = 300, in order to allow a broader exploration

due to the availability of double the amount of LEO satellites with respect to the previous case studies.

Fig. 10 and 11 show training and evaluation performances against all seasons. As expected, the increased number of satellites guarantees higher

cumulative reward trend and, hence, link availability for the FSO transmission. This is due to the fact that increasing the number of satellites leads

to a wider coverage over the Earth surface: this allows to establish a successful communication with guaranteed inter–satellite visibility for longer

periods. Also in this case, the performances of the proposed control algorithm are better than the benchmark ones.
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5 CONCLUSIONS

In this work a mixed AI and RL approach for FSO point‐to‐point communication has been proposed. This technique exploits weather prediction

algorithms to improve the quality of the communication link, as well as a dynamical data–driven optimisation for maximising the link–availability

in a data transmission scenario between two terrestrial OGS networks communicating through LEO satellites. The proposed decision and control

approach has been compared with several benchmark solutions, achieving better performances in all seasons over the three analysed case studies

in which different LEO constellations have been exploited.

However, some limitations hold. The developed RL–based algorithm does not take care about the frequent rotation of the LCT due to the OGS–

satellite and inter–satellite dynamical switching, and no physical considerations on signal attenuation and beam spreading due to atmospheric

condition and relative distance have been made.

Future works could focus on the problems defined above, proposing control algorithms that take signal attenuation into consideration,

introducing link budget and beam spreading modelling, also with strategies aimed at saving energy on the various LEO devices.
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