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Abstract

The selection of chemical reactions is directly related to the quality of synthesis pathways, a reasonable reaction evaluation
index plays a crucial role in the design and planning of synthesis pathways. Since the construction of traditional reaction
evaluation indicators mostly rely on the structure of molecules rather than the reactions themselves, considering the impact
of reaction agents poses a challenge for traditional evaluation indicators. In this study, we first propose a chemical reaction
graph descriptor that includes the mapping relationship of atoms to effectively extract reaction features. Then, through pre-
training using graph contrastive learning and fine-tuning through supervised learning, we establish a model for generating the
probability of reaction superiority (RSscore). Finally, to validate the effectiveness of the current evaluation index, RSscore
is applied in two applications: reaction evaluation and synthesis routes analysis, which proves that the RSscore provides an

important agents-considered evaluation criterion for Computer-Aided Synthesis Planning (CASP).
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ABSTRACT:

The selection of chemical reactions is directly related to the quality of synthesis pathways, so a reasonable
reaction evaluation index plays a crucial role in the design and planning of synthesis pathways. Since the
construction of traditional reaction evaluation indicators mostly rely on the structure of molecules rather
than the reactions themselves, considering the impact of reaction agents poses a challenge for traditional
evaluation indicators. In this study, we first propose a chemical reaction graph descriptor that includes the
mapping relationship of atoms to effectively extract reaction features. Then, through pre-training using graph
contrastive learning and fine-tuning through supervised learning, we establish a model for generating the
probability of reaction superiority (RSscore). Finally, to validate the effectiveness of the current evaluation
index, RSscore is applied in two applications: reaction evaluation and synthesis routes analysis, which proves
that the RSscore provides an important agents-considered evaluation criterion for Computer-Aided Synthesis
Planning (CASP).



1. Introduction

Chemical reaction selection and design play a key role in drug and material synthesis.! The synthesis con-
ditions (temperature, pressure, solvents, etc.), time and yield of the product can be greatly optimized
through selecting an appropriate chemical reaction pathway. Therefore, the design of evaluation indicators
for Computer Aided Synthesis Planning (CASP) has evolved in recent years.>” CASP evaluation indica-
tors are mainly divided into two catalogs: expert knowledge-based evaluation indicators®° and synthesis
complexity /accessibility-based evaluation indicators.!917 For expert knowledge-based evaluation indicators,
the rank of synthesis results are determined by experts.®? Although this kind of methods have a high confi-
dence level, it still suffers from ambiguity and lack of objectivity. So, it is difficult to be applied in retrosyn-
thesis tasks and provide an objectivity guidance on synthesis route.® For synthesis complexity /accessibility-
based evaluation indicators, the feasibility of synthesis is qualified by molecular structures and the reaction
relationship between reactants and products.!%!7 Although synthesis complexity /accessibility evaluation in-
dicator eliminates the ambiguity and objectivity problems, the influence of reaction agents and conditions
are still unable to be considered in these indicators.

Here, a brief overview of existing synthesis complexity/accessibility-based evaluation indicators is given.
SAscore!® uses Extended Connectivity Fingerprints (ECFPs) '® fragment analysis obtained from the com-
pounds of PubChem database!®. According to the frequency of each fragment occurrence, each fragment
is assigned a numerical score. After combining the fragment score with the penalty for complexity and
the bonus for symmetry, SAscore is able to measure compound synthesis accessibility on a high-throughput
scale. SAscore is widely used in guiding synthesis directions in retrosynthesis.?%?! Based on the assumption
that the complexity of the reactants is lower than products, a data-driven metric SCscore'* was designed
to describe real syntheses. Trained by 22 million reactant-product pairs from the Reaxys?? database, SC-
score is able to describe the complexity of the synthetic route.* Although this evaluation metric differs from
the metric of synthetic accessibility, it can also be used as a guide for retrosynthesis through the Morgan
Fingerprints input. SYBA'® is a fragment-based method for the rapid classification of the synthesis diffi-
culty of organic compounds. It uses Bernoulli Naive Bayes classifier to assign SYBA score contributions
to individual fragments based on their frequencies in the database of easy- (ES) or hard-to-synthesize (HS)
molecules. Although it can be used to quickly rank large molecular datasets for high-throughput screening
or molecular design, it still cannot compete with more sophisticated synthetic path reconstruction methods
that enable the incorporation of other factors?®. RAscore and GASA are the evaluation metrics using a simi-
lar method in retrosynthesis accessibility.!%1” Machine Learning (ML) is used in these methods to generate
the probability of retrosynthesis accessibility. The data-driven models of RAscore and GASA were trained
by using ES or HS labels generated by multistep retrosynthetic planning algorithm such as Retro*?* and
AiZynthFinder.2> Although these developed evaluation metrics are able to clearly determine the difficulty
of molecular synthesis, the impact of reaction agents is still unable to be considered.

With the development of ML, Graph Neural Networks (GNN) are gradually used in chemistry. In addition to
predicting molecular thermodynamic properties in the dataset such as QM9,26-2? it has also been used in mo-
lecular generation,3?3!reinforcement learning for molecular design,3?molecular representation learning33-37
and reaction yield prediction® in recent years. For the molecular representation learning method, SMILES
Contrastive LeaRning (SMICLR) framework was proposed which embraces multimodal molecular data. It
jointly trains a graph encoder and SMILES encoder to perform the contrastive learning. Through data
augmentation on graphs and SMILES sequences, SMICLR model successfully reduced the prediction er-
ror for the energetic and electronic properties of the QM9 dataset.?> MolCLR is a self-supervised learning
framework which performs graph data augmentation and contrastive learning method on a large unlabe-
led molecular database to achieve representation learning of molecules. Benefiting from pre-training on a
large unlabeled database, MolCLR even achieves state-of-the-art results on several challenging benchmarks
after fine-tuning.>*GeomGCL designs a novel geometric graph contrastive scheme to enable collaborative
supervision between 2D and 3D molecular graph geometric views, aiming to improve model generalization
ability on molecular graph classification and regression.?® MoCL is a contrastive learning framework which



utilizes domain knowledge at both local and global levels to learn molecular representations. By replacing
valid substructures with bioisosteres that share similar properties, MoCL achieves accurate prediction of
molecular properties, providing a suitable and powerful augmentation method for molecular graph.?¢ KCL
builds a knowledge graph data augmentation module by using fundamental chemical attributes to connect
atoms that are not directly connected by bonds.3” By using a double MPNN model, extensive experiments
demonstrated that KCL obtained superior performance against state-of-the-art baselines on eight molecular
datasets, demonstrating the feasibility of the framework for molecular representation learning. In summary,
contrastive learning method shows a better performance on molecular properties prediction. It illustrates
that contrastive learning method is able to help the model extract more features and improve prediction
effect of molecular properties.

In this work, we migrate the generation method of molecular synthesis accessibility to reaction superiority
and design a reaction total atom-atom mapping algorithm to complement the atomic mapping relationship
in the chemical reaction database. By using the reaction descriptors constructed from the reaction mapping
relationships and reaction reagents, a chemical reaction representation learning model is constructed through
a contrastive learning method. After fine-tuning the model on a binary classification task for determining
reaction superiority, reaction superiority score (RSscore) is generated to evaluate the superiority of chemical
reactions and further applied on reaction evaluation and synthesis route analysis.

2. Method

2.1 Overview

In this section, a model framework for generating the probability of reaction superiority (RSscore) is devel-
oped. As shown in Fig. 1, the proposed framework is divided into 4 parts: (a) Reaction Total Atom-Atom
Mapping algorithm; (b) Reaction condense hypergraph generation; (c¢) Contrastive learning pre-training
process and (d) Supervised learning fine-tuning process.

As some unimportant products and some atom mapping relationship are not recorded in Open Reaction
Database (ORD)3?, to complement the missing products and the atom mapping relationship, Reaction Total
Atom-Atom Mapping (RTAAM) algorithm is developed to compensate these information (Fig 1(a) ), which
provides more reaction features for model and improves prediction accuracy. In part (b), a new condensed
hypergraph descriptor is proposed to describe chemical reactions through connecting reaction graph and
agent graph using molecular /reaction node (Fig. 1(b) ). With this descriptor, the information of reactions
and agents are integrated into the summary node, at the same time, the influence between reactions and
agents can be considered. In part (c), the contrastive learning model is utilized to pre-train the initial
parameters of the backbone model in unlabeled reaction data. After data augmentation and contrastive
learning model training, the initial parameters of the backbone model are optimized to bring similar reaction
features closer together and push different reaction features further apart (Fig. 1(c) ). In part (d), the
parameters of the backbone model and multilayer perceptron (MLP) layers are fine-tuned using supervised
learning. After mapping the output values to the interval from 0 to 1 using Sigmoid activation function, the
superiority probability of the reaction is generated to evaluate the reactions. (Fig. 1(d) )
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Fig. 1: The overview of RSscore model framework

2.2 Dataset preparation

USPTO in ORD database? is selected as the data source for generating dataset. Since some reactions in
the ORD database do not have complete atomic mapping relationships information (such as known atom
matching, as the functional group hydroxyl and hydrogen shown in blue in Fig.1 (a) ), the Reaction Total
Atom-Atom Mapping (RTAAM) algorithm are designed to complement atom mapping relations. Moreover,
there is no clear boundary between superior and inferior reaction determination, thus label generation and
label smoothing are utilized for subsequent model training.

2.2.1 Reaction Total Atom-Atom Mapping (RTAAM) algorithm

In the dataset, unimportant products are not always recorded, which causes not all atoms in the reaction
have mapping index. To complement the missing products and the atom mapping relationship, RTAAM
algorithm is developed (Fig 1(a)) . The RTAAM algorithm can be divided into three steps.

Step 1: Known atom mapping. The SMARTS of the missing product is determined during the reaction
completion process based on the transfer relationship of the atoms. In the ORD database, the known
atomic mapping relationships already exist in the reaction SMARTS, therefore the atomic remapping can
be performed after the known atomic mapping relationships identification completed. In cases where atom
mapping relationships are absent, the rxnmapper?? is used to generate a reasonable mapping to achieve
matching of known atoms in the reactions.

Step 2: Atomic remapping. From the atom remapping step for different reaction class in Fig. 2, the
reaction class and the atom mapping indexes of the missing product can be determined according to the avail-
able atom mapping information and the difference of the bond features between the reactants and products.
For substitution reactions and elimination reactions, the SMARTS of the missing product is constructed
by connecting the missing atomic mapping numbers of the leaving groups directly. For addition reactions
and rearrangement reactions, all products have been already recorded in reaction SMARTS. Therefore, the



algorithm only needs to operate on the changes in bonds to infer the atomic mapping relationship. After
adding the omitted hydrogen atoms and the corresponding atom mapping relationships, the remapping re-
lationships of reaction atoms can be completed. More details are shown in Supplementary Information
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Fig. 2: Atom remapping step in RTAAM algorithm

Step 3: Rationality checking. After completing the supplementation of the missing products and the
atom remapping, the properties of the atom connections and reaction rationality checks are required to
prevent the generation of unreasonable molecules. For atomic connection check, since some atom’s connection
situation does not satisfy the rationality during the reaction atomic remapping process, the connection of
each atom is checked to make sure all atoms are reasonably connected. When there are only two remaining
atoms require an additional single bond connection, the algorithm will directly carry out the connection
between two atoms to complete the remapping relationship. For other cases, if the algorithm fails to perform
the complement, the reaction will be abandoned. The algorithm also detects whether the redox agent is
involved in the reaction to ensure that the mapping relationship of the atoms in the reaction is constructed
reasonably.

2.2.2 Labels generation

After deleting the reactions without SMARTS information and/or the reactions failed to perform atom
mapping complementation algorithm, 2,397,092 reactions are remained for generating modelling dataset.
Since labels are necessary for model construction in supervised learning methods. Thus, labels are assigned
to reactions based on thresholds inTable 2 to classify superior and inferior reactions. Here, 20,000 reactions
are selected to assign labels and 1,400 reactions for external testing. The reactions with high reaction yields,
short reaction times and mild reaction temperatures are regarded as positive examples, while the reactions
with low reaction yields, long reaction times and tough reaction temperature are regarded as negative ones.

Table 2. Reaction superiority classification boundary

Reaction type High superiority Low superiority

Reaction yield (%) 90 - 100 0 - 50



Reaction type High superiority Low superiority

Reaction time (h) 0.1-1.5 > 8

Reaction temperature () 15 - 30 < -10 or > 100

Special cases - Yield < 15% and 4h < Time <
12h

To prevent excessively intense reactions or excessively long reaction times under the boundary conditions
of reaction time, the upper and lower limits of superior reaction time are set at 0.1h and 1.5h respectively.
As for the boundary conditions of reaction temperature, the temperatures near the room temperature are
considered as superior reaction temperatures, while temperatures exceeding the boiling point of water and
temperatures requiring artificial cooling are considered as inferior reaction ones.

According to the distribution of reaction yields recorded in the ORD database, it can be observed that most
of the reaction yield are distributed between 90% and 100% (Fig. 3) , with only a small portion distributed
below 50%. Therefore, we set the upper and lower boundaries for yield as 90% and 50% respectively to
enhance differentiation between variations. Furthermore, reactions with notably low yields and reasonably
moderate reaction times are also classified as inferior reactions.
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Fig. 3. The kernel density estimation curve of ORD yield

2.2.3 Labels smoothing

To address the limitation of traditional binary label encoding in describing reaction superiority within the
same label category, label smoothing methods are employed to differentiate between varying degrees of
reaction superiority and reduce overfitting during model training. In this case, the superiority labels for
20,000 reactions in the fine-tuning dataset are reconstructed based on the assumption that the overall effects
of reaction yield, time and temperature conditions are the uniform and linear. According to the compensation
part equations provided in Table 3 , the high superiority reactions labels are remapped to a range of 0.85
to 1.0, and the low superiority reaction labels are remapped to a range of 0.0 to 0.15.



Table 3. Compensation equations in reaction superiority label smoothing strategy

Variables High superiority Low superiority
Reaction Yield (%)
yield — 90 yield
0.05 100 0.05 = 0.0
(90 <= Yield <= 100) (Yield < 50)
Reaction Time (h)
4 — time time — 4
0.05 ~10 0.05 — 0.03 = S0
(time < 4) (4 <= time < 12)
time — 12
02 -0.02% ———
0-0 0.02x Max — 12
(time >= 12)
Reaction Temperature () 0.0 (15 <= Temperature <= 30)
T-30
0.05 — 0.05 * WVaz =30

(Temperature > 100)

T-15

0.05 % —— 2
*Min—15

(Temperature < -10) 0.05 (-10
<= Temperature <= 100)

2.2.4 Reaction representation

Reaction representation directly affects the accuracy of the model prediction. In this work, a new condensed
hypergraph reaction descriptor is proposed consisting of graph adjacency matrix and feature matrix. Graph
adjacency matrix is used to describe the connection of nodes. It consists of reaction mapping graph, reaction
agent graph, molecular/reaction node and reaction summary node (Fig.1(b) ). Reaction mapping graph is
constructed by the union of reactants and products graph. It considers the reaction atom transfers which
provides more features for model prediction than directly splicing of molecules descriptors. Reaction agent
graph uses graph data structure to represent reaction agents. In order to consider the influence between
reactions and reaction agents, molecules and reaction nodes are connected to each other via bidirectional
edges, enabling the message passing between reaction and agent graphs. Accompanied by bidirectional edge
connections of reaction nodes and molecular nodes, the message transfer between reaction mapping graph
and agent graphs are achieved. Accompanied by uni-directional edge connections of molecules and reaction
nodes to reaction summary nodes, reaction features are aggregated from molecules to the whole reaction.

Node feature matrix is composed of atomic features which can be classified as indicators and change sites.
Indicator sites primarily display the type of atoms, while change sites integrate the features from reactants
and products to illustrate the changes in atom properties during the reactions. KEdge feature matrix is
composed of bond features. It is exclusively constructed by the change sites. By comparing of the bond
features of the reactants and products, the changes of bond properties become clear, allowing for a clear
differentiation between the directions of reversible reactions. The type of atom features and bond features
are listed in Table 1 .

Table 1. Atom features and bond features used in reaction graph descriptor



Feature type Feature number

Node Feature — indicator sites Atomic type 72

Node Feature — change sites Hybridization type T*2
Atomic charge 8 * 2
Number of atomic connections 7 * 2
Atomic implicit valence 7T*2
Total atomic valence 7*2
Atomic aromaticity 1*2
Atomic chirality 4%*2
Is the atom on the ring 6*2
Number of free radicals 2%2
H-atom donor/acceptor 2*2
Atomic acidity/ basicity 2*2

Bond Feature — change sites Bond type 4*2
Is the bond on the ring 1*2
Conjugate bond 1*2
Chirality of bond 4*2

2.3 Construction of reaction superiority classification model

The reaction classification model is constructed to determine reaction superiority for reaction pathway de-
sign/selection. According to the above reaction superiority constraints, most of reaction data are unlabeled.
Thus, the model trained only by labelled data may not have good generalization capability on unknown
reactions. Therefore, it is necessary to utilize unsupervised methods to extract differences between reaction
graph data structures for representation learning. In this work, the unlabeled data is used to construct a
reaction superiority classification model through the pre-training and fine-tuning method, enhancing both
prediction accuracy and generalization ability.

2.3.1 Reaction graph data augmentation algorithm

According to the model structure in Fig.1(c) , data augmentation plays an important role in contrastive
learning which will directly affect the model training. Since most of the traditional graph data augmentation
algorithms3* would destroy the reaction or molecule structure and the rationality of reaction representation3,
a data augmentation algorithm is proposed to generate reactions with similar properties under the assumption
of ignoring the carbon atom not directly connected to the reacted atoms by ignoring steric effect. The main
operation of this algorithm is adding or deleting the carbon atom not directly connected to the reacted
atoms. By associating this method with feature masking augmentation, the diversity of samples is increased

without changing the rationality of the reaction representation. The algorithm is divided into three steps.

Step 1: Carbon addition and subtraction. Under the assumption of ignoring the influence of steric
effect caused by the carbon atoms not directly connected to reacting atoms, the addition or deletion of
straight chains with fewer than 3 carbon atoms to non-reactive atoms will not affect the reaction. Following
the identification of manipulatable atomic nodes, carbon atoms are added to or removed from the reactant
and product molecules using Rdkit*!, generating novel molecular structures.

Step 2: Mapping of reaction atoms index. Since there is no mapping index number for the carbon or
hydrogen atoms in the newly added straight chain, we supplement the mapping relationships of the newly
added atoms in the reactions based on the neighbor information of the modified atoms, ensuring correct
mapping relationship among reaction atoms.

Step 3: Molecule and atom mapping index standardization. After completing all atoms map-
ping index in the reaction, the molecular and atomic numbers are normalized to make the resulting reac-



tion SMARTS representations more rigorous. By reordering all the mappings index and renormalizing the
molecules SMARTS, a standardized SMARTS representation of the reaction is generated to facilitate the
generation of augmented reaction graph for contrastive learning.

2.3.2 Pre-training model with contrastive learning

In the pre-training process, the contrastive learning model is utilized to train the initial parameters of
the backbone model using a large number of unlabeled reaction data. Negative sample-based comparison
methods are often applied for molecular contrastive learning models in recent years33-37. Here, the SIMCLR*?
structure contrastive learning model is used. The SIMCLR structure contains three parts, namely encoder,
decoder and loss function.

The encoder part is constructed by the backbone model designed for extracting features from reaction graphs.
To maximum characterization capability of GNN for graph classification, the Graph Isomorphism Network
with Edge features (GINE)*® constructed in DGL** is selected as the backbone propagation module for
contrastive learning. With MLP node feature updating function, the inclusion of the AIR residual*® and the
acquisition of reaction summary node features as the readout function, the reaction summary node feature
provides a unique representation of chemical reactions. The formula for GINE message passing is shown in

Eq. (1).

1 ! : :
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where hElH) means the i ’s node feature after/ + 1 times aggregation, fy means the function used in updating

node features, eglz is the edge feature between node i and j after [ times aggregation, eis learnable parameter

to control last times aggregation features influence during the message passing operation.

The decoder part utilizes the MLP for data transformation of the reaction information extracted from the
backbone model. In this model framework, the data augmented from the same samples are considered as
positive samples, while the different ones are considered as negative samples. To maximum the difference
between positive and negative examples, and minimize the difference between positives ones, the normalized

temperature-scaled cross-entropy (NT-Xent) loss*? is used as contrastive learning loss. The formula of NT-
Xent loss is shown in Eq. (2) and (3).
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where sim (u, v) denotes the cosine similarity between vector « and v , I;, ; denotes the loss between 7 and
j , and 7 denotes the temperature coefficient to control the confident of SoftMax prediction.

2.3.3 Supervised learning fine-tuning model

The Reaction Superiority Classification fine-tuning model is constructed by the pre-trained backbone model
and the MLP with a Sigmoid activation function is used for generating the reaction superiority probability.
Since focal loss allows the model to focus more on hard negative samples, the binary focal loss*S is selected
as the loss function for fine-tuning to improve the classification accuracy of the model. The formula of binary
focal loss (FL) is shown in Eq. (4).

FL(p:) = —a; (1 —ps) " log (pe) — (1 — ar)p/ log (1 —pr)  (4)




where «y is the balanced factor to solve category imbalances, 7y is the focusing factor to control the model
focus on hard negative samples, p; is the positive probability predicted by the model.

After dividing the training set, validation set, and test set in accordance with 8:1:1 for model fine-tuning
operations. The parameters of the backbone model and the newly constructed MLP layers are optimized
using supervised learning methods. After mapping the output values to the interval from 0 to 1 using the
Sigmoid activation function, the superiority probability of the reaction is generated to evaluate the reactions.

2.3.4 Details of model implementation

The pre-training model (Fig. 1(c) ) uses the SGD*7 optimizer to optimize the parameters of backbone
encoder model and projection head. The initial learning rate for backbone model pre-training process is set
to 0.01 with cosine learning rate decay. It includes one warm-up epoch. The weight decay is set to 0.0005
and the momentum is set to 0.9 which can improve the prediction accuracy and learning efficiency. The total
epoch number for model pre-training is 8 with a batch size 512, providing initial parameters for backbone
model.

The fine-tuning model (Fig. 1(d) ) uses the Adam*” optimizer for gradient decent optimization. The initial
learning rate for model fine-tuning is set to 0.001 with cosine learning rate decay, and the weight decay is
set to 0.00001. The total number of epochs is controlled by the early stop strategy. Training is terminated
when there is no improvement in accuracy in the validation set for 20 consecutive times with a batch size

256.

The backbone model is constructed with a depth of 5 GINE layers with 0.1 possibility of dropout. The
hidden dimension of this backbone model is set to 300 and its readout dimension is 512. Through fully
connected layers constructed in the fine-tune process with hidden dimension 256 and a dropout rate 0.5, the
model could be trained to predict reaction superiority possibility easily.

3. Results and discussion

3.1 Performance evaluation

In order to show the model performance on the reaction superiority classification task, the accuracy, precision,
recall, Fl-score and the area under receiver operating characteristic curve (ROC-AUC) are adopted as
evaluation metrics. In this work, the developed model is compared with other models by examining their
performance with different message aggregation methods and investigating the utilization of the AIR residual
in exploring the appropriate structure in the backbone model. The testing set evaluation results of all models
are shown inTable 4 . And the structure and training parameters of the baseline models are detailed in
Supplementary Information .

Table 4. Reaction Superiority Classification model evaluation metrics

Model Accuracy Precision Recall F1l-score ROC-AUC
GCN-None 0.853 0.836 0.860 0.848 0.927
GAT-None 0.864 0.840 0.883 0.861 0.912
SAGE-None 0.865 0.864 0.866 0.865 0.936
GINE-None 0.884 0.852 0.921 0.885 0.940
GCN-AIR 0.876 0.853 0.905 0.878 0.920
GAT-AIR 0.871 0.844 0.905 0.873 0.942
SAGE-AIR 0.877 0.857 0.905 0.880 0.942
GINE-AIR 0.897 0.875 0.922 0.898 0.951
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Model Accuracy Precision Recall F1-score ROC-AUC

GINE-AIR with ~ 0.903 0.898 0.908 0.903 0.965

pre-training

According to the comparison of the model evaluation results presented inFig. 4(a) , the backbone Model
with GINE aggregation method and AIR residual shows the best performance among the several directly
trained ones, where the accuracy, Fl-score and ROC-AUC were 0.897, 0.898 and 0.951, respectively. It
indicates that the backbone model, equipped with the GINE layers and the AIR residual, is effective in
extracting more robust features for distinguishing reactions superiority. The testing set ROC curves of
different models are shown in Fig. 4(b) , which indicate the generalization ability and prediction accuracy
of the model pre-trained using contrastive learning method are significantly better than those of the direct
training ones. The accuracy, Fl-score and ROC-AUC of the model with contrastive learning pre-training
are 0.903, 0.903 and 0.965, respectively, which shows that the pre-training via contrastive learning method
can effectively improve the generalization ability of the model.

To visualize the effect of feature extraction by the pre-trained backbone model and the corresponding data
space, the features extracted from the reactions are projected into 2 dimensions using Uniform Manifold
Approximation and Projection (UMAP)*® which is plotted in Fig. 4(c) . By analyzing the distributions of
superior and inferior reaction data points, a clear distinction can be observed between the main distributions
of superior and inferior reactions, indicating that the pre-trained with contrastive learning model performs
better in distinguishing the reaction superiority and providing suitable advice for reaction selections.

o
S

s

Metrics Value

UMAP 2

§
N3

i 2 i
ROC-AUC 0.2
Evaluation Met
BEN GINENone  ESN) SAGE-AIR
R N GON-AIR - BSS GINE-AIR
B GATAIR B8 GINE-AIR with Pre-training

o8 10 o

B 3
1-Specificity

(a) (b) (©)

Fig. 4: Model evaluation comparison and visualization of the backbone model extraction effect

3.2 Case studies for reaction evaluation

Here, three types of reaction examples are used to illustrate the effectiveness of RSscore. (Fig. 5 ) First, the
synthetic reactions of the rivaroxaban intermediate (4-phenylmorpholin-3-one) is employed as an example to
evaluate the RSscore for reactions with same class. (See Fig. 5(a) , Fig. 5(b) ) The substitution reactions
depicted in Fig. 5(a) and 5(b) allow for a straightforward analysis of reaction superiority through the
leaving group effect. Except for the same leaving part, the basicity of the chloride leaving group in Fig.
5(a) is lower than the basicity of the ethyl ester group in Fig. 5(b) . It indicates that the corresponding
anion of the Fig. 5(a) reaction leaving group is more stable, leading to milder reaction conditions in the
Fig. 5(a) reaction. According to the experiment data from the Reaxys database, the Fig. 5(a) reaction
demonstrates the same reaction temperature, a higher reaction yield and a shorter reaction time compared
to the Fig. 5(b) reaction. It validates the leaving group effect and indicates that the Fig. 5(a) reaction
exhibits higher superiority. In accordance of the evaluation metric proposed in this paper, the RSscore
achieved 0.7939 in Fig. 5(a) and 0.7651 in Fig. 5(b) . It indicates that the Fig. 5(a) reaction exhibits
a higher reaction superiority, aligning with the results obtained from the experimental and mechanistic
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analyses. This demonstrates that the RSscore can detect the impact of electronic effects, and effectively
distinguishes the superiority differences among reactions within the same class.

Synthetic reactions of Pomalidomide intermediate (4-nitrothalidomide) using different reaction agents are
conducted to determine whether the RSscore can detect the impact of the reaction agent. The experimental
data shows that the reaction usingFig. 5(c) agents exhibit lower reaction time, higher reaction yield and
milder reaction temperature condition compared to the reaction using Fig. 5(d) agents. After completing
the reaction atom mapping, the RSscore for reactions using Fig. 5(c) andFig. 5(d) agents are calculated
as 0.7518 and 0.4812, respectively. This demonstrates that the RSscore are consistent with experimental
data and provide a better reflection of the reaction agents influence on chemical reactions.

Finally, as an exploration of the assessment effect of the RSscore in different reactions, the synthesis reac-
tions Olaparib intermediate (4-(4-fluoro-3-(piperazine-1-carbonyl)benzyl)phthalazin-1(2H)-one) are used as
an example for comparison. Although the final product and the reacted sites for the reactions in Fig. 5(e)
and Fig.5(f) are the same, the reaction type are completely different, with Fig. 5(e) being a hydrolysis
reaction and Fig. 5(f) being a condensation reaction. Based on the comparison of the experimental data
between the reactions in Fig. 5(e) andFig. 5(f) , the reaction in Fig. 5(e) is superior in terms of reaction
time, yield, and temperature condition. The calculated RSscore for Fig. 5(e) is 0.7836 and for Fig. 5(f)
is 0.6399. The magnitude relationship of the RSscore supports the superiority of the reaction in Fig. 5(e)
, which aligns with the experimental data.
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Fig. 5 The effectiveness test of the RSscore on reaction evaluation

Each indicator is evaluated separately in the external test set to demonstrate the generalizability and supe-
riority. According to the evaluation indicators results in Table 5, the RSscore exhibits the highest accuracy
(accuracy = 0.717) and ROC-AUC value (ROC-AUC = 0.714) among these indicators. The generalizability
and superiority of RSscore are proved in discriminating the superior situations of reactions. Furthermore,
when considering reactions carried out with different reaction agents, only RSscore can distinguish those
reactions. This demonstrates the broader capability of RSscore to judge reaction superiority and provides a
good evaluation indicator for CASP.

Table 5. Reaction evaluation indicators on external test set

Evaluation indicators Accuracy Precision Recall F1-Score ROC-AUC Reaction Agent Recognition
SAscore 0.473 0.478 0.594  0.530 0.473 N
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Evaluation indicators Accuracy Precision Recall F1-Score ROC-AUC Reaction Agent Recognition

SCscore 0.465 0.476 0.703  0.568 0.465 N
RAscore 0.486 0.484 0.437  0.459 0.486 N
GASA 0.481 0.467 0.277  0.348 0.481 N
SYBA 0.496 0.490 0.200 0.284 0.496 N
RSscore 0.717 0.699 0.761 0.729 0.714 Y

Here, to further illustrate the advantage of RSscore over other evaluation indicators based on molecular
accessibility and complexity, we take the reaction in Fig. 5(a) as an example and obtained the evaluation
results in Table 6 ., the RSscore has consistent result with SAscore, SCscore, SYBA, RAscore, at the same
time, it is able to consider the effect of reaction agents, enabling the identification of the current reaction as
a relatively dominant one. This demonstrates the broader capability of RSscore to judge reaction superiority
and provides a good evaluation indicator for CASP.

Table 6. Reaction evaluation indicators on reaction

Evaluation Reaction Agent

indicators Reactant Score Product Score Reaction Score Recognition Reaction Type
SAscore 1.4682 1.8126 - N Superior
SCscore 1.6092 2.2959 - N Superior
RAscore 0.9956 0.9785 - N Superior
GASA 0.8810 0.9391 - N Inferior

SYBA 41.0929 20.7120 - N Superior
RSscore - - 0.7939 Y Superior

3.3 Application in synthetic routes analysis

To study the effectiveness of RSscore in synthetic routes analysis, we utilized three synthetic routes of
paracetamol for validation. As all three synthetic routes utilize the reaction of p-aminophenol with acetic
acid at the end of paracetamol synthesis routes, its overall impact on synthetic route is negligible. After
obtaining the reaction condense hypergraph descriptors and calculating the RSscore of each reaction of the
synthetic routes in Fig. 6 , the RSscore for reactions in route (a) are 0.7430 and 0.5587; the RSscore for
reactions in route (b) are 0.6535 and 0.4492, and the RSscore for reactions in route (c) are 0.7569 and 0.5867,
respectively. By comparing the RSscore values of the reaction in the synthetic routes, the reactions in route
(a) and (c¢) exhibit better overall performance compared to the route (b). This demonstrates that synthetic
route (a) and (c) are more favorable than route (b) in terms of the combination of reaction time, yield and
temperature condition.

In practical studies of these synthetic pathways, Route (a) has the advantages of short reaction time and
high yield.*’Route (b) requires fewer steps, but the yield for the p-aminophenol generation is low, while the
handling of the waste residue generated is difficult. Therefore, this synthesis method has been abandoned
by many countries.’® Route (c) could generate a high-quality of p-aminophenol, and its yield can reach
72%.°°Through a comparison of synthetic routes, Routes (a) and Routes (c) are relatively better and perform
little difference on reaction yield, time and temperature conditions. Although the cost for Route (c) is cheaper
than Route (a), the price factor is not involved in the proposed indicator, therefore the RSscore is not able
to distinguish the difference between the two routes.
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Fig. 6. The effectiveness test of the RSscore on Paracetamol synthetic routes analysis

Another validation example is also given here for Clobazam synthesis routes. After obtaining the reaction
condense hypergraph descriptors and calculating the average RSscore of each reaction synthetic routes inFig.
7 , the average RSscore for route (a), (b) and (c) are 0.5915, 0.7493 and 0.7721, respectively. By comparing
the average RSscore values of the synthetic routes, the reactions in route (b) and (c) exhibit better overall
performance compared to the route (a). This demonstrates that synthetic route (b) and (¢) are more
favorable than route (b) in terms of the combination of reaction time, yield and temperature condition.

In practical studies of these synthetic pathways, Route (a) has longer reaction steps and low yield (total yield
can reach approximate 11%).°! Route (b) and Route (c) require fewer steps and the yield for each step in
Clobazam generation are high (total yield can reach approximate 50%) which provides a methodology for the
industrial production of clobazam.?2:53 Through a comparison of the synthetic routes from literature results,
Route (b) and Route (c) are relatively better. However, Route (b) requires hydrogenation reaction equipment,
which results in higher production cost than Routes (c¢). According to the development of RSscore, the
production cost is not considered. Therefore, the RSscore is not able to distinguish the difference between
the Route (b) and Route (¢). The comparation result of the synthetic routes is consistent with the conclusions
obtained by RSscore, which shows that RSscore can be a better aid to the analysis of the synthetic routes.
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Fig. 7. The effectiveness test of the RSscore on Clobazam synthetic routes analysis

4. Data Availability and Reproducibility Statement

Firstly, all codes needed to get RSscore are available at https://gitee.com/xu-chenyang/rsscore. The results
of the RTAAM inFig. 2 can be obtained by the programme in the /Data_Prepare&Augmentation/RTAAM
directory of RSscore code and the details of RTAAM algorithm are shown in section S1 of the Supplementary
Material. For the reaction representation features in Table 1, more details on reaction representation features
are shown in section S2 of the Supplementary Material. The distribution of the reaction yield inFig. 3 is
obtained by the USPTO data in the ORD?? database with complete yield, temperature and time information.
In Fig. 4(a) and 4(b) , the bar plot and ROC curve are drawn based on the results of the model evaluation
inTable 4 used to indicate the advantages difference between different models, the specific construction
method and model performance are shown in section S3 of the Supplementary Material. In Fig. 4(c) , the
result of the superior and inferior reaction data distribution is drawn by the trained UMAP model. The
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reaction feature arrays are clustered by UMAP are shown under the /UMAP directory.

The evaluated reactions in Fig. 5 were achieved from Reaxys??, and the RSscore calculation can be obtained
in /reaction _evaluation directory of RSscore code. The synthetic routes analysis in Fig. 6 and Fig. 7 can
be obtained from patents®>3 and articles***°. The RSscore calculation can be obtained in /synthetic -
route analysis directory of RSscore code.

5. Conclusions

In this paper, we developed a novel chemical reaction superiority evaluation index based on the information
from the reaction database using deep learning (DL) methods. For the modeling of RSscore, a new type of
chemical reaction graph descriptor with atom mapping relationship was constructed, which provides sufficient
chemical reaction information and significantly improved the model classification ability. Label smoothing
was also employed to reduce the overfitting of the model and enable differentiation of reaction superiority
within the same categories. Contrastive learning pre-training and supervised learning fine-tuning method
were used to improve the generality of the model and the accuracy of classification.

The effect of different message passing methods was investigated and the AIR residual on the GNN model is
used to generate the RSscore. It proves that the GINE message passing methods combined with AIR residual
demonstrate the best outcomes on classification. Additionally, the data distribution of the entire dataset
is analyzed and visualized using UMAP dimensionality reduction, which showed that the developed model
effectively distinguishes reaction superiority and generates a robust evaluation metric. The effectiveness of
this RSscore provides a crucial evaluation index for the computer-aided synthesis planning.
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