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Abstract

The well-posedness and regularity properties of diffusion-aggregation equations, emerging from interacting particle systems,

are established on the whole space for bounded interaction force kernels by utilizing a compactness convergence argument to

treat the non-linearity as well as a Moser iteration. Moreover, we prove a quantitative estimate in probability with arbitrary

algebraic rate between the approximative interacting particle systems and the approximative McKean–Vlasov SDEs, which

implies propagation of chaos for the interacting particle systems.
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1. Introduction

Diffusion-aggregation equations and their associated interacting particle systems serve as
well-suited mathematical models in various areas, such as physics, chemistry, biology, ecol-
ogy, and social sciences. For instance, they are used to describe the behavior of chemo-
taxis [KS70, HP09, Hor04], angiogenesis and swarm movement [TBL06], flocking [HL09],
opinion dynamics [Lor07a, Hos20], and cancer invasion [DTGC14]. On the microscopic level,
these systems are often modeled by interacting N -particle systemsXN = (X1, . . . , XN ), given
by stochastic differential equations of the form

(1.1) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ dBi
t, i = 1, . . . , N, XN

0 ∼
N
⊗
i=1
ρ0,

for t ≥ 0, starting from i.i.d. initial data, defined on a probability space (Ω,F ,P). On the
macroscopic level, the corresponding systems are represented by the evolutions of the prob-
ability densities ρ of the particles, which satisfy diffusion-aggregation equations. In general,
these diffusion-aggregation equations are non-local, non-linear partial differential equations
(PDEs). Passing from the microscopic to macroscopic models, involves to study the mean-field
limit as N → ∞, cf. [Szn91, CCH14a, JW16, Jab14]. In particular, this consists of showing
the convergence of the empirical measures µNt of the N -particle systems XN = (X1, . . . , XN )
for all t ≥ 0, where µNt is defined as

µNt (ω,A) :=
1

N

N∑
i=1

δXi
t(ω)

(A), ω ∈ Ω

for a Borel set A. Although mean-field interaction and its related PDEs is a classical topic, it
is still a very active research field. Indeed, the case of global Lipschitz continuous interaction
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2 CHEN, NIKOLAEV, AND PRÖMEL

force kernels k has been understood for many years, cf. [McK67, Szn91, HM14], e.g., by
employing the coupling method, that is, comparing the particle (Xi

t , t ≥ 0) to the solution
(Y i

t , t ≥ 0) of the McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs){
dY i

t = −(k ∗ µt)(Y i
t ) dt+ σ dBi

t, i = 1, . . . , N, YN
0 = XN

0

µt = Law(Yt)

for t ≥ 0, and, subsequently, showing the convergence µNt → µt as N → ∞ for all t ≥ 0
in a suitable topology. The latter convergence is also referred to as “propagation of chaos”.
Consequently, the question regarding the well-posedness of McKean–Vlasov SDEs naturally
arises in the context of mean-field theory, cf. [Wan18, RZ21, BR20, HRW21, Wan23]. In
many settings, the law µ of the solution (Y i

t , t ≥ 0) possesses a probability density ρ, which
satisfies an associated Fokker–Planck equation. Therefore, one has access to PDE theory
allowing to deal with the well-posedness of McKean–Vlasov SDEs.

Motivated by various models arising especially in physics, which require bounded mea-
surable or even singular interaction force kernels, an enormous amount of work has been
dedicated to treat such irregular interaction force kernels. Initially, approaches to treat such
irregular kernels were often based on compactness methods in combination with the martin-
gale problems associated to the McKean–Vlasov SDEs, see e.g. [Oel84, Osa87, Gär88, FJ17,
GQ15, LLY19, LLY19]. More recently, even singular kernels, like the Coulomb potential
x/|x|s for s ≥ 0, were investigated in the non-random setting [Ser20, NRS22] (σ = 0) as well
as in a random setting [JW18, BJW19, BJW20, RS23] (σ > 0). The aforementioned refer-
ences introduced a novel method called the modulated free energy approach, which provides
a practical quantity to obtain a priori estimates. For the Coulomb potential, this quantity
even metrize the weak convergence of the empirical measures [RS23]. A drawback of the
modulated free energy approach is that it requires the existence of an entropy solution on the
particle level (microscopic level), see [BJW19, Proposition 4.2], which is non-trivial outside
a setting on the torus. Further results on propagation of chaos were proven for general Lp-
interaction force kernels k for first and second order systems on the torus [BJS22] and on the
whole space Rd [HRZ22, Han22, Lac23]. For instance, [Lac23] provides optimal bounds on
the relative entropy of order O(k2/N2) by exploiting the BBGKY-hierarchy combined with
delicate estimates on the error of iterations.

An influential approach allowing to deal with the Vlasov–Poisson system, which is a second
order system with a singular interaction force kernel k, was introduced by D. Lazarovici and
P. Pickl [LP17]. For the Vlasov–Poisson system, the underlying particle system (1.1) is a
priori not well-posed. Therefore, a regularization kε of the kernel k is required, where kε is
a smooth approximation of the interaction force kernel k such that the system (1.1) is well-
posed. The aforementioned approach is widely used, for instance, for the Keller–Segel equa-
tion [HLL19, LY19, FHS19], the Cuker–Smale model with singular communication [HKPZ19]
and the Vlasov–Poisson–Fokker–Planck equation [CCS19, HLP20, CLPY20]. An advantage
of it is that well-posedness of the underlying particle system is not required since one works
directly with the regularized/approximative particle system using the kernel kε. In particular,
if the system has a non-regular drift, as e.g. the Keller–Segel system [FJ17, Proposition 4],
the underlying particle system could collapse. Moreover, the approach of D. Lazarovici and
P. Pickl allows to show the propagation of chaos of the regularized particle systems to the
regularized mean-field equation. That means, it acts like an intermediate result. On the one
hand, the remaining limit of the regularized mean-field equation to the mean-field equation is
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reduced to a convergence analysis on the PDE level. On the other hand, the convergence of
the regularized particle system to the non-regularized particles system only requires a stability
analysis on the SDE level, which still is, at least in general, a challenging task.

In the present article we establish the approach of D. Lazarovici and P. Pickl [LP17] in a
general setting allowing for interacting particle systems and diffusion-aggregation equations
with bounded interaction force kernels which can be approximated in a suitable manner by
smooth kernels. One main objective is to provide a transparent road map how to utilize
this approach. To that end, we give a brief summary of the approach and explain its core
concepts.

While we present all results in a one-dimensional setting to avoid cumbersome notation,
we would like to remark that all results can be extended with minor modifications to a multi-
dimensional setting.

The first contribution is the well-posedness of the diffusion-aggregation equation, see (2.7)
below, which is derived from the interacting particle system (1.1), for bounded interaction
force kernels k. The main challenge lies in the non-linearity in the transport term, which is
treated by a strong-weak convergence argument provided by Aubin lemma. The presented
well-posedness result expands previous existence results regarding similar PDEs, for instance,
regarding bounded confidence models [Lor07b, CJLW17a] used in social science.

The second contribution is to provide Lp- and L∞-estimates for the solution ρ through a
Moser iteration. Following [LP17], we introduce a uniform local Lipschitz assumption, see
Assumption 4.1 below. For instance, we verify that models for the opinion formation of
interacting agents, such as the Hegselmann–Krause model [HK02], satisfy this uniform local
Lipschitz assumption. As a rule of thumb, Assumption 4.1 is fulfilled by interaction force
kernels with jump/singularity having the same order as the space dimension, which in the
present case is one.

As third contribution, we establish propagation of chaos in probability supposing the local
Lipschitz assumption for the bounded interaction force kernel k. This is achieved by proving
a suitable law of large numbers, demonstrating the convergence of the regularized particle
system to the regularized mean-field system in a suitable topology and, subsequently, proving
the convergence of the regularized probability density ρε to the probability density ρ as ε→ 0.

Organization of the paper: In Section 2 we introduce the notation, the interacting particle
systems and their associated diffusion-aggregation equations. Moreover, we present a brief
outline of the used method, building on the work of D. Lazarovici and P. Pickl [LP17]. The
well-posedness and regularity properties of the diffusion-aggregation equations are established
in Section 3. In Section 4 we discuss the local Lipschitz assumption on the approximative
interaction force kernels and provide various examples. Section 5 contains the law of large
numbers and the propagation of chaos in probability is provided in Section 6.

2. Setting and method

In this section we introduce the basic setting, that is, the necessary notation, the interacting
particle systems as well as their associated PDEs, and outline the general method implemented
in the present paper, following [LP17].

2.1. Basic definitions and function spaces. In this subsection we collect the basic defi-
nitions and introduce the required function spaces.
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For a vector x = (x1, . . . , xN ) ∈ RN , we write |x| for the standard Euclidean norm and
|x|∞ = sup1≤i≤N |xi| for the l∞-Euclidean norm. Throughout the entire paper, we use the
generic constant C for inequalities, which may change from line to line. For two functions g
and f , we write f ∼ g if they are proportional.

For 1 ≤ p ≤ ∞ we denote by Lp(R) the space of measurable functions whose p-th power
is Lebesgue integrable (with the standard modification for p = ∞) equipped with the norm
∥·∥Lp(R), by L

1(R, |x|dx) the space of all measurable functions f such that
∫
R |f(x)||x|dx <

∞, by C∞
c (R) the space of all infinitely differentiable functions with compact support on R,

and by S(R) the space of all Schwartz functions, see [Yos80, Chapter 6] for more details.
Let (Z, ∥·∥Z) be a Banach space. The space Lp([0, T ];Z) consists of all strongly measurable

functions u : [0, T ] → Z such that

∥u∥Lp([0,T ];Z) :=

 T∫
0

∥u(t)∥pZ dt


1
p

<∞, for 1 ≤ p <∞,

and

∥u∥L∞([0,T ];Z) := ess sup
t∈[0,T ]

∥u(t)∥Z <∞, for p = ∞.

The Banach space C([0, T ];Z) consists of all continuous functions u : [0, T ] → Z and is
equipped with the norm

max
t∈[0,T ]

∥u(t)∥Z <∞.

For sufficiently smooth functions u : [0, T ] × R → R we denote the n-th derivative with

respect to x by dn

dxnu(t, x), where we also write ux for d
dxu(x) and uxx for d2

dx2u(x). For
1 < p <∞ and m ∈ N, we define the Sobolev space

Wm,p(R) :=
{
u ∈ Lp(R) : ∥u∥Wm,p(R) :=

∑
n≤m

∥∥∥∥ dn

dxn
u

∥∥∥∥
Lp(R)

<∞
}
,

where dn

dxnu are understood as weak derivatives, see e.g. [AF03]. Moreover, we use the

abbreviation Hm(R) :=Wm,2(R), write H−1(R) for the dual space of H1(R) and denote the
dual paring by ⟨·, ·⟩H−1(R),H1(R). Weak convergence is denoted by the symbol ⇀, where the
involved function spaces are not further specified if they are clear from the context.

2.2. Particle systems. In this subsection we introduce the probabilistic setting, in partic-
ular, the N -particle system and its regularized version. To that end, let (Ω,F , (Ft)t≥0,P)
be a complete probability space with right-continuous filtration (Ft)t≥0 and (Bi

t, t ≥ 0),
i = 1, . . . , N , be independent one-dimensional Brownian motions.

Throughout the entire paper we make the following assumptions on the interaction force
kernel k and the initial condition ρ0 of the interacting particle system.

Assumption 2.1. The interaction force kernel k : R → R satisfies

k ∈ L∞(R)

and the initial condition ρ0 : R → R fulfills

ρ0 ∈ L1(R) ∩ L∞(R) ∩ L1(R, |x| dx), ρ0 ≥ 0, and

∫
R
ρ0(x) dx = 1.
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The N -particle system XN
t := (X1

t , . . . , X
N
t ) is given by

(2.1) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ dBi
t, i = 1, . . . , N, XN

0 ∼
N
⊗
i=1
ρ0,

where σ > 0 is the diffusion parameter and XN
0 is independent of the Brownian motions

(Bi
t, t ≥ 0), i = 1, . . . , N . In the limiting case when N → ∞, the particle system (2.1) induces

the following i.i.d. sequence YN
t := (Y 1

t , . . . , Y
N
t ) of mean-field particles

(2.2) dY i
t = −(k ∗ ρt)(Y i

t ) dt+ σ dBi
t, i = 1, . . . , N, YN

0 = XN
0 ,

where ρt := ρ(t, ·) denotes the probability density of any of the i.i.d. random variables Y i
t .

To introduce the regularized versions of (2.1) and (2.2), we take a smooth approximation

(kε, ε > 0) of k. The regularized microscopic N -particle system XN,ε
t := (X1,ε

t , . . . , XN,ε
t ) is

given by

(2.3) dXi,ε
t = − 1

N

N∑
j=1

kε(Xi,ε
t −Xj,ε

t ) dt+ σ dBi
t, i = 1, . . . , N, XN,ε

0 ∼
N
⊗
i=1
ρ0,

and the regularized mean-field trajectories YN,ε
t := (Y 1,ε

t , . . . , Y N,ε
t ) by

(2.4) dY i,ε
t = −(kε ∗ ρεt )(Y

i,ε
t ) dt+ σ dBi

t, i = 1, . . . , N, YN,ε
0 = XN,ε

0 ,

where ρεt := ρε(t, ·) denotes the probability density of any of the i.i.d. random variables Y i,ε
t .

Moreover, for i = 1, . . . , N , it is convenient to denote the regularized interaction force
Kε

i : RN → R as

(2.5) Kε
i (x1, . . . , xN ) := − 1

N

N∑
j=1

kε(xi − xj), (x1, . . . , xN ) ∈ RN ,

and the mean-field interaction force Kε
t,i : RN → R as

(2.6) Kε
t,i(x1, . . . , xN ) := −(kε ∗ ρεt )(xi), (x1, . . . , xN ) ∈ RN ,

where ρεt is the law of Y i,ε
t .

2.3. Diffusion–aggregation equations. The associated probability densities of the particle
systems, introduced in Subsection 2.2, satisfy non-linear, non-local partial differential equa-
tions (PDEs). Indeed, the particle system (2.2) induces the non-linear diffusion-aggregation
equation {

d
dtρ(t, x) =

σ2

2 ρxx(t, x) + ((k ∗ ρ)(t, x)ρ(t, x))x ∀(t, x) ∈ [0, T )× R
ρ(x, 0) = ρ0 ∀x ∈ R

(2.7)

and the regularized particle system (2.4) the diffusion-aggregation equation{
d
dtρ

ε(t, x) = σ2

2 ρ
ε
xx(t, x) + ((kε ∗ ρε)(t, x)ρε(t, x))x ∀(t, x) ∈ [0, T )× R

ρε(x, 0) = ρ0 ∀x ∈ R
.(2.8)

Note that we use ρt and ρ
ε
t for the solutions of the PDEs (2.7) and (2.8) as well as for the

probability densities of the particle systems (2.2) and (2.4), respectively, since these objects
coincide by the superposition principle, see [BR20], in combination with existence results of
densities for the considered SDEs, see [Rom18].
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For the partial differential equations (2.7) and (2.8) we rely on the concept of weak solutions,
which we recall in the next definition.

Definition 2.2 (Weak solutions). Fix ε > 0 and T > 0. We say ρε ∈ L2([0, T ];H1(R)) ∩
L∞([0, T ];L2(R)) with d

dtρ
ε ∈ L2([0, T ];H−1(R)) is a weak solution of (2.8) if, for every

η ∈ L2([0, T ];H1(R)),

(2.9)

T∫
0

〈
d

dt
ρεt , η

〉
H−1(R),H1(R)

dt = −
T∫
0

∫
R

(
σ2

2
ρεx(t, x) + (kε ∗ ρε)(t, x)ρε(t, x)

)
ηx dx dt

and ρε(0, ·) = ρ0. Note that ρε ∈ L2([0, T ];H1(R)) with d
dtρ

ε ∈ L2([0, T ];H−1(R)) implies

ρε ∈ C([0, T ];L2(R)), see [Eva15, Chapter 5.9]. Similarly, we say that ρ ∈ L2([0, T ];H1(R))∩
L∞([0, T ];L2(R)) with d

dtρ ∈ L2([0, T ];H−1(R)) is a weak solution of (2.7) if (2.9) holds with
the interaction force kernel k instead of its approximation kε.

By the regularity of the solution in Definition 2.2 we can actually weaken the assumption
on η in equation (2.9) to η ∈ C([0, T ];C∞

c (R)).
Remark 2.3. The divergence structure of the PDEs (2.7) and (2.8), respectively, implies
mass conservation/the normalisation condition

1 =

∫
R
ρt(x) dx =

∫
R
ρεt (x) dx, t ∈ [0, T ],

under Assumption 2.1. This is an immediate consequence by plugging in a cut-off sequence,
see [Bre11, Lemma 8.4], which converges to the constant function 1 as a test function in (2.9).

2.4. Outline of the method. The method of the present paper originated from the approach
of D. Lazarovici and P. Pickl, developed for the Vlasov–Poisson system in [LP17]. It is based
on the coupling method [Szn91] and a regularization of k to kε. A key insight of D. Lazarovici
and P. Pickl is to prove the convergence in probability with an arbitrary large algebraic rate
and algebraic cut-off parameter ε ∼ N−β, β > 0, instead of comparing the trajectories XN,ε

and YN,ε in Wasserstein distance or in L2-norm, as for instance done in [Szn91, CCH14b].
More precisely, for α ∈ (0, 1/2), β ≤ α and arbitrary γ > 0, we shall show that

P

(
sup

t∈[0,T ]
|XN,ε

t −YN,ε
t |∞ ≥ N−α

)
≤ C(γ)N−γ , for each N ≥ N0.

To implement this strategy and to achieve the aforementioned result, we proceed as follows:

(1) We start with a PDE analysis of the diffusion-aggregation equations (2.7) and (2.8),
that is, we prove the well-posedness of the non-local, non-linear PDEs (2.7) and (2.8),
together with an L∞([0, T ];L∞(R))-bound on the solution ρε, which is uniform in ε.
These results can be obtained via standard PDE techniques such as a compactness
method, Aubin–Lions lemma, which provides strong convergence, and a Moser type
iteration, see Section 3. The uniform bound allows us to have a trade-off between the
irregularity of the interaction force kernel and the regularity of the solution ρε.

(2) The main idea of D. Lazarovici and P. Pickl was to recognize that even though the
interaction force kernel is not globally Lipschitz continuous, the approximation kε

satisfies a local Lipschitz bound of order ε−1 (in dimension d of order ε−d) for |x−y| ≤
2ε, i.e.

(2.10) |kε(x)− kε(y)| ≤ lε(y)|x− y|.
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Let us emphasize that the bound depends only on the point y. Hence, the above
inequality seems like a Taylor expansion around the point y, where the second order
term is missing. Consequently, the bound cannot be achieved by a simple application
of the mean-value theorem.

We will assume that the interaction force kernel k satisfies (2.10), see Assump-
tion 4.1 below, and present various examples of such kernels in Section 4. We refer
to [LP17, CCS19, HLL19] for further models with interaction force kernels satisfying
(2.10). In general, whether (2.10) holds true entirely depends on the interaction force
kernel of the considered model, in particular, on the order of discontinuity/singularity
of the kernel. Hence, as rule of thumb, if the discontinuity/singularity is of order
ε−d+1 in a d-dimensional setting, then the local Lipschitz bound assumption can be
satisfied.

(3) We need to derive a law of large numbers, see Section 5. This allows us to treat every
involved object with regard to its expectation on a set with high probability, which
enables us to take advantage of the obtained regularity of ρε in Step (1). Unsurpris-
ingly, we need i.i.d. objects to apply the derived law of large numbers. In the present

case these objects are going to be the processes (Y i,ε
t , t ≥ 0) for i ∈ N. Moreover, we

would like to emphasize the importance of Step (2) at this moment and the crucial
fact that lε(y) only depends on the point y. Replacing in inequality (2.10) the point

y with the process Y i,ε
t and x with the process Xi,ε

t , we see that lε on the right-hand

side of (2.10) is depending on the i.i.d. process Y i,ε
t . Consequently, we can rely on

the law of large numbers, Proposition 5.1.
(4) Finally, let us demonstrate how to apply the previous steps to derive propagation of

chaos in probability but leaving out the technical difficulties. To that end, for some
α ∈ (0, 1/2) and δ > 0, we define an auxiliary process

JN
t := min

(
1, Nα|XN,ε −YN,ε|∞ +N δ

)
.

This process seems to control the difference |XN,ε−YN,ε|∞ in the limit N → ∞ with
weight Nα. Furthermore, the minimum is no restriction, since we only want to show
convergence to zero in probability, and we notice that, if Nα|XN,ε − YN,ε|∞ is too
big, the process stays constant one and the time derivative is zero. Therefore, we
heuristically obtain

d

dt
(Nα|XN,ε −YN,ε|∞ +N−δ)

≤ Nα sup
i=1,...,N

|Kε
i (Xt)−Kε

t,i(Yt)|

≤ Nα sup
i=1,...,N

|Kε
i (Xt)−Kε

i (Yt))|+Nα sup
i=1,...,N

|Kε
i (Yt)−Kε

t,i(Yt)|.

The last term depends on the i.i.d. particles (Y i
t , i = 1, . . . , N) and can be estimated

via the law of large numbers, Proposition 5.1, with a rate of N−δ−α. For the first
term we can use the local Lipschitz bound (having in mind that the particles are
close because of the minimum in the process) to complete a Gronwall argument. As
mentioned before, the crucial point in this step is the fact that the local Lipschitz
bound only depends on the i.i.d. particles YN,ε and not on the particles system
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XN,ε. This allows us to exchange the local Lipschitz bound 1
N

N∑
j=1

lε(Y i,ε
t − Y j,ε

t ) with

its conditional expectation lε ∗ ρεt (Y
i,ε
t ). Using the regularity properties, obtained

from the PDE analysis in Step (1), we can bound ∥lε ∗ ρεt∥L∞([0,T ];L∞(R)). Hence, we

conclude that

d

dt
(Nα|XN,ε −YN,ε|∞ +N−δ) ≤ C(Nα|XN,ε −YN,ε|∞ +N−δ).

Applying Gronwall’s lemma completes the proof. We remark that we implicitly used
the fact that the law of large numbers holds for large N ∈ N and, consequently, the
above Gronwall inequality only holds in the limit N → ∞. In the actual proof we
will use a version of the process JN

t which is multiplied by an exponential, which just
leads to a rewriting of the above Gronwall argument.

The remaining of the present paper is devoted to establish Step (1)-(4) with all technical
details for bounded interaction force kernels.

3. Well-posedness and uniform bounds for the PDEs

In this section we prove well-posedness of the PDEs (2.7) and (2.8), show the convergence
of the solutions (ρε, ε > 0) to ρ in the weak topology, and provide regularity results as well
as uniform bounds for (ρε, ε > 0) and ρ, which are required for propagation of chaos result
in probability established later in Section 6. We start by introducing an assumption on the
approximation sequence (kε, ε > 0) of interaction force kernels.

Assumption 3.1. Let (kε, ε > 0) be a sequence, which satisfies the following:

(i) For each ε > 0 the interaction force kernel kε ∈ C2(R);
(ii) For each ε > 0 we have ∥kε∥L∞(R) ≤ C ∥k∥L∞(R) <∞;

(iii) We have lim
ε→0

kε = k a.e.

For the non-linear, non-local PDE (2.8) we notice that, by Young’s inequality, we obtain
the following L∞(R)-bound

(3.1) |(kε ∗ ρε)(t, x)| ≤ ∥kε∥L∞(R) ∥ρ
ε
t∥L1(R) ≤ C ∥k∥L∞(R) .

Hence, kε ∗ ρ is uniformly bounded in ε > 0 on [0, T ] × R. The same statement holds for
k ∗ ρ. Consequently, the convolution term is bounded and we expect the existence of a weak
solution to the PDEs (2.7) and (2.8).

Theorem 3.2. Suppose Assumption 2.1. Then, for each T > 0 and ε > 0 there exists a
unique non-negative weak solution ρε ∈ L2([0, T ];H1(R)) ∩ L∞([0, T ];L2(R)) with d

dtρ
ε ∈

L2([0, T ];H−1(R)) to the regularized PDE (2.8) in the sense of Definition 2.2. Moreover, the
estimate

(3.2) ∥ρε∥L∞([0,T ];L2(R)) + ∥ρε∥L2([0,T ];H1(R)) +

∥∥∥∥ d

dt
ρε
∥∥∥∥
L2([0,T ];H−1(R))

≤ C(T ) ∥ρ0∥L2(R)

holds for all ε > 0.
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Proof. Let us explain the main idea of the existence proof. We consider the associated
McKean–Vlasov process{

dY ε
t = −(kε ∗ ρεt )(Y ε

t ) dt+ σ dB1
t , Y0 ∼ ρ0,

ρεt = Law(Y ε
t )

for the initial data ρ0. Then, by [MV20, Proposition 2], the aforementioned SDE has a unique
strong solution and, by [Rom18, Proposition 3.1], it has a density (ρεt , t ≥ 0). Now, fix ρεt and
consider the solution ρ̃ε = (ρ̃εt , t ≥ 0) to the linearized parabolic PDE{

d
dt ρ̃

ε(t, x) = σ2

2 ρ
ε
xx(t, x) + ((kε ∗ ρε)(t, x)ρ̃ε(t, x))x ∀(t, x) ∈ [0, T )× R

ρ̃ε(x, 0) = ρ0 ∀x ∈ R
.

By standard second order parabolic PDE theory, we know that the aforementioned PDE is
well-posed and

ρ̃ε ∈ L2([0, T ];H1(R)) ∩ L∞([0, T ];L2(R)),
d

dt
ρ̃εt ∈ L2([0, T ];H−1(R)),

with the estimate (3.2). Applying the superposition principle [BR20, Theorem 4.1], we find
a weak solution to

dỸ ε
t = −(kε ∗ ρεt )(Ỹ ε

t ) dt+ σ dB1
t , Ỹ N

0 ∼ ρ0, t ∈ [0, T ],

with Law(Ỹ ε
t ) = ρ̃εt dx. Since strong uniqueness holds for the above SDE, we have Ỹ ε =

Y ε. By the Yamada–Watanabe theorem [KS91, Chapter 5, Proposition 3.20] this implies
uniqueness in law and therefore

ρ̃εt dx = ρεt dx, t ∈ [0, T ],

in the sense of measures. Hence, ρ̃εt = ρεt P-a.s. for all t ∈ [0, T ] and ρε has the desired
regularity. □

Lemma 3.3. Fix ε > 0 and suppose Assumption 2.1. Moreover, consider a solution ρε of
the regularized diffusion-aggregation equation (2.8) with initial data ρ0, which by Theorem 3.2
exists. Then, we have the following uniform bound∫

R
|x|ρε(t, x) dx ≤

∫
R
|x|ρ0(x) dx+ C(T ) ∥ρ0∥L2(R) + CT + CT ∥k∥L∞(R)

for all t ≥ 0, which depend only upon
∫
R(1 + |x|)ρ0(x) dx and T . Therefore, the function

t 7→
∫
R |x|ρε(t, x) dx is bounded in L∞([0, T ];R).

Proof. The core idea is to use |x| as a test function. To that end, we take a sequence of radial
antisymmetric functions (gn, n ∈ N) with gn ∈ C2

c (R) for all n ∈ N, such that gn grows to |x|
as n→ ∞ and d

dxgn is uniformly bounded in n ∈ N. More precisely, we choose

χn(x) :=

{
|x| |x| ≥ 1

n

−n3 x4

8 + n3x2

4 + 3
8n |x| ≤ 1

n

and let (ζn, n ∈ N) be a sequence of compactly supported cut-off function converging to one
with vanishing derivatives in the limit n → ∞, see [Bre11, Lemma 8.4]. Define gn := χnζn.
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We notice that χn has bounded derivative with support in the unit interval and the derivative
d
dxgn has support in the annulus [−2n, 2n] \ (−n, n). Then, for φ ∈ C∞

c (0, T ) we obtain∫ T

0

∫
R
gn(x)ρ

ε(t, x)
d

dt
φ(t) dx dt

=

∫ T

0

∫
R

(
σ2

2

d

dx
ρε(t, x)

d

dx
gn(x) + (kε ∗ ρε) d

dx
gn(x)ρ

ε(t, x)

)
φ(t) dx dt.

Furthermore, for t1, t2 ∈ [0, T ] we have∣∣∣∣∫
R
gn(x)ρ

ε(t1, x) dx−
∫
R
gn(x)ρ

ε(t2, x) dx

∣∣∣∣ ≤ ∥gn∥L2(R) ∥ρ
ε(t1, ·)− ρε(t2, ·)∥L2(R) .

Therefore, ρε ∈ C([0, T ];L2(R)) implies that t 7→
∫
R gn(x)ρ

ε(t, x) dx is continuous for each
n ∈ N. Then, the fundamental lemma of calculus of variations, mass conservation and (3.2)
imply∫

R
gn(x)ρ

ε(t, x) dx

=

∫
R
gn(x)ρ0(x) dx−

∫ t

0

∫
R

σ2

2

d

dx
ρε(s, x)

d

dx
gn(x) + χ(kε ∗ ρε)(s, x) d

dx
gn(x)ρ

ε(s, x) dx ds

≤
∫
R
|x|ρ0(x) dx+

Cσ2

2

∫ T

0

1∫
−1

∣∣∣∣ ddxρε(s, x)
∣∣∣∣ dx ds

− σ2

2

∫ t

0

∫
R
χn(x)

d

dx
ζn(x)

d

dx
ρε(s, x) dx ds

+

∣∣∣∣ ∫ t

0

∫
R2

kε(x− y)
d

dx
gn(x)ρ

ε(s, y) dyρε(s, x) dx ds

∣∣∣∣
≤
∫
R
|x|ρ0(x) dx+ CT

1
2

(∫ T

0

∫
R

∣∣∣∣ ddxρε(s, x)
∣∣∣∣2 dx ds

) 1
2

+ C

∫ T

0

∫
R
ρε(s, x) dx ds

+
σ2

2

∫ t

0

∫
R
χn(x)ρ

ε(s, x)
d2

dx2
ζn(x) dx ds

+

∣∣∣∣ ∫ t

0

∫
R2

kε(x− y)
d

dx
gn(x)ρ

ε(s, y) dyρε(s, x) dx ds

∣∣∣∣
≤
∫
R
|x|ρ0(x) dx+ C(T ) ∥ρ0∥L2(R) + CT +

C

n2

∫ T

0

2n∫
−2n

χn(x)ρ
ε(s, x) dx ds

+ C ∥k∥L∞(R)

T∫
0

∫
R2

ρε(s, y) dyρε(s, x) dx ds

≤
∫
R
|x|ρ0(x) dx+ C(T ) ∥ρ0∥L2(R) + CT +

CT

n
+ CT ∥k∥L∞(R) .

Applying Fatou’s lemma proves the lemma. □

Lemma 3.4. Let (fn, n ∈ N) be a sequence in L2([0, T ];H1(R)). If the sequence satisfies
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(i) ∥fn∥L2([0,T ];H1(R)) ≤ C,

(ii)
∥∥ d
dtfn

∥∥
L2([0,T ];H−1(R)) ≤ C,

(iii) sup
t∈[0,T ]

∫
R |x||fn(t, x)| dx ≤ C,

for some constant C > 0, then (fn, n ∈ N) is relative compact in Lp([0, T ];Lp(R)) for all
p ∈ [1, 2].

Proof. Let us denote by BR the ball with radius R and center 0. Then, by the Rellich-
Kondrachov theorem we have that the embedding H1(BR) ↪→ L2(BR) is compact. Hence,
by Aubin–Lions lemma [Sho97, Chapter 3, Proposition 1.3], (fn, n ∈ N) is relative compact
in L2([0, T ];L2(BR)). Since the above spaces is of finite measure, we obtain the relative
compactness of (fn, n ∈ N) in Lp([0, T ];Lp(BR)) for all p ∈ [1, 2]. Note that we can extract
only one subsequence for all above spaces, which will depend on the radius R.

In order to get rid of the dependency on R, we perform a Cantor diagonal argument to
extract a subsequence (fnk

, k ∈ N) such that

lim
k→∞

∥fnk
− f∥Lp([0,T ];Lp(BR)) = 0

for some limit point f ∈ Lp([0, T ];Lp(BR)) and all p ∈ [1, 2], R ∈ N. Furthermore, using again
a Cantor’s diagonal argument, we can assume that (fnk

, k ∈ N) converges almost everywhere
to f . It remains to prove that f ∈ Lp([0, T ];Lp(R)) and fnk

→ f ∈ Lp([0, T ];Lp(R)) as
k → ∞. First, by Fatou’s lemma we obtain f ∈ Lp([0, T ];Lp(R)) and

sup
t∈[0,T ]

∫
R
|x|f(t, x) dx ≤ sup

n∈N
sup

t∈[0,T ]

∫
R
|x|fn(t, x) dx ≤ C.

Second, we find

∥fnk
− f∥pLp([0,T ];Lp(R))

=

T∫
0

∫
R
|fnk

(t, x)− f(t, x)|p dx dt

=

T∫
0

∫
BR

|fnk
(t, x)− f(t, x)|p dx dt+

T∫
0

∫
Bc

R

|fnk
(t, x)− f(t, x)|p dx dt

≤
T∫
0

∫
BR

|fnk
(t, x)− f(t, x)|p dx dt+ 1

R
sup
k∈N

T∫
0

∫
Bc

R

|x||fnk
(t, x)− f(t, x)|p dx dt.

Taking k → ∞ and then R → ∞, we find a subsequence (fnk
, k ∈ N) which converges in

Lp([0, T ];Lp(R)) and, thus, the sequence (fn, n ∈ N) is relative compact in Lp([0, T ];Lp(R)).
□

In the next theorem, we show that the approximation sequence (ρε, ε > 0) converges in the
weak sense to a weak solution ρ of equation (2.7).

Theorem 3.5. Suppose Assumption 2.1. Then, for each T > 0 there exists a subsequence
(ρεm ,m ∈ N) such that ρεm ⇀ ρ as m → ∞ in L2([0, T ];H1(R)). Furthermore, ρ ∈
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L2([0, T ];H1(R))∩L∞([0, T ];L2(R)) with d
dtρ ∈ L2([0, T ];H−1(R)) is the unique non-negative

weak solution of equation (2.7), which satisfies

(3.3) ∥ρ∥L∞([0,T ];L2(R)) + ∥ρ∥L2([0,T ];H1(R)) +

∥∥∥∥ d

dt
ρ

∥∥∥∥
L2([0,T ];H−1(R))

≤ C(T ) ∥ρ0∥L2(R) .

In addition, there exists a subsequence (ρεm ,m ∈ N) such that ρεm → ρ converges weakly as
m→ ∞ in L1([0, T ];L1(R)).

Proof. From (3.2), the Banach–Alaoglu theorem and the lower semi-continuity we obtain (3.3)
and a subsequence (ρεm ,m ∈ N) such that

ρεm ⇀ ρ in L2([0, T ];H1(R)),
d

dt
ρεm ⇀

d

dt
ρ in L2([0, T ];H−1(R)).

Moreover, we have ρ ≥ 0 a.e. by Mazur’s lemma [Bre11, Corollary 3.8]. Next, we notice
that the subsequence (ρεm ,m ∈ N) fulfills Lemma 3.4. Consequently, without renaming the
subsequence we conclude

(3.4) lim
m→∞

∥ρεm − ρ∥Lp([0,T ];Lp(R)) = 0

for all p ∈ [1, 2]. Hence, it remains to show that we can take the limit in (2.9). From the
above weak convergence it immediately follows

T∫
0

〈
d

dt
ρεmt , η

〉
H−1(R),H1(R)

dt→
T∫
0

〈
d

dt
ρt, η

〉
H−1(R),H1(R)

dt,

T∫
0

∫
R
ρεmx (t, x)ηx(t, x) dx dt→

T∫
0

∫
R
ρx(t, x)ηx(t, x) dx dt

for η ∈ L2([0, T ];H1(R)) as m→ ∞. We write the non-linear term as

T∫
0

∫
R
ρεm(t, x)(kεm ∗ ρεm)(t, x)ηx(t, x) dx dt

=

T∫
0

∫
R
(ρεm − ρ)(kεm ∗ ρεm)(t, x)ηx(t, x) dx dt(3.5)

+

T∫
0

∫
R
ρ((kεm − k) ∗ ρ)(t, x)ηx(t, x) dx dt

+

T∫
0

∫
R
ρ(kεm ∗ (ρεm − ρ))(t, x)ηx(t, x) dx dt+

T∫
0

∫
R
ρ(k ∗ ρ)(t, x)ηx(t, x) dx dt.

For the first term we notice that it vanishes asm→ ∞. Indeed, since |kεm∗ρεm | ≤ C ∥k∥L∞(R)
and nx ∈ L2([0, T ];L2(R)), we have (kεm ∗ρεm)nx ∈ L2([0, T ];L2(R)) uniform in εm and, thus,
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ρεm → ρ in L2([0, T ];L2(R)) implies

T∫
0

∫
R
(ρεm − ρ)(kεm ∗ ρεm)(t, x)ηx(t, x) dx dt→ 0, as m→ ∞

by Hölder’s inequality. For the second term we use Assumptions 3.1 to find

T∫
0

∫
R
ρ(t, x)((kεm − k) ∗ ρ)(t, x)ηx(t, x) dx dt

=

T∫
0

∫
R

∫
R
ρ(t, x)(kεm − k)(x− y)ρ(t, y)ηx(t, x) dy dx dt

≤
T∫
0

∫
R

∫
R
(ρηx)(t, x) ∥kεm + k∥L∞(R) ρ(t, y) dy dx dt

≤ (C + 1)

T∫
0

∫
R

∫
R
(ρηx)(t, x) ∥k∥L∞(R) ρ(t, y) dy dx dt.

The right-hand side is finite and, therefore, by the dominated convergence theorem and the
almost everywhere convergence of kε → k, the second term vanishes. For the third term we
apply Young’s inequality [LL01, Theorem 4.2] and (3.4) to obtain

T∫
0

∫
R
ρ(t, x)(kεm ∗ (ρεm − ρ)(t, x))ηx(t, x) dx dt

≤
T∫
0

∥ρεm − ρ(t, ·)∥L1(R) ∥k∥L∞(R) ∥ρηx(t, ·)∥L1(R) dt

≤ ∥η∥L2([0,T ];H1(R)) ∥ρ∥L2([0,T ];L2(R)) ∥k∥L∞(R)

T∫
0

∥ρεm − ρ(t, ·)∥L1(R) dt

→ 0, as m→ ∞.

Consequently, taking the limit m→ ∞ in (3.5), we discover

lim
m→∞

T∫
0

∫
R
ρεm(t, x)(kεm ∗ ρεm)(t, x)ηx(t, x) dx dt =

T∫
0

∫
R
ρ(k ∗ ρ)(t, x)ηx(t, x) dx dt

and therefore ρ is a weak solution. The uniqueness follows by simple L2-estimates; see for
instance [CJLW17b, Theorem 3.10] in the case of the Hegselmann–Krause model (notice that
the proof of the uniqueness also works for R and k ∈ L∞(R)). □

Remark 3.6. The uniqueness of the solution ρ actually implies that any subsequence con-
vergences to the solution ρ.
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Lemma 3.7. Suppose Assumption 2.1. Then, for any T > 0 the weak solutions (ρε, ε >
0) of (2.8) as well as the weak solutin ρ of (2.7) with initial condition ρ0 are bounded in
L∞([0, T ];Lp(R)). More precisely, we have, for all ε > 0,

∥ρε∥L∞([0,T ];Lp(R)) , ∥ρ∥L∞([0,T ];Lp(R)) ≤ C(p, σ, T, ∥k∥L∞(R)) ∥ρ0∥Lp(R) .

Proof. Without loss of generality we show the claim only for ρ and we also may assume that
ρ is a smooth solution. Otherwise we mollify the initial data such that there exists a sequence
of smooth solutions, which converge weakly in L2([0, T ];L2(H1(R))) to ρε for each fix ε > 0.
Applying the lower semi-continuity for each ε > 0 first and then the convergence result in
Theorem 3.5 will prove the lemma.

Multiplying (2.7) with p
2(p−1)ρ

p−1, integrating by parts over R and using inequality (3.1),

we obtain

1

2(p− 1)

d

dt

∫
R
ρp(t, x) dx

=
p

2(p− 1)

∫
R

d

dt
ρ(t, x)ρp−1(t, x) dx

=
p

2(p− 1)

∫
R

(
σ

2
ρxx(t, x) + ((k ∗ ρ)(t, x)ρ(t, x))x

)
ρp−1(t, x) dx

=
p

2

∫
R
−σ
2
|ρx(t, x)|2ρp−2(t, x)− (k ∗ ρ)(t, x)ρxρp−1(t, x) dx

= −σ
2

p

∫
R
|(ρp/2)x(t, x)|2 dx−

∫
R
(ρp/2)x(t, x)ρ

p/2(t, x)(k ∗ ρ)(t, x) dx

≤ −σ
2

p

∫
R
|(ρp/2)x(t, x)|2 dx+ ∥k∥L∞(R)

∫
R
|(ρp/2)x(t, x)ρp/2(t, x)|dx

≤ −σ
2

p

∫
R
|(ρp/2)x(t, x)|2 dx+ ∥k∥L∞(R)

∫
R

σ2

2p ∥k∥L∞(R)
|(ρp/2)x(t, x)|2

+
p ∥k∥L∞(R)

2σ2
|ρp(t, x)|dx

≤ −σ
2

2p

∫
R
|(ρp/2)x(t, x)|2 dx+

p ∥k∥2L∞(R)

2σ2

∫
R
|ρp(t, x)| dx

≤
p ∥k∥2L∞(R)

2σ2

∫
R
|ρp(t, x)| dx,

where we used Young’s inequality with ε = σ2

∥k∥L∞(R)p
in the sixth step. An application of

Gronwall’s inequality leads to∫
R
ρp(t, x) dx ≤ C(p, σ, T, ∥k∥L∞(R)) ∥ρ0∥Lp(R1) for all t ∈ [0, T ].

□

Lemma 3.8. Suppose Assumption 2.1. Then, for each T > 0 there exists a constant C(ρ0)
such that, for all ε > 0,

∥ρε∥L∞([0,T ];L∞(R)) , ∥ρ∥L∞([0,T ];L∞(R)) ≤ C(ρ0)
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holds for the weak solutions (ρε, ε > 0) of (2.8) and for the weak solution ρ of (2.7).

Proof. As previously, we will only show the claim for ρ and we can assume that ρ is smooth.
Set ρm := max(ρ −m, 0) for some fix strictly positive m ∈ R and let p > 2. For the sake

of notational brevity we drop the depend of the involved on (t, x). Multiplying (2.7) by ρp−1
m

and integrating by parts, we obtain

1

p

d

dt

∫
R
ρpm dx =

∫
R

(
σ2

2
ρxx + ((k ∗ ρ)ρ)x

)
ρp−1
m dx

=−
∫
R

σ2(p− 1)

2
ρx(ρm)xρ

p−2
m − (p− 1)(ρm)xρ

p−2
m (k ∗ ρ)ρ dx

=−
∫
R

σ2(p− 1)

2
(ρm)2xρ

p−2
m − (p− 1)ρp−1

m (ρm)x(k ∗ ρ)

+m(p− 1)(ρm)xρ
p−2
m (k ∗ ρ) dx

=− 2σ2(p− 1)

p2

∫
R
(ρp/2m )2x dx− 2(p− 1)

p

∫
R
(ρp/2m )xρ

p/2
m (k ∗ ρ) dx

+
2m(p− 1)

p

∫
R
(ρp/2m )xρ

p/2−1
m (k ∗ ρ) dx.

In the next step we estimate the last two terms with Young’s inequality. More precisely, we
get

2(p− 1)

∫
R

1

p
(ρp/2m )xρ

p/2
m (k ∗ ρ) dx

≤ 2(p− 1) ∥k∥L∞(R)

∫
R

1

p
|(ρp/2m )x| |ρp/2m | dx

≤ 2(p− 1)

∫
R

σ2

4p2
|(ρp/2m )x|2 +

∥k∥2L∞(R)

σ2
|ρp/2m |2 dx

=
(p− 1)σ2

2p2

∫
R
|(ρp/2m )x|2 dx+

2(p− 1) ∥k∥2L∞(R)

σ2

∫
R
|ρpm|dx

and

2(p− 1)

∫
R

1

p
(ρp/2m )xmρ

p/2−1
m (k ∗ ρ) dx

≤ 2(p− 1)

∫
R

1

p
|(ρp/2m )x|m ∥k∥L∞(R) |ρ

p/2−1
m | dx

≤ 2(p− 1)

∫
R

σ2

4p2
|(ρp/2m )x|2 +

m2 ∥k∥2L∞(R)

σ2
|ρp−2

m | dx

≤ (p− 1)σ2

2p2

∫
R
|(ρp/2m )x|2 dx+

2(p− 1) ∥k∥2L∞(R)m
2

σ2

∫
R
|ρp−2

m |dx.
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Furthermore, we can estimate∫
R
|ρp−2

m | dx =

∫
R
1{m≤ρ≤m+1}|ρp−2

m |+ 1{ρ≥m+1}|ρp−2
m |dx

≤
∫
R
1{m≤ρ≤m+1} + |ρpm|dx

≤ 1

m

∫
R
ρ dx+

∫
R
|ρpm|dx

≤ 1

m
+

∫
R
|ρpm|dx.

Hence, we derive for the last term the following inequality

2(p− 1)

∫
R

1

p
(ρp/2m )xmρ

p/2−1
m (k ∗ ρ) dx

≤ (p− 1)σ2

2p2

∫
R
|(ρp/2m )x|2 dx+

2(p− 1) ∥k∥2L∞(R)m

σ2
+

2(p− 1) ∥k∥2L∞(R)m
2

σ2

∫
R
|ρpm|dx.

Putting everything together we find

1

p

d

dt

∫
R
ρpm dx ≤− σ2(p− 1)

p2

∫
R
(ρp/2m )2x dx+

2(p− 1) ∥k∥2L∞(R)m

σ2

+

(
2(p− 1) ∥k∥2L∞(R)

σ2
+

2(p− 1) ∥k∥2L∞(R)m
2

σ2

)∫
R
|ρpm|dx,

from which we can conclude that

d

dt

∫
R
ρpm dx ≤ −σ

2

2

∫
R
(ρp/2m )2x dx+

2 ∥k∥2L∞(R) p
2(m2 + 1)

σ2

∫
R
|ρpm| dx+

2p2 ∥k∥2L∞(R)m

σ2
.

By the Gagliardo–Nirenberg–Sobolev interpolation inequality [Leo17, Theorem 12.87] and

[Nir59] on the whole space as well as Young’s inequality with τ = 3σ2

4 we have

λ2 ∥u∥2L2(R) ≤ CGNSλ
2 ∥u∥4/3

L1(R) ∥∇u∥
2/3
L2(R)

≤ 4

σ2
√
27
C

3/2
GNSλ

3 ∥u∥2L1(R) +
σ2

4
∥∇u∥2L2(R) ,

(3.6)

where CGNS is the Gagliardo–Nirenberg–Sobolev constant in one dimension. For u = ρ
p/2
m ,

C1 :=
2∥k∥2L∞(R)(m

2+1)

σ2 and λ =
√
C1p we obtain

C1p
2

∫
R
|ρpm| dx ≤ 4

3σ
C3/2C

3/2
1 p3

∥∥∥ρp/2m

∥∥∥2
L1(R)

+
σ2

4

∥∥∥(ρp/2m )x

∥∥∥2
L2(R)

.

Consequently, we have

d

dt

∫
R
ρpm dx ≤− 1

4
σ2
∫
R
(ρp/2m )2x dx+ p3

4C3/2(2 ∥k∥2L∞(R) (m
2 + 1))3/2

3σ4

(∫
R
|ρp/2m |dx

)2

+
2p2 ∥k∥2L∞(R)m

σ2
.
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Applying the above inequality (3.6) with u = ρ
p/2
m , λ = p and rearranging the terms we

discover

−σ
2

4

∥∥∥(ρp/2m )x

∥∥∥2
L2(R)

≤ −p2
∫
R
|ρpm|dx+

4

3σ
C3/2p3

∥∥∥ρp/2m

∥∥∥2
L1(R)

,

which then implies

d

dt

∫
R
ρpm dx

≤ −p2
∫
R
|ρpm|dx+ C(σ,m, ∥k∥L∞(R))p

3

(∫
R
ρp/2m dx

)2

+
2p2 ∥k∥2L∞(R)m

σ2

≤ −p2
∫
R
|ρpm|dx+ C(σ,m, ∥k∥L∞(R))p

4

(∫
U
ρp/2m dx

)2

+ C(σ,m, ∥k∥L∞(R))p
2

for some non-negative constant C(σ,m, ∥k∥L∞(R)).

Let us define

wj(t) :=

∫
R
ρ2

j

m(t, x) dx and Sj := sup
t∈[0,T )

wj(t),

for j ∈ N. Then, for p = 2j the above inequality can be written as

d

dt
wj(t) ≤ −22jwj(t) + 22j(C(σ,m, ∥k∥L∞(R))2

2jw2
j−1(t) + C(σ,m, ∥k∥L∞(R)))

≤ −22jwj(t) + 22j(C(σ,m, ∥k∥L∞(R))2
2jS2

j−1 + C(σ,m)).

Moreover, define u(t, x) := −22jx+ 22j(C(σ,m, ∥k∥L∞(R))2
2jS2

j−1 +C(σ,m, ∥k∥L∞(R))), ε :=

22j and A := C(σ,m, ∥k∥L∞(R))2
2jS2

j−1 + C(σ,m, ∥k∥L∞(R)). Then, u is locally Lipschitz

continuous in x and v = e−εtv0 +A(1− e−εt) is a solution of the following ODE{
d
dtv(t) = u(t, v(t))

v(0) = v0
.

Let us choose v0 :=
∫
R ρ

2j
0 dx ≥ w(0). Then, we can apply the comparison principle to obtain

wj(t) ≤ v(t) ≤ v0 +A ≤ ∥ρ0∥2
j−1

L∞(R) + C(σ,m, ∥k∥L∞(R))2
2jS2

j−1 + C(σ,m, ∥k∥L∞(R)).

It follows that

Sj = sup
t∈[0,T )

wj(t) ≤ C(σ,m, ∥k∥L∞(R))max(∥ρ0∥2
j−1

L∞(R) , 2
2jS2

j−1 + 1).

To complete the proof, we perform a version of Moser iteration technique to bound the L∞-

norm. For S̃j :=
Sj

∥ρ0∥2
j−1

L∞(R)

the last inequality provides us with

S̃j ≤ C(σ,m, ∥k∥L∞(R))max(1, 22jS̃2
j−1).

Adding on both sides δ > 0 and taking the logarithm, we arrive at

log(S̃j + δ) ≤ max(log(C(σ,m, ∥k∥L∞(R)) + δ), log(C(σ,m, ∥k∥L∞(R))2
2jS̃2

j−1 + δ))

≤ 2 log(S̃j−1 + δ) + j log(4) + log(C(σ,m, ∥k∥L∞(R)))

for some new constant C(σ,m, ∥k∥L∞(R)) > 0. This implies

2−j log(S̃j + δ)− 21−j log(S̃j−1 + δ) ≤ 2−jj log(4) + 2−jC(σ,m, ∥k∥L∞(R))
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for j ∈ N, where we used Lemma 3.7 to not subtract infinity, i.e. log(S̃j−1 + δ) <∞. Adding
the above inequality over j = 1, . . . , J , we find

2−J log(S̃J + δ)− log(S̃0 + δ) =
J∑

j=1

2−j log(S̃j + δ)− 2−(j−1) log(S̃j−1 + δ)

≤
∞∑
j=1

2−jj log(4) + 2−jC(σ,m, ∥k∥L∞(R))

≤ C

for a constant C independent of J and δ > 0. A straightforward way to see that the series is
absolutely convergent is to apply the ratio criterion from elementary analysis.

Now, we have S̃0 = sup
t∈[0,T )

∥ρ(·, t)∥L1(R) = 1 by mass conservation. Therefore, taking the

exponential function on both sides and letting δ → 0, we discover

S2−J

J ≤ C ∥ρ0∥(2
J−1)2−J

L∞(R) ≤ C(ρ0) <∞.

On the other hand, we have

S2−J

J =

(
sup

t∈[0,T )

∫
R
ρ2

J

m (t, x) dx

) 1

2J

= sup
t∈[0,T )

(∫
R
ρ2

J

m (t, x) dx

) 1

2J

.

Finally, we can take the limit J → ∞ to conclude

sup
t∈[0,T )

∥ρm(t, ·)∥L∞(R) = sup
t∈[0,T )

lim
J→∞

∥ρm(t, ·)∥
L2J (R) ≤ lim sup

J→∞
sup

t∈[0,T )
∥ρm(t, ·)∥

L2J (R)

= lim
J→∞

S2−J

J ≤ C(∥k∥L∞(R) , ρ0).

□

4. Local Lipschitz bound for the interaction force kernels

In this section we introduce a uniform Lipschitz assumption on the approximation sequence
(kε, ε > 0) and show that most bounded confidence models, as used in the theory of opinion
formation [Hos20], satisfy this assumption.

At first glance, we notice that even though the interaction force kernels kε is uniformly
bounded it is not uniformly Lipschitz continuous in ε. Hence, the classical theory regarding
Lipschitz continuous interaction force kernels on mean-field limits cannot be applied directly
to the particles systems introduced in Subsection 2.2. Instead we need use the properties of the
convolution to derive uniform Lipschitz continuity of the mean-field force kε∗ρε. Following e.g.
[CG17, LP17, FHS19], we derive a Lipschitz bound for certain models in the case where the
trajectories Xε

t and Y ε
t are close in a suitable sense. This approach requires an approximation

with suitable properties and could not be generalized, so far, to arbitrary approximations.
The main reason lies in the derivative of the approximation kε. If the derivative would be
non-negative, then we could use a Taylor approximation, the properties of the solution ρε

and the formula
∥∥ d
dxk

ε ∗ ρεt
∥∥
L∞(R) =

∥∥kε ∗ d
dxρ

ε
t

∥∥
L∞(R) to obtain a local Lipschitz bound for

kε with estimates on the gradient d
dxρ

ε
t . Unfortunately, in most cases a simple mollification

of k has a derivative becoming non-negative as well as non-positive. Therefore, we have to
postulate the following assumptions on the approximation sequence (kε, ε > 0).
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Assumption 4.1. The sequence (kε, ε > 0) satisfies the following:

(i) There exists a family of functions (lε, ε > 0) such that

|kε(x)− kε(y)| ≤ lε(y)|x− y|
for x, y ∈ R with |x− y| ≤ 2ε−1;

(ii)

sup
t∈[0,T ]

∥lε ∗ ρεt∥L∞(R) ≤ C(∥k∥L∞(R))(∥ρ0∥L1(R) + ∥ρ0∥L∞(R)),

where C(∥k∥L∞(R)) is some finite constant depending on the L∞(R)-norm of k.

Remark 4.2. The constant 2 in Assumption 4.1 can be replaced by any positive constant.
For simplicity, we choose the most convenient one to avoid cumbersome notation.

4.1. Exemplary interaction force kernels. The particle systems, as introduced in Sub-
section 2.2, can be used to model the opinion of interacting individuals, see e.g. [Hos20]. A
prominent class are given by so-called bounded confidence models, in which the interaction
is described by interaction force kernels of the form

kBCM(x) := 1[0,R](|x|)h(x), with h ∈ C2(R).

To show that kBCM satisfies Assumption 4.1, we introduce the following approximation se-
quence (ψε

a,b, ε > 0) of the indicator function 1[a,b](x) with a, b ∈ R, a < b, such that the
following properties hold for each ε > 0:

• ψε
a,b ∈ C∞

c (R),
• ψε

a,b → 1[a,b] as ε→ 0 almost everywhere,

• supp(ψε
a,b) ⊆ [a− 2ε, b+ 2ε], supp( d

dxψ
ε
a,b) ⊂ [a− 2ε, a+ 2ε] ∪ [b− 2ε, b+ 2ε],

• 0 ≤ ψε
a,b ≤ 1, | d

dxψ
ε
a,b| ≤

C
ε for some constant C > 0.

Since we want to take ε→ 0, we consider only the case where ε is small enough. In particular,
we can take the mollification of the indicator function of a set. We define the regularized
interaction force kernel

kεBCM(x) = ψε
−R,R(x)h(x) ∈ C2

c (R),
which obviously satisfies Assumptions 3.1. That it also satisfies Assumption 4.1 is verified in
the following.

Lemma 4.3 (Local Lipschitz bound for bounded confidence models). Consider the regularized
interaction force kernel kεBCM with cut-off ε. Moreover, let NBRε := [−R − 4ε,−R + 4ε] ∪
[R− 4ε,R+ 4ε] (“neighborhood of R”). Then, we have the following estimates:

(i) For each x, y ∈ R with |x− y| ≤ 2ε and

lεBCM(y) :=

{
C1[−R−3,R+3](y), y ∈ NBRc

ε

Cε−1, y ∈ NBRε

it holds that

|kεBCM(x)− kεBCM(y)| ≤ lεBCM(y)|x− y|;
(ii) For each x, y ∈ RN with |x− y|∞ ≤ ε and

Lε
i,BCM(y1, . . . , yN ) :=

1

N

N∑
j=1

lεBCM(yi − yj), (y1, . . . , yN ) ∈ RN ,
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it holds that

|Kε
i,BCM(x)−Kε

i,BCM(y)| ≤ 2Lε
i,BCM(y)|x− y|∞,

where Ki,BCM is defined by (2.5) with kBCM .

Proof. (i) Let |x− y| ≤ 2ε−1. By the mean value theorem, we have the bound

|kεBCM(x)− kεBCM(y)| ≤
∣∣∣∣ ddxkε(z)

∣∣∣∣|x− y|

for some z in the line segment between x and y. Let us distinguish between two cases.
Case 1: y ∈ NBRε. Using the bound∣∣∣∣ ddxkεBCM(z)

∣∣∣∣ ≤ ∣∣∣∣ ddxψε(z)h(z)

∣∣∣∣+ ∣∣∣∣ψε(z)
d

dx
h(z)

∣∣∣∣ ≤ Cε−1

for all z ∈ R for some constant C > 0, which depends on the deterministic function h, it
follows

|kεBCM(x)− kεBCM(y)| ≤ Cε−1|x− y|.
Case 2: y ∈ NBRc

N . Because z lies on the line segment between x, y, it follows for some
s ∈ [0, 1] that

|z − y| = |y − s(x− y)− y| ≤ |x− y| ≤ 2ε

and therefore |R − z| ≥ |R − y| − |z − y| ≥ 4ε − 2ε = 2ε. Analogously, | − R − z| ≥
| −R− y| − |z− y| ≥ 2ε. Consequently, z is far enough away from the points R and −R such
that the derivative of the approximation d

dxψ
ε vanishes. This implies∣∣∣∣ ddxkεBCM(z)

∣∣∣∣ ≤ ∣∣∣∣ψε(z)
d

dx
h(z)

∣∣∣∣ ≤ ∣∣∣∣ ddxh(x)
∣∣∣∣1[−R−3,R+3](y) ≤ C1[−R−3,R+3](y),

where we used |y| ≤ |y− z|+ |z| ≤ 2+ |z|. Together with the mean value theorem this proves
the second case.

(ii) We want to apply (i). For x, y ∈ RN , |x− y|∞ ≤ ε, it follows

|Kε
i,BCM(x)−Kε

i,BCM(y)| ≤ 1

N − 1

N∑
j=1
j ̸=i

|kεBCM(xi − xj)− kεBCM(yi − yj)|

≤ 1

N − 1

N∑
j=1
j ̸=i

lεBCM(yi − yj)|xi − xj − (yi − yj)|

≤ 2Lε
i,BCM(y)|x− y|∞.

It is indeed justified to apply (i) since |xi − xj − (yi − yj)| ≤ 2|x − y|∞ ≤ 2ε for all i, j =
1, . . . , N . □

Remark 4.4. The second part of Lemma 4.3 is a direct consequence of part one. Hence, if
(kε, ε > 0) satisfies Assumption 4.1, we have

|Kε
i (x)−Kε

i (y)| ≤ 2Lε
i (y)|x− y|∞

for x, y ∈ RN with |x− y|∞ ≤ ε and

Lε
i (y1, . . . , yN ) :=

1

N

N∑
j=1

lε(yi − yj), (y1, . . . , yN ) ∈ RN .
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The convenient properties of the solutions (ρε, ε ≥ 0) allow us to find a uniform bound of
the convolution term lε ∗ ρεt . This will be the content of the following lemma.

Lemma 4.5. Suppose Assumption 2.1 and let us define

L̄ε
t,i,BCM(y1, . . . , yN ) := (lεBCM ∗ ρεt )(yi), (y1, . . . , yN ) ∈ RN ,

the averaged version of Lε for i = 1, . . . , N . Then, there exists a constant C, depending on
the deterministic function h, such that

sup
i=1,...,N

sup
t∈[0,T ]

∥L̄ε
t,i,BCM∥L∞(RN ) ≤ C (∥ρε0∥L1(R) + ∥ρε0∥L∞(R)),

where ρεt is the solution of (2.8) for the special interaction force kernel kBCM .

Proof. Let i ∈ {1, . . . , N} and y = (y1, . . . , yN ) ∈ RN . Then, by mass conservation and
Lemma 3.8, we have

|L̄ε
t,i,BCM(y)| = |(lεBCM ∗ ρεt )(yi)|

≤
∫
R
1{z : yi−z∈NBRc

ε}|l
ε
BCM(yi − z)ρt(z)|dz +

∫
R
1{z : yi−z∈NBRε}|l

ε
BCM(y − z)ρt(z)| dz

≤ C

∫
R
|ρεt (z)| dz + Cεε−1 ∥ρεt∥L∞(R)

≤ C((∥ρεt∥L1(R) + ∥ρεt∥L∞(R))

≤ C((∥ρ0∥L1(R) + ∥ρ0∥L∞(R)),

where C again depends on the deterministic function h. □

Consequently, we have shown that kε = ψεh fulfills Assumption 4.1 and (as previously
mentioned) Assumption 3.1, which implies the following corollary.

Corollary 4.6. The interaction force kernel kBCM satisfies Assumptions 3.1 and 4.1 with the
associated approximation sequence (kεBCM , ε > 0) given by kεBCM(x) := ψε

−R,R(x)h(x).

Another example of interest are interaction forces with h(x) := sgn(x), which corresponds
to a uniform interaction, i.e., every particle in the interaction radius has the same impact.
Unfortunately, sgn(x) /∈ C2(R) and, hence, we cannot directly apply Lemma 4.3. However,
the function sgn(x) has no effect on the discontinuities −R and R. Therefore, if we can control
the function around zero, we can obtain an analog result to Lemma 4.3. Indeed, we define

kU(x) := −1[−R,0](x) + 1[0,R](x), x ∈ R,
which can be appropriated by kεU(x) := ψε

−R,0(x) + ψε
0,R(x). Defining

NBZRε := [−R− 4ε,−R+ 4ε] ∪ [−4ε, 4ε] ∪ [R− 4ε,R+ 4ε]

as the neighbourhood of zero and R, we can perform the same steps as in Lemma 4.3 to prove
the following Lemma for kU .

Lemma 4.7 (Local Lipschitz bound for uniform kernel). Consider the regularized interaction
force kernel kεU with cut-off ε. Then, we have the following estimates:

(i) For each x, y ∈ R with |x− y| ≤ 2ε and

lεU(y) :=

{
0, y ∈ NBZRc

ε

Cε−1, y ∈ NBZRε
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it holds that
|kεU(x)− kεU(y)| ≤ lεU(y)|x− y|;

(ii) For each x, y ∈ RN with |x− y|∞ ≤ ε and

Lε
i,U(y1, . . . , yN ) :=

1

N

N∑
j=1

lεU(yi − yj), (y1, . . . , yN ) ∈ RN ,

it holds that
|Kε

i,U(x)−Kε
i,U(y)| ≤ 2Lε

i,U(y)|x− y|∞.

Corollary 4.8. The interaction force kernel kU satisfies Assumptions 3.1 and 4.1 with the
associated approximation sequence (kεU , ε > 0) given by kεU(x) := ψε

−R,0(x) + ψε
0,R(x).

Proof. Apply Lemma 4.7 and similar computations as in proof of Lemma 4.5 to show that
Assumption 4.1 is fulfilled. The verification of Assumption 3.1 follows immediately. □

5. Law of large numbers

The derivation of propagation of chaos is based on defining several exceptional sets where
the desired properties will not hold. Hence, we need to rely on the fact that the probability
measure of these sets is extremely small. This fact is the subject of the next proposition.

Proposition 5.1 (Law of large numbers). Let 0 < α, δ such that 0 < δ + α < 1/2 and
Z1, . . . , ZN be independent random variables in R such that Zi has density ui for i = 1, . . . , N .

Let h : R → R be a bounded measurable function. Define Hi(Z) :=
1
N

N∑
j=1
j ̸=i

h(Zi − Zj) and

S :=

{
sup

1≤i≤N
|Hi(Z)− E(Hi(Z))| ≥ N−(δ+α)

}
,

S̃ :=

{
sup

1≤i≤N
|Hi(Z)− E(−i)(Hi(Z))| ≥ N−(δ+α)

}
,

where E(−i) stands for the expectation with respect to every variable except Zi, i.e.

E(−i)(Hi(Z)) :=
1

N

N∑
j=1
j ̸=i

(h ∗ uj)(Zi).

Then, for each γ > 0 there exists a constant C(γ) > 0, which depends on γ,C, such that

P(S), P(S̃) ≤ C(γ)N−γ .

Proof. We prove the statement for the set S. The estimate for the set S̃ can be shown similarly
by replacing E(Hi(Z)) with E(−i)(Hi(Z)). First, we notice

P

(
sup

1≤i≤N
|Hi(Z)− E(Hi(Z))| ≥ N−(δ+α)

)
≤

N∑
i=1

P(|Hi(Z)− E(Hi(Z))| ≥ N−(δ+α)).

Hence, it suffices to prove

P(|Hi(Z)− E(Hi(Z))| ≥ N−(δ+α)) ≤ C(γ)N−γ
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for each γ > 0, i = 1, . . . , N . Let us assume i = 1 and for j = 2, . . . , N let us denote by Θj

the independent random variables Θj := h(Z1 −Zj). Then, applying Chebyshev’s inequality
to the function x 7→ x2m, we obtain

P(|H1(Z)− E(H1(Z))| ≥ N−(δ+α)) ≤ N2(δ+α)mE(|H1(Z)− E(H1(Z))|2m)

≤ N2(δ+α)mE

 1

N − 1

N∑
j=2

(Θj − E(Θj))

2m .
(5.1)

The expectation on the right-hand side can be rewritten, using the multinomial formula, as

(x2 + x3 + · · ·+ xN )2m =
∑

a2+a3+···+aN=2m

(
2m

a2, . . . , aN

) N∏
j=2

x
aj
j ,

where a = (a2, a3, . . . , aN ) ∈ NN−1
0 is a multiindex of length |a| = 2m. Consequently, using

the independence of (Θj , j = 2, . . . , N), we get

E

 1

N

N∑
j=2

(Θj − E(Θj))

2m
= N−2m

∑
a2+a3+···+aN=2m

(
2m

a2, . . . , aN

) N∏
j=2

E((Θj − E(Θj))
aj )

= N−2m
∑

a2+a3+···+aN=2m
|a|0≤m

(
2m

a2, . . . , aN

) N∏
j=2

E((Θj − E(Θj))
aj ),(5.2)

where |a0| the number of non-zero entries of the multiindex a. Otherwise, if |a|0 > m, then
there exists a j such that aj = 1 and the product vanish since E(Θj − E(Θj)) = 0. From the
bound on h we have

|E((Θj − E(Θj))
aj )| =

∣∣∣∣∫
R×R

(h(z1 − zj)− E(Θj))
aju1(z1)u

j(zj) dz1 dzj

∣∣∣∣ ≤ Caj .

Using the facts(
2m

a2, . . . , aN

)
≤ (2m)2m and

∑
a2+a3+···+aN=2m

|a|0=k

1 ≤ Nk(2m)k

for 0 ≤ k ≤ m, we can estimate (5.2) to arrive at

E

 1

N

N∑
j=2

(Θj − E(Θj))

2m ≤ N−2m
∑

a2+a3+···+aN=2m
|a|0≤m

(2m)2mC2m

≤ N−2m
m∑
k=1

Nk(2m)3mC2m ≤ C(m)Nm

N2m
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for some constant C(m). Hence, plugging it into (5.1), we find

P(|H1(Z)− E(H1(Z))| ≥ N−(δ+α)) ≤ C(m)
N2(δ+α)m+m

N2m
.

Using the assumption δ + α < 1/2 and choosing m such that m(−1 + 2(δ + α)) = γ proves
the proposition. □

The law of large numbers provided in Proposition 5.1 allows to show that the sets, where
the desired properties do not hold, are small in probability.

Corollary 5.2. Let 0 < α, δ, 0 < α + δ < 1/2, ε ∼ N−β with 0 < β ≤ α and define for
0 ≤ t ≤ T the following sets

B1
t := {|Kε(YN,ε

t )−Kε
t (Y

N,ε
t )|∞ ≤ N−(δ+α)},

B2
t := {|Lε(YN,ε

t )− Lε
t (Y

N,ε
t )|∞ ≤ 1},

where the mean-field particles are close under the kernel Kε and Lε, which were defined in
Section 2.2 and Remark 4.4. Then, for each γ > 0 there exists a C(γ) > 0 such that

P((B1
t )

c),P((B2
t )

c) ≤ C(γ)N−γ

for every 0 ≤ t ≤ T , where the constant C(γ) is independent of t ∈ [0, T ].

Proof. First, the random variables (Y i,ε
t , i = 1, . . . , N) are i.i.d. and have a probability

density ρεt given by the solution of the regularized system (2.8). Moreover, we have

Kε
i (x1, . . . , xN ) = − 1

N

N∑
j=1

kε(xi − xj), (x1, . . . , xN ) ∈ RN ,

with kε bounded. We recall that we denote by E(−i) the expectation with respect to every
variable but the i-th. Therefore, we get

E(−i)(K
ε
i (Y

N,ε
t )) = − 1

N

N∑
j=1

E(kε(Y i,ε
t − Y j,ε

t ))

= − 1

N

N∑
j=1

∫
R
kε(Y i,ε

t − z)ρε(z, t) dz = −(kε ∗ ρt)(Y i,ε
t ) = Kε

t,i(Y
N,ε
t )

for all i = 1, . . . , N . As a result, we obtain

(B1
t )

c =

{
sup

1≤i≤N
|Kε

i (Y
N,ε
t )− E(−i)(K

ε
i (Y

N,ε
t ))| > N−(δ+α)

}
and therefore, by Proposition 5.1,

P((B1
t )

c) ≤ C(γ)N−γ .

For the set B2
t we notice the function lεN−α is bounded since ε ∼ N−β and, thus, we can

do similar steps as before with the set

(B1
t )

c = {N−α|Lε(YN,ε
t )− Lε

t (Y
N,ε
t )|∞ ≥ N−α}

⊆ {N−α|Lε(YN,ε
t )− Lε

t (Y
N,ε
t )|∞ ≥ N−(δ+α)}.

This proves the corollary. □
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6. Propagation of chaos in probability

In this section we are going to prove propagation of chaos for the particle system (2.3). We
deploy a coupling method with the mean-field SDE (2.2) and show convergence in probability
with an arbitrary algebraic rate N−γ for γ > 0. To that end, we present the main result,

which states that the trajectory of the N-particle system XN with XN
0 ∼

N
⊗
i=1
ρ0 typically

remains close to the mean-field trajectory Y N with same starting position XN
0 = Y N

0 during
any finite interval [0, T ].

Theorem 6.1. Suppose Assumption 2.1. Let T > 0, α ∈
(
0, 12
)
and (kε, ε > 0) satisfy

Assumptions 3.1 and 4.1 with ε ∼ N−β for 0 < β ≤ α. Then, for every γ > 0, there exists a
positive constant C(γ) and N0 ∈ N such that

P

(
sup

t∈[0,T ]
|XN,ε

t −YN,ε
t |∞ ≥ N−α

)
≤ C(γ)N−γ , for each N ≥ N0.

The constant C(γ) depends on the initial density ρ0, the final time T > 0, α and γ. The
natural number N0 also depends on ρ0, T and α.

To prove Theorem 6.1, we need the following auxiliary lemma.

Lemma 6.2. [LP17, Lemma 8.1] For a function f : R → R we denote the right upper Dini
derivative by

D
+
t f(y) := lim sup

h→0+

f(y + h)− f(x)

h
.

Let g ∈ C1(R) and h(y) := sup
0≤s≤y

g(s). Then, one has D
+
t h(y) ≤ max

(
0, d

dtg(y)
)
for all y ≥ 0.

Proof of Theorem 6.1. For T > 0 and α ∈ (0, 1/2) and δ = 1
2(1/2 − α) > 0 let us define the

auxiliary process

JN
t := min

(
1, sup

0≤s≤t
eλ(T−s)(Nα|XN,ε

s −YN,ε
s |∞ +N−δ)

)
,

where λ > 0 is a constant, which will be defined later. In the first step we want to understand

how JN
t helps us to control the maximum distance |XN,ε

t −YN,ε
t |∞. For 0 ≤ t ≤ T we have

sup
0≤s≤t

Nα|XN,ε
s −YN,ε

s |∞ ≤ sup
0≤s≤t

eλ(T−s)(Nα|XN,ε
s −YN,ε

s |∞ +N−δ).(6.1)
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Hence, if JN
t < 1 we obtain sup

0≤s≤t
Nα|XN,ε

s −YN,ε
s |∞ ≤ JN

t < 1. Furthermore, we can assume

N ≥ N0 such that JN
o = eλ(T−s)N−δ < 1

2 with N0 depending on T, λ. As a result, we find

P

(
sup

t∈[0,T ]
|XN,ε

t −YN,ε
t | ≥ N−α

)
≤ P(JN

T ≥ 1) ≤ P
(
JN
T − JN

0 ≥ 1

2

)

≤ 2E(JN
T − JN

0 ) ≤ 2E

 T∫
0

D
+
t J

N
t dt

(6.2)

= 2

T∫
0

E(D+
t J

N
t ) dt,

where we used a more general fundamental theorem of calculus, see e.g. [HT06, Theorem 11],

in the last inequality. In the next step we want to estimate the Dini derivative D
+
t J

N
t .

Applying Lemma 6.2, we discover

(6.3) D
+
t J

N
t ≤ max

(
0,

d

dt
g(t)

)
with g(t) := eλ(T−t)(Nα|XN,ε

t −YN,ε
t |∞ +N δ). Using the fact ∂+max(h, l) = max(∂+h, ∂+l)

for right-differentiable functions h and l, where ∂+ denotes the right-derivative, we find

(6.4)
d

dt
g(t) = −λeλ(T−t)(Nα|XN,ε

t −YN,ε
t |∞ +N−δ) + eλ(T−t)Nα|Kε(XN,ε

t )−K
ε
t (Y

N,ε
t )|∞

with Kε and K
ε
t defined as in (2.5) and (2.6), respectively. Next, let us introduce the set

At := {D+
t J

N
t > 0} and notice that (6.3) implies At ⊆ {D+

t J
N
t ≤ d

dtg(t)}. Hence, we discover

E(D+
t J

N
t ) = E(D+

t J
N
t 1At) + E(D+

t J
N
t 1Ac

t
) ≤ E

(
d

dt
g(t)1At

)
.

In combination with (6.2) we see that, in order to prove the theorem, it is enough to show
that E( d

dtg(t)1At) is bounded by C(γ)N−γ for some constant C(γ) > 0 and t ∈ [0, T ].

At this moment let us recall the sets B1
t , B

2
t from Section 5, where the “good” properties

hold to further reduce the problem. We have

E
(

d

dt
g(t)1At

)
= E

(
d

dt
g(t)1At∩B1

t ∩B2
t

)
+ E

(
d

dt
g(t)1At∩(B1

t ∩B2
t )

c

)
≤ E

(
d

dt
g(t)1At∩B1

t ∩B2
t

)
+ CNα(P((B1

t )
c) + P((B2

t )
c))

≤ E
(

d

dt
g(t1At∩B1

t ∩B2
t

)
+ C(γ)N−γ ,

where we used the fact that the interaction force approximation kε is uniformly bounded
in the first inequality and thus we have | ddtg(t)| ≤ CNα with the help of (6.4). The last
inequality follows immediately from Corollary 5.2 and relabeling γ. It is therefore enough to
prove that d

dtg(t) ≤ 0 holds under the event At∩B1
t ∩B2

t . This is equivalent to the inequality

(6.5) eλ(T−t)Nα|Kε(XN,ε
t )−K

ε
t (Y

N,ε
t )|∞ ≤ λeλ(T−t)(Nα|XN,ε

t −YN,ε
t |∞ +N−δ).
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We observe that on At we have JN
t < 1. Together with (6.1) this means

(6.6) sup
0≤s≤t

|XN,ε
s −YN,ε

s |∞ ≤ N−α

holds on At. Splitting up the term on the left-hand side of (6.5), we obtain

|Kε(XN,ε
t )−K

ε
t (Y

N,ε
t )|∞ ≤ |Kε(XN,ε

t )−Kε(YN,ε
t )|∞ + |Kε(YN,ε

t )−K
ε
t (Y

N,ε
t )|∞

≤ |Lε(YN,ε
t )|∞|XN,ε

t −YN,ε
t |∞ +N−(δ+α)

≤ (C + |Lε
t (Y

N,ε
t )|∞)|XN,ε

t −YN,ε
t |∞ +N−(δ+α)

≤ C(ρ0, T )(|XN,ε
t −YN,ε

t |∞ +N−(δ+α)),

where we used the local Lipschitz bound from Assumption 4.1, inequality (6.6) and the
condition of event B1

t in the second inequality. Then, we applied the condition of B2
t in the

third inequality and finally Assumption 4.1 in the last inequality. Inserting this back into the
left-hand side of (6.5), we discover

eλ(T−t)Nα|Kε(XN,ε
t )−K

ε
t (Y

N,ε
t )|∞ ≤ eλ(T−t)NαC(ρ0, T )(|XN,ε

t −YN,ε
t |∞ +N−(δ+α))

= C(ρ0, T )e
λ(T−t)(Nα|XN,ε

t −YN,ε
t |∞ +N−δ).

Choosing λ = C(ρ0, T ) provides (6.5) and concludes the proof. □

Remark 6.3. The cut-off α ∈ (0, 1/2) was only used in Corollary 5.2 to bound the set B2
t .

Hence, one possibility on improving the cut-off is to optimize Proposition 5.1 in order to
handle more general cut-off functions.

From Theorem 6.1 it immediately follows that the marginals of XN
t and Y N

t converge in the
Wasserstein metric, see e.g. [CG17, Corollary 2.2]. For the sake of completeness we include
the statement below.

Corollary 6.4. [CG17, Corollary 2.2.] Let the assumptions of Theorem 6.1 hold. Consider

the probability density ρ⊗N,ε
t of YN,ε

t and ρN,ε
t the probability density of XN,ε

t . Then, ρN,k,ε
t

converges weakly (in the sense of measures) to ρ⊗k,ε
t as N → ∞, ε(N) → 0 for each fixed

k ≥ 1. Furthermore, the probability density ρN,ε
t converges weakly (in the sense of measures)

to the same measure as ρ⊗N,ε
t as N → ∞. More precisely, there exists a positive constant C

and N0 ∈ N such that

sup
t∈[0,T ]

W1(ρ
N,k,ε
t , ρ⊗k,ε

t ), sup
t∈[0,T ]

W1(ρ
N,ε
t , ρ⊗N,ε

t ) ≤ C(ρ0, T, α)N
−α

holds for each k ≥ 1 and N ≥ N0, where W1 denotes the Wasserstein metric

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
R×R

1

k

k∑
i=1

|xi − yi| dπ(x, y)

and Π(µ, ν) is the set of all probability measures on R × R with first marginal µ and second
marginal ν. The constant C(ρ0, T, α) depends on the initial condition ρ0, the final time T
and α. Moreover, N0 ∈ N is the same as in Theorem 6.1.

Corollary 6.4 implies the weak convergence in the sense of measures of the k-th marginal

ρN,k,ε
t to the product measure ρ⊗k

t . Indeed, since ρN,k,ε
t converges weakly to ρ⊗k,ε

t , it is suffi-

cient to show that ρ⊗k,ε
t converges weakly to ρ⊗k

t . By the classic result [Szn91, Proposition 2.2]
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we can consider the special case k = 2, i.e ρεt ⊗ ρεt converges weakly to ρt ⊗ ρt. We can fur-
ther reduce it by applying [Pat13, Theorem 2.8], which tells us that it is enough to show ρεt
converges weakly to ρt.

Lemma 6.5. Let T > 0 and suppose Assumption 2.1. Moreover, let (ρε, ε > 0) and ρ be as
in Corollary 6.4. Then, one has

(6.7) sup
t∈[0,T ]

∣∣∣∣∫
R
(ρεt (x)− ρt(x))ϕ(x) dx

∣∣∣∣ −−−→ε→0
0

for all ϕ ∈ L∞(R). In particular, ρεt ⊗ ρεt converges weakly to ρt⊗ ρt for all t ≥ 0 in the sense
of measures.

Remark 6.6. Suppose the assumptions of Theorem 6.1 hold. The Lemma 6.5 together with
the discussion before Lemma 3.3 and [Szn91, Proposition 2.2] imply that, for all t ∈ [0, T ],

lim
N→∞

1

N

N∑
i=1

δ
Xi,ε

t
= ρt

in law as measure valued random variables if ε ∼ N−β.

Proof of Lemma 6.5. First, we notice that the convergence is uniform in time. Therefore,
the strong convergence result from Lemma 3.4 cannot be applied. We start by showing (6.7)
holds for ϕ ∈ H1(R). To that end, let us assume ϕ is in a dense subset and smooth enough,
i.e. ϕ ∈ C∞

c (R). Now, let 0 ≤ t1 < t2 ≤ T . Then, the uniform bound on d
dtρ

ε
t (see (3.2)) and

integration by parts [Zei90, Theorem 23.23] implies∣∣∣∣∫
R
ρε(t1, x)ϕ(x) dx−

∫
R
ρε(t2, x)ϕ(x) dx

∣∣∣∣ =
∣∣∣∣∣∣
t2∫

t1

〈
d

dt
ρεt , ϕ

〉
H−1(R),H1(R)

dt

∣∣∣∣∣∣
≤ |t2 − t1|1/2

∥∥∥∥ d

dt
ρε
∥∥∥∥
L2([0,T ];H−1(R))

∥ϕ∥H1(R)

≤ C|t2 − t1|1/2 ∥ϕ∥H1(R) .

Consequently, the sequence of function t 7→
∫
R ρ

ε
t (x)ϕ(x) dx is equicontinuous. Using the

L∞([0, T ];L2(R))-bound, we also get a uniform bound on the sequence. As a result, we can
apply the Arzela–Ascoli theorem to obtain a convergent subsequence, which depends on ϕ

and will be denoted by (ρε(ϕ), ε(ϕ) ∈ N) such that
∫
R ρ

ε(ϕ)
t ϕ dx → ζ(ϕ) in C([0, T ]). By

the fundamental lemma of calculus of variation and the fact that ρ
ε(ϕ)
t converges weakly in

L2([0, T ];L2(R)) we can identify the limit ζ(ϕ) =
∫
R ρtϕ dx. Since ϕ was taken from a dense

subset of H1(R), we can use a diagonal argument to obtain a subsequence, which will be not
renamed, such that, for ϕ ∈ H1(R),

(6.8) sup
t∈[0,T ]

∣∣∣∣∫
R
(ρ

ε(ϕ)
t (x)− ρt(x))ϕ(x) dx

∣∣∣∣ −−−−−→ε(ϕ)→∞
0.

With another density argument and the uniform bound of (ρε, ε ≥ 0) in L∞([0, T ];L2(R))
we obtain for each ϕ ∈ L2(R) a subsequence (ρ

ε(ϕ)
t , ε(ϕ) ∈ N) such that (6.8) holds. Again,

since L2(R) is separable we can use another diagonal argument to show that we can obtain a
subsequence (ρεkt , k ∈ N) such that (6.8) holds for all ϕ ∈ L2(R). Notice that this subsequence
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is independent of the function ϕ. Furthermore, the uniqueness of the limit implies that

(6.8) actually holds for any sequence (ρ
ε(N)
t , ε(N) > 0) itself, where ε(N) is some sequence

depending on N such that ε(N) → 0 as N → ∞.
Next, for ϕ ∈ L∞(R), we apply Lemma 3.3 and the fact that ϕ(x)1{|x|≤R} ∈ L2(R) to find

sup
t∈[0,T ]

∣∣∣∣∫
R
(ρεt (x)− ρt(x))ϕ(x) dx

∣∣∣∣
≤ sup

t∈[0,T ]

∣∣∣∣∫
R
(ρεt (x)− ρt(x))ϕ(x)1{|x|≤R} dx

∣∣∣∣+ sup
t∈[0,T ]

∣∣∣∣∫
R
(ρεt (x)− ρt(x))ϕ(x)1{|x|≥R} dx

∣∣∣∣
≤ sup

t∈[0,T ]

∣∣∣∣∫
R
(ρεt (x)− ρt(x))ϕ(x)1{|x|≤R} dx

∣∣∣∣+ ∥ϕ∥L∞(R)R
−1 sup

t∈[0,T ]

∫
R
|ρεt (x) + ρt(x)||x|dx

≤ sup
t∈[0,T ]

∣∣∣∣∫
R
(ρεt (x)− ρt(x))ϕ(x)1{|x|≤R} dx

∣∣∣∣+ C(ρ0) ∥ϕ∥L∞(R)R
−1.

Letting ε→ 0 and then R→ ∞, we obtain (6.7) and the corollary is proven. □
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[BCC11] François Bolley, José A. Cañizo, and José A. Carrillo, Stochastic mean-field limit: non-Lipschitz
forces and swarming, Math. Models Methods Appl. Sci. 21 (2011), no. 11, 2179–2210.

[BDP06] Adrien Blanchet, Jean Dolbeault, and Benôıt Perthame, Two-dimensional Keller-Segel model:
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Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 51 (2015), no. 3, 965–992.

[Han22] Yi Han, Entropic propagation of chaos for mean field diffusion with lp interactions via hierarchy,
linear growth and fractional noise, ArXiv preprint arXiv:2205.02772 (2022).

[HK02] Rainer Hegselmann and Ulrich Krause, Opinion dynamics and bounded confidence models, analy-
sis, and simulation, Journal of Artifical Societies and Social Simulation (JASSS) 5 (2002), no. 3.

[HKPZ19] Seung-Yeal Ha, Jeongho Kim, Peter Pickl, and Xiongtao Zhang, A probabilistic approach for the
mean-field limit to the Cucker-Smale model with a singular communication, Kinet. Relat. Models
12 (2019), no. 5, 1045–1067.

[HL09] Seung-Yeal Ha and Jian-Guo Liu, A simple proof of the Cucker-Smale flocking dynamics and
mean-field limit, Commun. Math. Sci. 7 (2009), no. 2, 297–325.

[HLL19] Hui Huang, Jian-Guo Liu, and Jianfeng Lu, Learning interacting particle systems: diffusion pa-
rameter estimation for aggregation equations, Math. Models Methods Appl. Sci. 29 (2019), no. 1,
1–29.

[HLP20] Hui Huang, Jian-Guo Liu, and Peter Pickl, On the mean-field limit for the Vlasov-Poisson-Fokker-
Planck system, J. Stat. Phys. 181 (2020), no. 5, 1915–1965.
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