Size selected NET-Seq reveals a conserved architecture of transcription units around yeast genes.

Jane Mellor¹, Shidong Xi¹, Struan Murray¹, and Philipp Lorenz¹

¹University of Oxford Department of Biochemistry

November 2, 2023

Abstract

Genomes from yeast to human are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but experimentally is can be hard to distinguish from background signals. Size selected native elongating transcript sequencing (ssNET-Seq) was developed to precisely map transcription units (TU) independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes define the expected reference pattern for a TU. Bioinformatic pattern matching to the reference identified 9542 TU in *Saccharomyces cerevisiae*, of which 47% are coding and 53% are non-coding. 3113 (33%) are newly identified unannotated non-coding TU. Anchoring all TU to the TSS or polyadenylation site (PAS) of annotated coding regions reveals distinctive architectures of linked pairs of divergent TU approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS-60nt) non-coding TU co-occurs with a downstream (TSS+150nt) coding TU and supports nucleosome depletion in the generation of the pervasive nascent transcriptome. The potential for extensive transcriptional interference is evident from low abundance unannotated TUs with variable TSS (median-240nt) initiating within a 500nt window upstream of, and transcription over, the promoters of protein coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.

Hosted file

Xi et al Manuscript.docx available at https://authorea.com/users/695004/articles/683893size-selected-net-seq-reveals-a-conserved-architecture-of-transcription-units-aroundyeast-genes

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

All Divergent Transcription Units							
D	ownstream	Upstream expression					
exp	ression levels	levels					
40 When Upstream is Coding when Upstream		50 Coding Noncodi 40 P=8.83X10A -7	ing : '8				
30 p=3.03X10A -8		30					
		10					
2 -0			7 9				
Log	Log ₂ tran NET-Se	sformed q reads					
Coding Trans	cription Units	Non-coding Transcription					
GO Terms	p-values	Un	its .				
H3K4me3	1.12E-102	GO Term	p-values				
H3K79me3	8.76E-68	H3K4me1	1.18E-70				
H2BK123ub	3.09E-32	H3R2me2	4.00E-30				
Htz1	1.89E-26	H3 ac	1.54E-27				
H3K14ac	1.01E-20	H3K4me2	3.28E-26				
Swr1	2.79E-19	lsw1	3.55E-25				
Bdf1	2.14E-12	H3K4ac	4.22E-21				
H3K36me3	1.89E-11	H4K20me	1.27E-20				
H4K12ac	2.63E-10	H3K56ac	1.83E-20				
H4K5ac	1.66E-09	Rsc1	3.87E-18				
Aor1	2.88E-09	Spn1	1.64E-14				
NFR sites	2.17E-08	Histone	9.04E-14				
H2AK5ac	2.25E-08	Han	1 255 12				
TAF1	3.10E-08	114aC	1.356-13				
Bye1	1.18E-07	EIIA Madd	4.596-15				
H4K8ac	1.21E-07	NIGI USKSTee	1.126-12				
Spp1	2.64E-07	nsk2/ac	1.166-07				
H3K79me2	2.94E-07	KSC9	1.35E-06				
Tfb1	6.70E-07	HZA.ZK14aC	1.87E-06				
TFIIB	7.06E-07	Spt4	3.93E-06				
H3K23ac	8.83E-07	Мпрьа	4.84E-06				
H4ac	9.27E-07	MSK9ac	6.63E-06				
Vps72	1.24E-06						
Sua7	2.20E-06						
Ssl2	2.85E-06						
ltc1	2.985-06						
Tfe1	3.61E-06						
Cet1	4 51E-06						
Doft	4.510-00						
Pari	9.75E-06						

Downstream expression levels		Upstream lev	expression /els	
D Upstrea Coding B Noncodi 6 4 2 0 6 7 Log ₂ tr NET-	8 9 ansformed Seq reads	16 Noncodin 12 8 4 0 4 5 6 Log ₂ tra NET-Se	5 7 8 nsformed eq reads	
Coding Trans	cription Units	Non-coding Un	Non-coding Transcription Units	
GO Terms	p-values	GO Term	p-values	
H3K4me3	9.97E-23	H3K4me1	2 79F-14	
H3K79me3	1.76E-18	Haktar	4.475-11	
H2BK123ub	3.19E-10	H2 as	2.625.10	
Pob3	1.83E-05	H5 ac	3.032-10	
Swc1	1.98E-05	H3K4me2	3.51E-08	
Htz1	2.35E-05	H3R2me2	1.98E-06	
		lsw1	3.75E-06	
		H4 ac	6.99E-06	
		Spn1	1.36E-05	
		H3K27ac	1.66E-05	
		Nrd1	2.75E-05	
		EH1	3.06E-05	
		Rsc1	3.81E-05	
		H2AK14ac	6.67E-05	

Figure 6

P-values	Downstream coding	Downstream noncoding	Downstream annotated noncoding	Downstream unannotated noncoding
Upstream coding	5.11 X 10^-05	1.32 X 10^-08	1.57 X 10^-06	0.000907585
Upstream noncoding	1.51 X10^-311	9.15 X 10^-12	-	-
Upstream annotated noncoding	4.67 X 10^-159	-	0.140176503	0.000390385
Upstream unannotated noncoding	4.09 X 10^-96	-	0.01240602	3.38 X 10^-06

Table 1 Correlations between an upstream (relative to the PAS) coding/noncoding TU and a downstream (relative to the PAS) coding/noncoding TU are tested by single sided Fisher's tests. The noncoding TUs are further divided into the annotated and unannotated noncoding TU. Combinations with a highly significantly positive correlation are highlighted in bold.