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13US Geological Survey Alaska Region
14Environment and Climate Change Canada Canadian Wildlife Service
15US Fish and Wildlife Service Alaska Region
16University of Bergen
17Universite Grenoble Alpes
18Universite de Moncton

November 10, 2023

Abstract

Understanding how species adjust to seasonality is fundamental in ecology, especially with rapidly increasing global air temper-

atures. Bioacoustic monitoring offers promise for tracking shifts in seasonal timing of vocal species, as recent automated sound

recorders enable large-scale and long-term data collection. Yet, analyzing vast datasets necessitates automation and innovative

detection methods. Here, we introduce BioSoundNet, a deep learning model designed for bird vocalization detection. Trained on

field data and open-access databases, BioSoundNet achieved AUC scores of 0.88-0.93 and average precisions of 0.87-0.97 across

five datasets spanning various ecosystems, and effectively captured the temporal patterns of avian acoustic activity at different

time scales. Our findings underline the importance of evaluating models in ecological contexts and to address the potential

consequences of missing detections. Operating efficiently on standard computers, BioSoundNet is a robust tool for automated

bird vocalization detection, providing a valuable resource for ecological phenology studies and acoustic dataset analysis.
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Abstract

Understanding how species adjust to seasonality is fundamental in ecology, especially with rapidly increasing

global air temperatures. Bioacoustic monitoring offers promise for tracking shifts in seasonal timing of vocal

species, as recent automated sound recorders enable large-scale and long-term data collection. Yet, analyzing

vast datasets necessitates automation and innovative detection methods. Here, we introduce BioSoundNet,

a deep learning model designed for bird vocalization detection. Trained on field data and open-access

databases, BioSoundNet achieved AUC scores of 0.88-0.93 and average precisions of 0.87-0.97 across five

datasets spanning various ecosystems, and effectively captured the temporal patterns of avian acoustic

activity at different time scales. Our findings underline the importance of evaluating models in ecological

contexts and address the potential consequences of missing detections. Operating efficiently on standard

computers, BioSoundNet is a robust tool for automated bird vocalization detection, providing a valuable

resource for ecological phenology studies and acoustic dataset analysis.

4



1 Introduction

Understanding how species adjust their behaviour to seasonality is fundamental in many

aspects of ecology and evolution (e.g. Varpe 2017). Deciphering the responses of species

to abiotic variation is even more pressing with rapidly increasing global air temperatures

caused by climate change (Pecl et al. 2017; Parmesan and Yohe 2003). At the forefront is

phenology, i.e. the timing of life events such as flowering or migration (Menzel et al. 2020;

Charmantier and Gienapp 2014). Yet, tracking how species adjust phenology is challenging,

given the multitude of species involved, each characterized by complex trophic interactions

and the need for repeated sampling across years to distinguish directional trends from inter-

annual variability (Thackeray et al. 2016; Kwon et al. 2019; Visser and Both 2005; Schmidt

et al. 2023).

As inadequate phenological responses can have detrimental effects on individual performance

and even on populations, accurately quantifying how species adjust their timing is essen-

tial (Stenseth and Mysterud 2002; Samplonius et al. 2021). For instance, migratory birds

often time their egg laying so that the peak availability of food coincides with the highest

energy demands of their young (Visser, Holleman, and Gienapp 2006; Visser and Gien-

app 2019; Saalfeld et al. 2021). Any mismatch between prey availability and these critical

energy-dependent life stages can lead to adverse effects such as reduced offspring growth or

reproductive success, ultimately resulting in population declines or disruption in food webs

(Ross et al. 2017; Senner, Stager, and Sandercock 2017; Visser and Gienapp 2019; Nakazawa

and Doi 2012; Samplonius et al. 2021).
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In species that use sounds to communicate, one way to track phenological behaviour is with

bioacoustic monitoring, which is the study of the sounds made by living organisms (Ross

et al. 2023; Aide et al. 2013). Acoustic activity can be linked to important life stages for

many taxa. For instance in birds, vocal activity of breeding individuals is closely linked to

their nesting stages (Slagsvold 1977). By analyzing variations in vocal activity within and

across seasons, it becomes possible to infer the nesting stage of birds through their level

of vocal activity. In particular, identifying maxima of vocal activity could help determine

the egg-laying period (Slagsvold 1977). This approach is facilitated by recent advances

in bioacoustic technology that enable the deployment of small, robust, and cost-effective

recorders in harsh environments (Christin and Lecomte 2023). This allows large-scale data

collection over extended periods, even in remote areas (Gibb et al. 2019; Christin et al. 2023).

Yet, automated bioacoustic technology creates a new problem, as it generates vast amounts of

data, which can span years of sound recordings. Manual analysis of sound recordings becomes

unfeasible, necessitating the use of automated tools. Acoustic assessments of phenology

have been done at the soundscape level, i.e. the whole acoustic landscape that encompasses

all vocal species, by using acoustic indices, such as the Acoustic Complexity Index or the

Bioacoustic Index (Farina, Pieretti, and Piccioli 2011; Buxton et al. 2016; Bateman, Riddle,

and Cubley 2021; Krause and Farina 2016). These acoustic indices provide useful and fast

analyzes of large amounts of sound data, but are hampered by other ambient noises such

as weather or sounds related to anthropogenic activities (Buxton et al. 2018; Fairbrass et

al. 2017). Another approach for analyzing large sound datasets involves the use of machine

learning tools such as deep learning, which has demonstrated high accuracy in classification
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and detection tasks (Kahl et al. 2021; LeCun, Bengio, and Hinton 2015; Christin, Hervet,

and Lecomte 2019). Deep learning has been successfully applied to phenological studies of

flowers and migration in birds, for instance (Mann et al. 2022; Van Doren et al. 2023). So

far, however, most deep learning models have only focused on a few species and can be

resource intensive. Moreover, deep learning tools are rarely presented in ecological contexts

and mostly report classification accuracy metrics such as the F1-score, or average precision,

without validating their ecological application (Kahl et al. 2021; Lostanlen et al. 2022; Ruff

et al. 2020).

Here we introduce BioSoundNet, a reliable and fast performing deep learning avian vocal-

ization detector, created for avian soundscape studies. By using carefully curated datasets

tailored for this purpose, we demonstrate the effectiveness of our method for phenological

studies. Furthermore, we stress the significance of considering ecological relevance in addi-

tion to model performance. Finally, we demonstrate that our approach is also particularly

useful for segmentation, i.e. for isolating acoustic events, especially in regions with fewer

singing species. This capability allows BioSoundNet to function as a versatile pre-processing

tool for classification or the annotation of audio samples.

2 Material and Methods

2.1 Databases

To enhance the BioSoundNet model’s applicability, we used a combination of publicly avail-

able sound databases and sound data gathered from our study sites (Table 1). We exclusively

selected strongly annotated databases. Here, strongly annotated means that every vocaliza-
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tion in an audio file is identified to the species level, and precise start and end times are

specified. These databases served multiple purposes, including model training and perfor-

mance assesment, as outlined in Table 1. In cases where a database was partitioned into

training and evaluation sets, the evaluation data was never exposed to the models during

the training process (Christin, Hervet, and Lecomte 2021). The next section describes a list

of the databases used in this study:

2.1.1 Manually created databases

• ArcticBirdSounds+: This database expands upon the initial ArcticBirdSound database

(Christin et al. 2023; Christin and Lecomte 2023) by incorporating additional anno-

tated files derived from field data collected in 2018 and 2019 in the Arctic. The complete

details of annotations and sites added can be found in Supporting Information Section

1.1. This aggregated database is coined ArcticBirdSound+ in Table 1.

• ArcticChecked: This database was created via a multi-step process. First, a previous

iteration of the BioSoundNet model was applied to our field data. We then extracted

audio samples corresponding to what the model predicted as bird vocalizations. Fi-

nally, we manually annotated them. This was done both to assess the performance of

previous model iterations and to identify false positive cases. False positives were then

treated as hard negatives (Delplanque et al. 2022; Shrivastava, Gupta, and Girshick

2016) to improve model performance. Sampling involved random selection from model

detections, with a 0.5-second buffer added before and after each detection to streamline

annotations. We ensured that selected samples provided a minimum of 10 minutes of
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audio recordings for each deployment site. Detailed information on the content and

origin of the dataset can be found in Supporting Information 1.2.

• NABS Gen: This database was generated using excerpts sourced from the North

American Bird Species (NABS) Database (Zhao 2018). The NABS database contains

short, isolated vocalizations from 11 North-American birds species, extracted from field

recordings available on the Xeno-Canto database (https://xeno-canto.org). As these

extracts are quite short, we compiled them into 30-second audio recordings using the

following rules:

1. Create an empty 30-second audio file filled with random gaussian noise.

2. Select a random excerpt from the NABS database and insert it seamlessly into

our audio file while simultaneously creating an annotation file to document the

vocalization’s position and class.

3. Repeat step 2 with a new random sample, ensuring no overlap between audio

excerpts. This step is repeated until the file is deemed full, which occurs when

the total duration of bird vocalizations is greater than a predetermined threshold.

This threshold is different for every file and is randomly selected between 0% and

30% of the total duration of the file. This threshold has been selected to introduce

intervals of silence between vocalizations.

4. Once the file is full, repeat step 1 until all samples from the NABS dataset are

exhausted.

5. Repeat steps 1-3 for a second round to augment the sample count.
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In total, following these procedures, we obtained 769 files, for a total of 6.3 hours of

audio and 17,038 annotations from the NABS databse.

• ArcticSummer: This is a new strongly annotated database containing field recordings

collected in Igloolik, NU, Canada during the summer of 2018. We chose thirty second

audio samples at random every hour between June 11th 2018 and July 23rd 2018 and

annotated them. This database was created for evaluation purposes only, providing

a comprehensive overview into the fluctuations of vocal activity throughout an entire

summer.

2.1.2 Publicly available databases

• CityNet: This is the database used to create the CityNet deep learning audio detector

(Fairbrass et al. 2019). We used the same training and evaluation datasets as the

original paper.

• NIPS4b: The NIPS4Bplus database was developed and described by (Morfi et al. 2019).

In our study, 20% of NIPS4Bplus was first set aside for evaluation. The remaining data

were split into training and validation datasets with a 80:20 ratio.

• ENAB: This is the database published by Chronister et al. (2021). It was used only

for evaluation.

2.2 Model workflow

The BioSoundNet model has its roots in the CityNet model (Fairbrass et al. 2019), a model

that provided good detection results in the London, UK urban soundscape. BioSoundNet
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Table 1: Description of the datasets used during the training and evaluation steps of the
BioSoundNet model creation. Number of classes, duration (h) and number of annotations
(N) are presented for each dataset in the relevant category.

Dataset Location N
classes

Training Evaluation

Duration
(h)

N
Duration

(h)
N

ArcticBirdSounds+ 8 sites across the Arctic 44 20.9 13,303 - -
NABS Gen Northern United States 12 6.3 17,038 - -

Citynet London, UK 7 18.3 11442 0.67 789
NIPS4B France and Spain 88 0.6 4,575 0.2 988

ArcticChecked 16 sites across the Arctic 30 6.3 2718 1.5 877
ArcticSummer Igloolik, NU, Canada 37 - - 8.6 5,260

ENAB Northeastern United States 48 - - 6.42 16,052

was created using the Mouffet framework (Christin and Lecomte 2022) and leveraged its

flexibility for training and evaluating models. Here we present the steps used to train and

evaluate our model. This workflow is summarized in Figure 1.

2.2.1 Data pre-processing

We loaded audio files using the librosa v0.9.2 (McFee et al. 2022) python library and trans-

formed them into mel-scaled spectrograms with 32 bands. We resized all spectrograms

using the Pillow python image library v9.4.0 (https://pypi.org/project/Pillow/) to ensure

every spectrogram had a resolution of 100 pixels per second on the time axis. Complete

pre-processing details can be found in Supporting Information, Section 2.

For each audio file, all annotations were filtered to keep only sounds of a biotic nature.

These mostly consisted of bird vocalizations, but occasionally included sounds from insects,

mammals, or even the sound of wingbeats. Because bird vocalizations represented 98.8% of

the total dataset, we considered the datasets to only contain bird vocalizations in this paper.
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Annotations were then converted into a one dimensional array of presence/absence of biotic

sound with the same temporal resolution as the spectrograms (see below).

2.2.2 Model architecture

Our objective was to create a model capable of rapidly and efficiently processing large vol-

umes of sound data, serving as a valuable preprocessing tool. Consequently, we designed

a streamlined model that prioritized precision, accuracy and speed. Our model has only

530,000 parameters and 16 layers (figure SuppInfo.2), which is far lower than the millions of

parameters found in recent bird sound classifiers (e.g. BirdNet: 157 layers and 27 millions

parameters (Kahl et al. 2021), Bird@Edge: 12 millions parameters (Höchst et al. 2022)).

2.3 Model training

The data used for training purposes was partitioned into training and validation subsets,

adhering to the nomenclature outlined in Christin, Hervet, and Lecomte (2021), with an

80:20 ratio allocated to each subset, respectively.

Following a similar approach outlined by Fairbrass et al. (2019), we extracted one-second

(1s) windows from the spectrograms as inputs for our model. Our spectrograms featured

32 Mel bands along the frequency axis and were resized to have a time axis of 100 pixels

per second. Consequently, each extracted window was represented as a 32*100 pixel image.

These windows were extracted with a 95% overlap.

For each 1-second window, a presence/absence score was automatically assigned to indicate

the presence (1) or absence (0) of vocalisations based on annotations. A score of 1 was

attributed if a vocalization was detected at any point within the window. We refer to the
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1-second windows containing bird vocalizations as ’present samples’, while those without

any vocalizations are referred to as ’absent samples’.

Due to the initial class imbalance in our training datasets, which were skewed towards absent

samples, we created a balanced representation of both present and absent samples in each

training iteration by using all present samples and an equivalent number of absent samples

randomly selected from the pool of available absent samples.

Data augmentation is a well-established method for increasing the amount of training data

and mitigating overfitting (Christin, Hervet, and Lecomte 2019). To this end, we first im-

plemented simple data augmentation techniques, specifically time and frequency masking,

which have demonstrated effectiveness in audio recognition tasks (Park et al. 2019). These

techniques involve masking certain portions of the spectrogram in either the temporal or fre-

quency domain. Based on our internal testing, we decided to apply these techniques 75% of

the time during augmentation. Additionally, we applied the same normalization techniques

described in Citynet to get a 4-layer 32x100 image (Fairbrass et al. 2019).

We trained the model for 50 iterations, with a learning rate of 0.01. We employed early

stopping, a common technique used to address overfitting, as its halts the training when

no further progress is observed. The model was designed to return a probability score

ranging from 0 to 1, indicating the likelihood of the presence of a bird vocalization for each

spectrogram.

Training involved two steps. We first combined the training datasets of the ArcticBird-

Sounds+, NABS Gen, CityNet and NIPS4B into a single training dataset (Training 1).

Results of this model were evaluated to create the ArcticChecked database. This dataset
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was then added to the Training 1 dataset to create a second training dataset (Training 2).

The final model was then trained using this model and by making sure that all false postive

results from the ArcticChecked dataset were seen on each iteration of the model.

2.4 Model evaluation

Evaluation of the model was performed using data that were not part of the training. We

assessed the performance of our model using different methods to best identify its strengths

and weaknesses. Prior to evaluation, we smoothed the temporal pattern of acoustic activity

predicted by our model using a rolling average with a window of three to remove some of

the noise in prediction scores. We used two evaluation methods as explained below.

2.4.1 Evaluation methods

• Direct evaluation: This method categorizes a prediction as present if the probability

assigned by the model exceeds a specific threshold.

• Event detection: This method focuses on detecting and isolating sound events to

evaluate the model’s ability to accurately segment vocalizations. To achieve this, we

defined a starting threshold above which an event begins and an end threshold below

which an event concludes. Additionally, a duration threshold was set to discard events

considered too brief. A vocalization event is considered a true positive if any part of it

overlaps with an annotation. This approach allows our detector to effectively isolate

vocalization events.
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2.4.2 Detection evaluation

For all evaluation methods, we calculated the F1-Score and average precision (AP) to assess

the performance of our model. For the direct evaluation method, we also calculated the area

under the receiver operator characteristic curve (AUC).

Using the ArcticSummer dataset, we evaluated our model’s performance in detecting arctic

birds species. To gauge the model generalizability and robustness, we performed assessments

on the test subsets of CityNet, NIPS4Bplus, and ENAB databases.

2.4.3 Phenology evaluation

We evaluated the ability of our model to detect temporal trends on two datasets: first,

we used the complete ArcticSummer dataset, consisting of recordings spanning 43 days, to

assess the model’s ability to capture vocal activity patterns over an entire breeding season.

Additionally, we selected a 3-hour recording from the ENAB dataset to investigate if the

model could identify activity patterns at a smaller temporal scale.

In our analysis, we initially computed the total duration of vocalizations within specific time

windows. For the Arctic summer dataset, we utilized a day-long time window, while for

the ENAB dataset, we employed 5-minute segments. Subsequently, we applied the rolling

trends method from the pandas package (Reback et al. 2022) to calculate the moving average

across seven consecutive windows. This approach enabled us to observe the overall trend

in total vocal activity throughout the dataset. We calculated trends for both the ground-

truthed data and the predictions generated by our model. We then measured the similarity

between these two curves by computing the Euclidean distance between them. As the shape
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of the curves holds greater significance for phenology assessment than the absolute values,

we normalized them to alleviate the potential effects of over- or under-estimation. To do

this, we removed the mean from each values and divided by the standard deviation of all

estimates. This allowed us to capture the fundamental shape and pattern of the curves,

allowing for more robust and insightful comparisons.

2.4.4 Segmentation evaluation

One of our primary objectives was to optimize our model for fast and efficient audio segmen-

tation, ensuring the rapid extraction of bird vocalization data. To achieve this, we employed

an event detection methodology that involved setting probability-based thresholds to de-

fine the start and end of an acoustic event. We defined an acoustic event as any temporal

sequence that started when the probability of presence was above 0.9 and consistently re-

mained above 0.5 for at least 400 milliseconds. These parameter values were determined

based on preliminary sensitivity analysis. To gauge the model’s performance, we ran the

model on field data that was not annotated and selected 300 events identified by the model.

We then listened to these samples to evaluate whether birds were actually present during

each event.
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Figure 1: Workflow for the training and evaluation of the BioSoundNet model. In the blue
panel on top, data pre-processing is applied to all audio samples. Green arrows and boxes
represent steps of the training process. Orange arrows and boxes are steps of the evaluation
process.
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3 Results

3.1 Model accuracy

Our best model consistently achieved an AUC greater than 0.88 across all evaluations, with

the highest performance observed on the Citynet dataset, where it achieved an AUC of 0.929

(Table 2). Comparable results were obtained on the target ArcticSummer dataset, with an

AUC of 0.925. Furthermore, the average precision values were generally similar or higher for

all datasets.

Table 2: Area under the curve (AUC), average precision, average recording time, average
time needed to classify a recording, and average time needed to classify one minute of
recording for all evaluation databases using the BioSoundNet model. All times given are in
seconds. Performance evaluations were done on a middle range laptop with GPU acceleration

Dataset AUC Average Precision
Recording
duration(s)

Time per
file(s)

Time per
minute(s)

Citynet 0.93 0.94 60 0.11 0.11
NIPS4B 0.9 0.94 5* 0.06 0.94

ArcticSummer 0.93 0.92 30 0.08 0.16
ENAB 0.88 0.97 300 0.45 0.09

ArcticChecked 0.92 0.87 0.9 to 272 0.08 0.43

3.2 Model performance

One of the primary objectives of our model was to have fast performance on a wide range

of hardware. On a mid-range laptop with GPU acceleration (Intel(R) Core (TM) i5-6300

@2.30GHz with 4 cores and Nvidia GeForce GTX 960M) , it took less than 100 ms to classify

one minute of audio on files with a 5-minute duration. However, the average processing

time was slightly longer for files with a shorter duration. For instance, on the NIPS4B
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dataset where files had an average duration time of 5 seconds, average processing time was

around 60 milliseconds. Extrapolating this to a minute of audio, the estimated time would

be approximately one second. This implies that our model is useful for analyzing large

datasets of acoustic recordings and can be utilized with readily available technology by most

researchers.

Figure 2: Evaluation of the ability of the BioSoundNet model to detect temporal variations
of acoustic activity of avian communities. The two plots represent the normalized total vocal
activity by recording. The reference curves are represented by the blue line, while the model
predictions are shown in orange. A) Vocal activity patterns for the ArcticSummer dataset
between 13 June and 20 July 2018. B) Vocal activity patterns for the 3-h long Recording 1
from the ENAB dataset collected on April 27, 2018 at Powdermill Nature Reserve, Rector,
PA, USA. The activity pattern from the original reference data and the reference data
without crows are in solid and dashed blue line, respectively. The red circle identifies the
area of intense crow activity. Curves were obtained using the direct evaluation method with
a threshold of 0.75.

3.3 Ability to detect phenological trends

Our model’s predictions for the total daily vocal activity closely aligned with the reference

data on the ArcticSummer dataset, as shown in Figure 2.A. On the shorter timescale of the

ENAB dataset, the predicted trends closely matched the reference curve at the beginning
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of the time series but deviated towards the end (Figure 2.B). Manual exploration revealed

an increased activity of American crows (Corvus brachyrhynchos) during that period. To

assess whether this discrepancy was due to the crows’ vocalisations and our model inability

to detect them, we excluded them from the reference dataset and this led to a closer match

between the trends. In figure 2.B, the euclidean distance between the normalized predicted

curve with crows and the normalized reference curve is 4.63, while it is 1.17 when crows are

removed.

3.4 Influence of detection threshold

Selecting an appropriate detection threshold can pose challenges in finding the right balance

between precision and recall. Here we show that, while different thresholds influenced the

estimates of total vocal activity (Figure 3.A), this did not affect the normalized trends

(Figure 3.B).

Figure 3: Influence of detection threshold on patterns of vocal activity using the BioSound-
Net model. A) Total time spent vocalizing per day in seconds for various detection thresholds.
B) Normalized daily vocal activity for the same thresholds. In both panels, the black line
represents the vocal activity curve from the reference dataset.
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3.5 Segmentation performance

Upon applying the event detection method to isolate events, we found that bird vocalizations

were present in 262 (87.3%) of the 300 randomly selected events.

4 Discussion

The BioSoundNet model demonstrated good accuracy results, with AUC scores ranging from

0.88 to 0.93 and average precision between 0.87 and 0.97. These results hold true for both the

target datasets with Arctic birds and general datasets, indicating BioSoundNet’s potential

use in different biomes, a much needed application for detecting trends in phenology. The

model also performs well on datasets from new locations not included in the training data,

underscoring its adaptability. Deep learning bird vocalization detectors similar to ours are

scarce, but the average precision of our model on the CityNet test set is similar to the

CityBioNet model described by Fairbrass et al. (2019).

Our assessment also goes beyond accuracy evaluation, highlighting the ability of the BioSound-

Net model to be used in ecological applications. By comparing the model’s predictions to

acoustic time series at various temporal scales, we demonstrated that BioSoundNet can be

reliably used in tracking temporal patterns of vocal activity for target species using auto-

matic settings. To our knowledge, this is the first time such an evaluation has been conducted

on a time series as extensive as an entire summer. This paves the way for tracking activity

and presence at multiple spatial and temporal scales.

The predicted acoustic activity curve for the ArcticSummer dataset exhibits great similarity
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to the reference curve, with the normalized curve closely aligned. Predicted curves are also

quite robust to threshold selection temporally. Threshold selection can sometimes be an

arduous task with detection models, as it involves finding a compromise between precision

and recall. Changing the detection threshold can increase or decrease the number of events

predicted, for instance by increasing the number of false positives. This could in turn impact

activity patterns and modify the global signal. With BioSoundNet, the primary effect of

altering the detection threshold was a shift in the estimated absolute duration of vocal

activity, while overall temporal activity patterns remained consistent. Consequently, while

threshold selection did lead to over- or under-estimation of vocal activity, it did not impact

within season phenology of vocal activity, but rather affected all events in a similar way. This

characteristic removes the constraint of finding the perfect threshold. This feature positions

the BioSoundNet model as a valuable tool for applications that involve comparison of values,

such as phenological studies.

Despite these successes, activity patterns were more challenging to detect in the ENAB

dataset. Some discrepancies were observed, particularly towards the end of the time series,

where an important increase in the activity of American crows was apparent. This issue

likely arose from the model’s limited ability to detect this type of vocalization, as confirmed

by the improved matching of activity curves when crows were removed from the reference

dataset. This can be explained by the fact that deep learning models are very sensitive to the

type of data provided for training (Christin, Hervet, and Lecomte 2019). In this case, few

examples of crow vocalisations were present in the training databases. Additionally, crows

produce diverse vocalisations that can occur in different frequency bands. In such instances,
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the low-frequency vocalisations of crows could have been mistaken for ambient noise, such as

wind. Fortunately, addressing this problem with deep learning is relatively straightforward:

it only requires re-training the model with relevant examples for the missing class. In our

case, this issue seemed limited to this single species, as excluding it improved the match of

activity curves. From a temporal standpoint, we thus believe that BioSoundNet can handle a

diverse range of time scales relevant to ecological studies. However, it is important to keep in

mind that, while trained to a wide range of species and vocalizations, BioSoundNet remains

sensitive to vocalizations not present in the training set, especially when they dominate the

soundscape like the crows did in our test set. This kind of problem can however be mitigated

depending on the frequency of such undetected vocalizations and the temporal scope of the

study. Indeed, while discrepancies appear in a three-hour sampling period, its impact might

be less evident over the course of a full summer.

The crow detection problem encountered with the ENAB dataset highlights two observations

when evaluating the performance of a model. First, the model should always be evaluated

on a dataset representative of the specific question it aims to address and the specific vocal

community it aims to study (Christin, Hervet, and Lecomte 2021; Chicco 2017). This is

particularly crucial in deep learning, where performance is closely tied to the training data

(Christin, Hervet, and Lecomte 2019). This ensures that all target species can be adequately

detected. Secondly, model evaluation should extend beyond accuracy metrics and encompass

the intended future use of the model. Relying solely on accuracy metrics would have led us

to believe that our model was suitable for use on the ENAB dataset. Since North American

bird samples were present in our training data and we achieved good accuracy results, we

23



might have assumed that activity curves on the ENAB dataset would be similar to those in

the ArcticSummer dataset. However, the discovery of a key species going undetected reveals

the potential for missing vocal activity patterns, which could have resulted in misleading

conclusions. Note that while the BioSoundNet model is a detector, this also applies to any

classifier.

The BioSoundNet model currently works at the avian soundscape level, providing a reli-

able alternative to acoustic indices (Farina, Pieretti, and Piccioli 2011; Bradfer-Lawrence

et al. 2023). One significant advantage is the ease of quantifying the model’s accuracy,

which is often challenging with traditional indices, (e.g. Fairbrass et al. 2019). Moreover,

by selecting sounds, BioSoundNet offers the capability to target species and actively filter

out unwanted noise, such as anthropophony or geophony (Fairbrass et al. 2017; Fairbrass et

al. 2019). Therefore, it holds potential for seasonal timing studies. However, reliable exam-

ination of breeding phenology through acoustic activities still requires additional work and

should be corroborated by traditional monitoring methods like nest monitoring to evaluate

the relationship between breeding stage and vocal activity patterns.

Beyond its direct ecological applications, we believe BioSoundNet could also serve as a valu-

able segmentation tool due to its high detection accuracy and low computational time. The

model has modest hardware requirements and can efficiently run even on a middle-range

laptop. Although the average prediction time may vary across datasets, this is primarily

due to the differing lengths of audio files in each dataset. The computational costs of setting

up the model remain relatively constant, and as audio file sizes decrease, the relative time

for processing becomes longer. Therefore, for optimal performance, we recommend using
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audio samples with a duration greater than one minute. This capability makes BioSound-

Net particularly useful for filtering large datasets. For example, users can initially extract

samples with a high probability of bird activity and use them as input for a more power-

ful species classifier. This approach would be especially beneficial in areas with low bird

densities and minimal vocal activity, where processing a large number of audio files with

a high-resolution classifier could be time and resource-intensive. For instance, in the Arc-

ticBirdSound+ dataset, the total duration of vocalizations accounted for only around 15%

of the total duration of the dataset. Pre-selecting segments with a high probability of a

bird singing would reduce the amount of audio a more powerful but slower classifier has to

process by a factor of five. Additionally, BioSoundNet could be used as an exploratory tool

to extract audio samples for annotation purposes.

Finally, while BioSoundNet is currently targeted to bird detection, its core inputs are audio

files, allowing great versatility across many vocal species, as long as the relevant training

data is provided. The adaptable architecture of BioSoundNet facilitates straightforward

retraining (Christin, Hervet, and Lecomte 2019; Christin and Lecomte 2022), rendering it

a valuable resource for ecologists engaged in acoustic recording studies involving various

taxa. And while we used a community approach here, it could also be used to quickly detect

targeted species, depending on the examples provided in the training dataset.

Automated acoustic monitoring holds great potential in not only detecting specific vocal

species but also in advancing our understanding of species phenology. Its potential benefits

extend to diverse applications, including the enhanced detection of seasonal migrants arriving

at and departing from their breeding territories. This temporal window often extends beyond
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the regular field seasons, aligning seamlessly with the recording capabilities of contemporary

acoustic devices. In the near future, we foresee the necessity for increased calibration and

annotations of bioacoustic sounds to further streamline biodiversity tracking, particularly for

rapidly declining species. In tandem with conventional monitoring methods, the expansion

of acoustic networks across diverse biomes is imperative to address our ongoing biodiversity

crisis. Fast-processing models like BioSoundnet are poised to effectively tackle the demands

posed by this vast dataset challenge.
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