## Distinct Immune Escape Mechanisms of Bovine Cronavirus Nucleocapsid by Suppressing beta Interferon Production via Retinoic Acid-inducible Gene I-like Receptor Pathway

Xiangbo Zhang<sup>1</sup>, Zhaofang Yuan<sup>1</sup>, Zhuandi Gong<sup>1</sup>, and Suocheng Wei<sup>1</sup>

<sup>1</sup>Northwest Minzu University

March 07, 2024

## Abstract

The present study aimed to explore if bovine coronavirus nucleocapsid (BCoV N) impacts beta interferon (IFN- $\beta$ ) production in the host cells and to reveal further molecular mechanism of BCoV pathopoiesis. Human embryonic kidney (HEK) 293T cells were transiently transfected with pCMV-Myc-BCoV-N recombinant plasmids, then infected with the vesicular stomatitis virus (VSV). Expression levels of IFN- $\beta$  mRNA were detected using qPCR. The results determinated that pCMV-Myc-BCoV-N recombinant plasmids of 1347bp was successfully constructed and transcribed into HEK 293T cells. Western-blotting assay indicated that BCoV-N recombinant plasmids had excellent antigenicity. BCoV-N recombinant proteins inhibited dose-dependently IFN- $\beta$  production mediated by Vesicular stomatitis virus (VSV) (P<0.01). Furthermore, MDA5, MAVS, TBK1 and IRF3 could promote transcription levels of IFN- $\beta$  mRNA. But, BCoV-N proteins demoted IFN- $\beta$  levels induced by MDA5, MAVS, TBK1 and IRF3. Expression levels of MDA5, MAVS, TBK1 and IRF3 mRNAs were reduced in retinoic acid-inducible gene I-like receptor (RLR) pathway. In conclusion, BCoV-N reduced IFN- $\beta$  levels in RLR pathway of HEK 293T cells. BCoV-N protein inhibited IFN- $\beta$  production and activation of RLRs signal pathway. Our findings demonstrated a new mechanism evolved by BCoV to inhibit type I IFN production and provided a solid scientific basis for revealing the pathogenesis of BCoV, which is beneficial for developing novel strategy of the diagnose and therapy of BCoV disease.

## Hosted file

Escape\_Mechanisms\_of\_Bovine\_Cronavirus\_Nucleocapsid-Microbiol\_Immuno.doc available at https://authorea.com/users/740605/articles/713400-distinct-immune-escape-mechanisms-of-bovine-cronavirus-nucleocapsid-by-suppressing-beta-interferon-production-via-retinoic-acid-inducible-gene-i-like-receptor-pathway









