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Abstract

Using fine-scale measurements in the northwestern Sea of Japan, we estimated the vertical mixing parameters in the sea water

column extended from the lower part of the thermocline downward to the near-bottom layer above the continental slope. The

vertical scales of the turbulent patches were determined together with the turbulent dissipation rate and diapycnal diffusivity

based on the conductivity, temperature, and depth data obtained by an Aqualog moored profiler from April through October

2015. The Thorpe-scale method was used to estimate the vertical mixing parameters as well as the vertical heat and salt fluxes.

The enhanced vertical mixing, as well as enhanced upward heat flux and downward salt flux, occurred below the mixed layer

despite strong density stratification. By comparing the turbulent dissipation rate and diapycnal diffusivity estimates derived via

the Thorpescale method and the estimates of the same parameters obtained earlier by applying the finescale parameterization

method to the same dataset in addition to the collocates of the current velocity measurements, the comparative accuracy

evaluation of both methods was carried out. Finally, by compiling the vertical mixing data obtained by the Thorpe-scale

method and the finescale parameterization approach, the generalized depth profile for the background diapycnal diffusivity is

presented for the depth range from 70 to 350 m.
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Abstract
Using fine-scale measurements in the northwestern Sea of Japan, we estimated the vertical
mixing parameters in the sea water column extended from the lower part of the thermo-
cline downward to the near-bottom layer above the continental slope. The vertical scales
of the turbulent patches were determined together with the turbulent dissipation rate and
diapycnal diffusivity based on the conductivity, temperature, and depth data obtained by an
Aqualog moored profiler from April through October 2015. The Thorpe-scale method was
used to estimate the vertical mixing parameters as well as the vertical heat and salt fluxes.
The enhanced vertical mixing, as well as enhanced upward heat flux and downward salt
flux, occurred below the mixed layer despite strong density stratification. By comparing
the turbulent dissipation rate and diapycnal diffusivity estimates derived via the Thorpe-
scale method and the estimates of the same parameters obtained earlier by applying the
finescale parameterization method to the same dataset in addition to the collocates of the
current velocity measurements, the comparative accuracy evaluation of both methods was
carried out. Finally, by compiling the vertical mixing data obtained by the Thorpe-scale
method and the finescale parameterization approach, the generalized depth profile for the
background diapycnal diffusivity is presented for the depth range from 70 to 350 m.

Keywords: vertical mixing, the Sea of Japan, Thorpe-scale method, finescale parameterization
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1 Introduction
Located at the northwestern margin of the Pacific, the deep semi-enclosed Sea of Japan (here-
inafter referred to as the Sea) is renowned to the world oceanographers as a basin that provides
opportunities for researchers to conduct large-scale oceanographic experiments (Gamo et al,
2014). The Sea dynamics feature processes typical of the ocean (Chang et al, 2015). Among
these, one of the most interesting is the strong ventilation of the Sea intermediate and deep
layers. In the winter, during intensive northeasterly monsoon cooling, deep convection devel-
ops in the northwestern part of the Sea. Cold and fresh water as well as chemical tracers
penetrate more than 1000 m below the surface (Talley et al, 2003, 2006). It is believed that
deep convection began to slow in the 1960s or earlier (Kim et al, 2001, 2002), yet the inter-
mediate and deep layers of the Sea remain well mixed. This implies that turbulent mixing
could have become relatively more important in the past several decades in the Sea.

In the deep ocean, vertical mixing is generally caused by wind forcing and breaking of
internal gravity waves, which are generated by the tide-topography interactions (Wunsch and
Ferrari, 2004; Waterhouse et al, 2014; MacKinnon et al, 2017; Gregg et al, 2018). In particu-
lar, internal lee waves can be driven by the interaction of shear currents with the topography
(MacKinnon et al, 2017; Nikurashin et al, 2014). Notably, the semidiurnal tide enters the Sea
through the wide Tsushima Strait in the southern region and then propagates toward the north-
ern continental slope. Although the tide wave weakens when it passes northward through the
Sea, its energy is still high when it arrives at the continental slope and shelf (Jeon et al, 2014),
where it induces internal gravity waves. Ostrovskii et al (2021) assessed the turbulent mix-
ing that can be generated by the shear-driven instabilities associated with breaking internal
gravity waves over the Sea continental slope. The finescale parametrization framework (FSP)
(Henyey et al, 1986; Polzin et al, 1995, 2014; Kunze et al, 2002; MacKinnon et al, 2013;
Meyer et al, 2015; Hibiya et al, 2012; Gregg et al, 2018) that assumes that internal gravity
wave breaking makes a major contribution to vertical mixing was applied to the in situ data
for the thermohaline structure and the current shear to assess the turbulent dissipation rate
and diapycnal diffusivity. The fine-structure vertical resolution collocated data were measured
using an Aqualog profiler southeast of Peter the Great Bay of the Sea in April-October 2015
(Lazaryuk et al, 2017).

The estimates of diapycnal diffusivity indicated that the vertical exchange of heat, salt
and dissolved oxygen was enhanced under the seasonal pycnocline in the warm half-year.
The FSP framework requires knowledge of the low-wavenumber shear and strain variances
(Polzin et al, 2014; Kunze et al, 2006; Lique et al, 2014). To comply with this condition, the
spectra of the shear and strain had to be estimated using vertical segments spanning more than
or equal to 128 dbar. Because the data for the sea near-surface layer were unavailable, the
layer below the mixed layer (Lim et al, 2012) was not considered in the paper by Ostrovskii
et al (2021). Mesoscale eddies can also affect vertical mixing (Whalen et al, 2015; Kunze et al,
1995; You et al, 2021; Yang et al, 2017). Anticyclonic mesoscale eddies are well-developed
in the northern Japan basin, and the data show that turbulent mixing is stronger at the edges
and bottom parts of eddies (Ostrovskii et al, 2021, 2023).

In addition to the abovementioned processes, vertical mixing can be driven by double
diffusion (Lee et al, 2014; Inoue et al, 2007; Radko and Smith, 2012). Double diffusion signa-
tures were also found in the Sea (Stepanov et al, 2023). Using the abovementioned Aqualog
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profiler dataset, Stepanov et al (2023) studied fine-scale mixing associated with double diffu-
sion processes: salt fingers and thermal convection. Based on the Turner angle analysis and
estimates of the effective diffusivities of heat and salt (Inoue et al, 2007) derived from moored
profiler Aqualog data, it was found that in the spring, thermal convection dominated the verti-
cal mixing in the upper layer of the Sea between 70 m and 200 m. Double diffusion processes
occurred sporadically in the upper layer, while shear-driven instabilities played the leading
role in vertical mixing generation.

In this study, we focused on the estimation of the vertical mixing and turbulent exchange
in the upper part of the Sea immediately below the near-surface layer through a further anal-
ysis of the moored profiler Aqualog dataset. The upper part of the Sea water column was
not considered in a previous study (Ostrovskii et al, 2021) due to the limitations of the FSP
framework. In the following, we apply the Thorpe-scale method (TSM) (Thorpe, 1977; Smith,
2020; MacKinnon et al, 2017; Thompson et al, 2007) to the depth profiles of the water den-
sity to estimate the turbulent patch vertical scale by applying a special reordering of the data,
as described below. The derived estimates are used to assess the turbulent dissipation rate.
This approach requires high-resolution depth profiles of temperature and salinity with the
background of a large vertical density gradient (Dillon, 1982; Stansfield et al, 2001; Thomp-
son et al, 2007). The TSM allows us to quantify the manifestations of turbulence regardless
of its cause, assuming that these manifestations are associated with density overturns in the
turbulent area. For clarity, to focus on turbulent mixing only, the time periods in which ther-
mal convection and salt fingers prevailed in vertical mixing (Stepanov et al, 2023) must be
excluded from this analysis. The estimates of the vertical mixing parameters derived using
the TSM are compared with those obtained within the FSP framework. Therefore, we aim to
obtain a more comprehensive overview of the vertical mixing in the intermediate waters in
the northwestern Sea during the warm half-year.

The rest of the paper is organized as follows. The dataset used is presented in Sect. 2. The
Thorpe-scale method and the FSP framework are described in Sect. 3. The conditions for the
shear-driven turbulence, estimates of the turbulent dissipation rate and diapycnal diffusivity
as well as the vertical heat and salt fluxes and their depth and temporal variations during the
survey are presented in Sect. 4. The discussion in Sect. 5 is based on a comparison of the
vertical mixing estimates derived from the TSM and the FSP framework. Additionally, the
vertical distribution of the mixing processes is presented. Sect. 6 summarizes our findings.

2 Dataset
To quantify vertical mixing, we analyzed fine-structure measurements of temperature (T) and
salinity (S) collected by an Aqualog profiler during a survey from mid-April to mid-October
2015. The Aqualog profiler was moored on the continental slope in the northwestern Sea
(Fig. 1). The depth of the mooring station was approximately 425 m. The profiler crawled up
and down a taut mooring wire at a vertical speed of 0.2 m s−1. During the first five days, the
Aqualog profiler moved from 70 to 260 m, and on the sixth day, the profiler moved further
downward to 420 m to obtain full-depth profiles. This regular operation pattern was repeated
until mid-October. In total, 1550 sets of vertical profiles of the measured parameters were
obtained. The profiler was equipped with a Sea-Bird-Electronics (SBE) CTD 52-MP, main-
taining a sampling rate of 1 Hz, and a Nortek Aquadop, with a sampling rate of 23 Hz. A
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detailed description of the survey measurements was provided by Ostrovskii et al (2021).
During the survey, the Sea processes near the mooring station were affected by the Primorye
Current and by wind forcing.

The depth profiles of the salinity were processed following to the method of (Lazaryuk
et al, 2017). The potential density (σθ ) was calculated from the T and S data using the Thermo-
dynamic Equation of SeaWater 2010 (TEOS-10) (McDougall and Barker, 2011). The depth
profiles of the potential density were used to estimate the Thorpe scale (LT ), the turbulent
dissipation rate (εK) and the diapycnal diffusivity (Kρ ).

3 Thorpe-Scale Method and the Finescale Parameterization
Framework

We suggest that turbulence is sustained by a shear-driven mechanism and exclude other mech-
anisms, e.g., double diffusive and convection cases, from consideration. To quantitatively
assess vertical mixing, we apply the conventional parameterization (Osborn, 1980):

Kρ = ΓεK/N2, (1)

where Γ is the mixing efficiency and N is the buoyancy frequency. Mashayek et al (2017)
noted that Γ varies significantly due to the modulation of vertical mixing by dynamic pro-
cesses. Γ is typically equal to 0.2. Note that N represents the background stratification. N is
estimated over a 36-dbar depth span, and a 14-day window is subsequently used for the time
averaging of N2.

We assess εK according to the method of Dougherty (1961) and Ozmidov (1965), assum-
ing that there is a vertical scale (LO) for which stratification inhibits the extent of the turbulent
patch:

LO =
(
εK/N3)1/2

. (2)

Thorpe (1977) suggested that scale (2) can be estimated by reordering a depth profile of
density σθ , which contains a turbulent patch, to the steady density profile as follows:

LT = 〈(zn− zm)
2〉1/2

z , n ∈ R (3)

where 〈...〉z denotes the average over the turbulent patch and R is the set of the fluid elements
within the turbulent patch. These fluid elements are located at depths zn and after reordering
the density profile, the fluid elements are located at depths zm (for example, Fig. 2). Based
on direct dissipation measurements in a sheared thermocline, Dillon (1982) proposed the
relation between the LT and LO, namely L0 ≈ 0.8LT . Using relation (2), εK can be estimated
as follows:

εK = L2
ON3 ≈ 0.64L2

T N3. (4)

Note that in (2) and (4), N is the stratification of the specific turbulent patch (Thompson et al,
2007).
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In applying the TSM, we face an issue associated with “salinity spiking“ when different
ensembles of the T and S data may have the same density. To avoid uncertainty, the first 30
and last 180 data samples were excluded from each profile of T and S.

Thorpe (1977) noted that this method cannot be applied in the regions dominated by
thermal convection and double diffusion. Based on these results (Stepanov et al, 2023), events
associated with double diffusion processes, i.e., diffusion convection and salt fingers, were
omitted from further consideration. We also exclude the turbulent patches where the necessary
condition for double diffusion is satisfied. The Turner angle (Ruddick, 1983; Stepanov et al,
2023) was estimated using the TEOS-10 algorithm (McDougall and Barker, 2011).

All of the profiles (εK or Kρ ) are binned into 10-m layers. For all median values, the
confidence intervals (95% level) were evaluated using the bootstrap technique (Efron and
Gong, 1983) and the bootstrap toolbox (Zoubir and Boashash, 1998).

When diapycnal diffusivity (1) is known, the vertical heat and salt fluxes can be estimated
as follows:

Q =−cpρ0Kρ

∂ 〈θ〉t
∂ z

, JS =−Kρ

∂ 〈S〉t
∂ z

, (5)

where 〈...〉t denotes the time average, θ is the potential temperature, cp is the specific heat of
seawater which is equal to 4000 J kg−1 K−1 and ρ0 is the seawater density of 1025 kg m−3.
Note that the θ and S data are binned into 2-dbar layers. The vertical gradients of θ and S
are calculated over a 10-dbar scale and a 14-day window is subsequently used for the time
averaging of the vertical gradients. LT , εK and Kρ are estimated for each profile of σθ .

For a more detailed explanation of the TSM framework, let us consider an example of σθ

and the profiles derived by applying the Thorpe scale analysis (Fig. 2). The profile of σθ was
collected by a moving-down Aqualog profiler at 00 h 18 s on April 26, 2015. This profile
features manifestations of shear-driven turbulence within the depth range from 70 to 160 m
(Fig. 2a). For example, from 80 to 100 m, the value of σθ at the specified depth level is greater
than that at the next depth level. The density stratification from 80 to 100 m is weak, and
its value is N = 1.2 cph (Figure 2b). The Thorpe displacement LD = (zn− zm) (3) results in
values ranging from -8 m to 8 m, such that LT = 4 m and εK reaches 10−10 W kg−1.

For greater confidence in our estimates, we compare εK and Kρ derived from the TSM
with those from the FSP framework. The turbulent dissipation rate (εFSP

K ) and diapycnal
diffusivity (KFSP

ρ ) derived from the FSP framework were estimated as described previously
(Ostrovskii et al, 2021). To obtain εFSP

K , we applied the following relation (Henyey et al,
1986; Gregg and Kunze, 1991; Polzin et al, 1995; Gregg et al, 2003; Fer et al, 2010; Meyer
et al, 2015):

ε
FSP
K = ε0

N2

N2
0

(
Ŝ2

z

)2

(
Ŝ2

zGM

)2
3(Rw +1)

2
√

2Rw
√

Rw−1
f cosh−1(N/ f )

f0 cosh−1(N0/ f0)
(6)

which depends on the integrated variance in the observed vertical shear (Ŝ2
z ) and the shear-

to-strain ratio (Rw) (Ostrovskii et al, 2021). In (6) the constants are defined according to the
modified Garrett-Munk model (Garrett and Munk, 1972; Cairns and Williams, 1976) for the
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reference latitude 32.5◦N: ε0 = 8.0 · 10−10 W kg−1, N0 = 3 cph, and f0 = 7.8 · 10−5 rad
s−1. At the observational site at 42.6◦ N in the northwestern Sea, the local inertial frequency
was f = 9.87 · 10−5 rad s−1. Note that relation (6) depends on the vertical shear, which was
estimated from high-vertical-resolution measurements of the horizontal velocity components
(see the above Sec. 2). Using relation (6), εFSP

K is estimated for the layers with weak density
stratification, where the strain estimates are less reliable. Then, to estimate KFSP

ρ , the Osborn
relation (1) was applied. The εFSP

K and KFSP
ρ profiles were binned into a 10-m thick layer.

4 Results

4.1 Necessary conditions for shear-driven turbulence
When analyzing the vertical mixing associated with shear-driven turbulence, the necessary
conditions for its generation should be considered. Density stratification is a leading factor
influencing the shear-driven turbulence evolution. A high density stratification unfavorably
affects the development of shear-driven turbulence. By contrast, the extent (spatial scale) of
the turbulence motion is large for weak density stratification. The values of N reach high
values of more than 3 cph in the upper layer at the depth from 65 to 150 m (Fig. 3). From
mid-April to the end of May, maximum N values ranging from 2.5 to 3 cph are found below
the mixed layer and down to the depth of 100 m. From June to October, the maximum values
of N occur at the depths ranging from 65 to 180 m. At the depths greater than 200 m, den-
sity stratification weakens, and the value of N decreases from 2.6 to 1.5 cph. It appears that
strong density stratification events during the survey suppress the development of shear-driven
turbulence.

We estimate the gradient Richardson number (Ri), as a principal measure of instability,
according to (Miles, 1961) as follows:

Ri =
〈N2〉t

V 2
z

< 0.25, (7)

where V 2
z =

([
∂u
∂ z

]2
+
[

∂v
∂ z

]2
)

is the vertical shear of the horizontal velocity component

(u,v).
For Ri < 0.25, we expect that the necessary condition for the development of shear-driven

turbulence is satisfied. Figure 4 shows the evolution of Ri during the survey. Notice that the
regions of the data profiles where double diffusion was developed (Stepanov et al, 2023) are
excluded from this analysis. From mid-April to mid-June 2015, despite strong stratification
in the upper layer, Ri < 0.25 was often observed at the depths of 70–260 m. From mid-June
2015 to October, due to increasing density stratification in the upper layer, the necessary
conditions were satisfied mainly in the Sea layer at the depths of more than 150 m. However,
in some cases the condition Ri < 0.25 was fulfilled in the layer at the depths of 70–150 m.
Later, in October, the condition Ri < 0.25 was fulfilled in the layer at the depths of 70-260 m.
Thus, one can expect strong shear-driven turbulence manifestations in the form of turbulent
patches with various length scales in the Sea upper layer despite the presence of strong density
stratification in this layer.

6



277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

4.2 Thorpe scale estimates of εK and Kρ

In this subsection, we focus on the estimates of εK and Kρ obtained using the TSM and
relation (1). We aim to obtain a set of estimates that match those derived earlier by using FSP
frameworks; therefore, the same data profiles were taken for the analysis as in Ostrovskii et al
(2021). Figure 5 shows the TSM estimates of εK . Note that the values of εK < 10−20 W kg−1

and Kρ < 10−7 m2 s−1 are not shown. Additionally, if any σθ profile did not have at least one
density overturn, this profile was excluded from the analysis.

In the upper layer at the depths from 70 to 150 m, the values of εK range from 10−9 to
10−7 W kg−1, whereas in the lower layer at the depths from 150 to 200 m, they decrease by
two orders of magnitude and become negligible at 10−11 W kg−1. However, sometimes high
values of εK occur at the depths greater than 200 m; for example, on 23 September, εK was
equal to 10−6 W kg−1. The time-depth distribution of the estimated values is rather sparse
because we omit the data when other mixing processes, such as double diffusion, dominate
(Stepanov et al, 2023). High εK values in the upper layer at the depths from 70 to 180 m
indicate greater dissipation of turbulent kinetic energy.

The high dissipation rate of turbulence results in large estimates of the diapycnal diffusiv-
ity Kρ . In particular, Kρ is often as high as 10−4–10−3 m2 s−1 in the upper layer at the depths
from 70 to 180 m (Figure 5b). Occasionally large Kρ values in the deep layer are due to high
turbulent dissipation and weak dependence on density stratification (Fig. 3).

The survey median values are more suitable for demonstrating typical vertical distribu-
tions of εK and Kρ (Fig. 6). Higher survey median values from 10−8 to ∼ 10−10 W kg−1 and
from ∼ 10−4 to 10−5 m2 s−1 are found in the upper layer at the depths from 70 to 180 m.
In the depth range from 190 to 300 m, the survey median values of εK and Kρ decrease to
5 ·10−11 W kg−1 and 5 ·10−6 m2 s−1, respectively, so that the uncertainty of both estimates
is large, as indicated by the confidence intervals. At the depths of less than 370 m, the median
survey values of εK and Kρ tend to increase. The median survey values of εK and Kρ increase
to ∼ 10−10 W kg−1 and ∼ 10−5 m2 s−1, respectively.

Let us demonstrate the survey-median profiles of εK and Kρ for the layer at the depths
70–260 m computed from all of the data (Fig. 7), rather than only from the full-depth profiles,
as shown in Fig. 6. The median survey values of εK peak at 3−4 ·10−9 W kg−1 in the layer
at the depths from 70 to 100 m, whereas in the layer below, down to a depth of 250 m, the
median survey estimates of εK decrease with depth to approximately 5 · 10−11 W kg−1. The
survey-median Kρ profile is similar to the survey-median εK profile. In the layer at the depths
from 70 to 100 m, the survey-median Kρ values vary from 3 to 4 ·10−5 m2 s−1, and the highest
Kρ values reach approximately 3.5 ·10−5 m2 s−1 at the depths of 100–120 m. Downward, the
survey-median Kρ decreases toward ∼ 10−6 m2 s−1 at the depth of 250 m.

4.3 Vertical heat and salt fluxes
Estimates of diapycnal diffusivity allow us to assess the vertical fluxes of heat and salt (5).
First, let us focus on the time-depth variations in Q in the upper layer (Fig. 8a). The flux Q
is usually directed downward during the survey. A single period was found when a Q of –6
W m−2 was directed upward from mid-April to May. From May through August, the median
value of Q decreased from 2.2 W m−2 at 70 m depth to 0.1 W m−2 at 200 m depth. In the
summer, about 20% values of Q reached a positive value of more than 10 W m−2 at the depths

7
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from 70 to 150 m. In the autumn, higher values of the flux were observed down to the depth
of 180 m. For depths greater than 200 m, the vertical heat flux decreased from June through
October.

Figure 8b shows that JS was mainly negative during the survey, indicating that JS was
basically directed upward. However, events associated with positive JS values were observed
in the layer at the depths from 70 to 130 m, reaching JS of 3 ·10−9 (kg salt) (kg seawater)−1 m
s−1. High negative JS values of−5 ·10−9 (kg salt) (kg seawater)−1 m s−1 were observed from
mid-April through May. Additionally, the strong weakening of the JS at the depths greater
than 180 m occurred from June through October.

5 Discussion
The enhanced vertical mixing, revealed by using the TSM below the mixed layer, was
associated with the basin-scale shear current. In the sea upper layer, the higher diapycnal dif-
fusivity can be associated with the vertical shear induced by Ekman pumping. The effects
of near-inertial internal waves induced by wind forcing also enhance the mixing. The shear
instabilities associated with internal waves can be important for vertical mixing in the Sea.
Near-inertial oscillations are observed over the northwestern sea shelf (Yaroshchuk et al,
2016). The dynamic conditions in the northwestern Sea featuring cyclonic gyre, coastal jet
currents, and mesoscale and sub-mesoscale eddies are similar to those in certain marginal
seas, such as the northwestern Mediterranean Sea and the northern Black Sea. Podymov et al
(2020) quantified vertical mixing near the northeastern Black Sea continental slope using
measurements of sea temperature, conductivity, and current velocity by a collocated moored
Aqualog profiler during 2013–2016. The calculations were performed according to the well-
known parametrization of the vertical turbulent exchange coefficient based on the Richardson
number, originally proposed by Munk and Anderson (1948). The data analysis indicated that
the diapycnal diffusivity was the highest at approximately 10−4−3 ·10−4 m2 s−1 at the depths
ranging from 50 to 100 m.

The Sea undergoes strong atmospheric forcing. The passage of atmospheric cycles leads
to frequent adjustment of the geostrophic balance of the Sea and a release of the available
potential energy. Eventually, this energy impact can result in vertical mixing in the Sea,
including in the continental slope area. Notably, high turbulent dissipation rates ranging from
10−9 W kg−1 to 10−8 W kg−1 were observed below the mixed layer in the southeastern
Sea, where the Tsushima Warm Current propagates Kawaguchi et al (2021). Kawaguchi et al
(2021) noted that enhanced vertical mixing was modulated by mesoscale dynamics. Notice-
ably, the estimates obtained by Kawaguchi et al (2021) are close to our results obtained by
applying the TSM for analysis of the moored Aqualog profiler data in the Primorye Current
region of the northwestern Sea. In the regions where shear flow dominates and wind forcing
exhibits strong spatio-temporal variability, enhancement of vertical mixing below the mixed
layer can be expected.

The TSM approach has been used to study vertical mixing from CTD profiles for several
regions of the world ocean. Similar to the observations in the upper layer, enhanced vertical
mixing was found both in the winter and in the summer of 1998 in the upper layer at the depths
from 70 to 120 m in the Juan de Fuca Strait, where the shear flow was strong (Stansfield et al,
2001). The Thorpe scale, turbulent dissipation rate and diapycnal diffusivity were estimated.
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The estimates of diapycnal diffusivity in the Juan de Fuca Strait by Stansfield et al (2001) are
of the same order of magnitude (10−4 m2 s−1) as those in our study for the northwestern Sea.

The intense turbulence patches under the mixed layer and the high vertical gradients of
temperature and salinity often lead to the spots with enhanced vertical heat and salt exchanges.
The increased vertical heat exchange was as large as 104 W m−2 with a 3-day averaged flux of
about 300 W m−2 on the southwestern boundary of the Ulleung Basin in the Sea (Wijesekera
et al, 2022), where vertical mixing was studied using combined ship-based, moored, and
quasi-autonomous observations. Notice that Wijesekera et al (2022) highlighted the enhanced
vertical mixing below the mixed layer.

5.1 Comparison of the TSM and FSP approaches for quantifying
turbulent mixing

In Sect. 4 above, we used the TSM to quantify the vertical mixing in the layer at the depths
from 70 to 150 m, which was not considered in previous work, partly due to limitations of the
FSP framework (Ostrovskii et al, 2021). On the one hand, the TSM has known constraints.
Due to weak density stratification, the turbulent dissipation rate can be underestimated. On
the other hand, the FSP framework has its own limitations, which do not allow us to obtain
the full-depth pattern of diapycnal diffusivity based on the FSP approach alone. The two
methods can potentially complement each other if the TSM is applied to the upper portion of
the sea water column and the FSP is used for the deeper layers. Furthermore, comparison of
the results obtained by both methods will be useful for better understanding of their utility.

We compare the median survey values of εK and Kρ estimated using the TSM (Fig. 6) and
those derived by Ostrovskii et al (2021) using the FSP framework (εFSP

K and KFSP
ρ ). It should

be stressed that here we consider the estimates from the full-depth data profiles. Figure 9a
shows the survey-median values of the turbulent dissipation rates derived using the TSM
and the FSP framework. Note that the survey median εFSP

K was derived for the depth range
between 120 m and 360 m.

In the layer at the depths from 70 m to 180 m, the survey-median values of εK are sig-
nificantly greater than the survey-median values of εFSP

K . The survey-median εK ranged from
10−8 to 10−10 W kg−1, while the survey-median values ranged between 2 ·10−10 and 10−10

W kg−1. The difference between the survey-median values of εK and εFSP
K decreases with

increasing depth to 180 m. In the layer at the depths from 180 to 250 m, both estimates have
the same order of magnitude, although the survey-median εK varies more widely between
5 · 10−11 and 1 · 10−10 W kg−1. In the deeper layers from 250 to 320 m, the survey median
εFSP

K is 3 to 10 times greater than the survey median εK , which does not exceed 10−10 W
kg−1. Note that at the depths from 320 to 350 m, the survey-averaged εK values increase to
1.5 ·10−10 W kg−1.

Overall, in the upper layer at the depths from 70 to 150 m, the FSP framework under-
estimates the turbulent dissipation due to the omission of the vertical shortwave disturbance
contribution to the shear and strain variances. By contrast, TSM estimations based on high-
vertical-resolution measurements can account for this contribution. When the depth increases,
the contribution of the vertical shortwave disturbances to the turbulent dissipation rate
decreases; thus, the estimates of the survey-median εK become closer to the estimates of the
survey-median εFSP

K . At the depths greater than 250 m, the lower values of the survey-median
εK may be caused by underestimation due to weak stratification.

9
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The difference between the survey-median estimates of εK and εFSP
K leads to discrepancies

between the survey-median values of Kρ and KFSP
ρ given the nonlinear dependence of N2 on

depth. Substantial discrepancies occur in the layer at the depths from 70 to 200 m, where the
survey-median estimates of Kρ obtained by using the TSM exceed by more than one order
of magnitude the estimates derived using the FSP framework. In the deep layer at the depths
from 270 m to 350 m, the survey median KFSP

ρ is approximately five times greater than the
survey median Kρ .

Finally, let us compare the turbulent dissipation rates derived by applying both methods
to the data binned into two layers as follows: the upper layer at the depths from 70 to 150 m
and the lower layer at the depths from 150 to 250 m (Fig. 10). Notice that here we analyze
the daily median values of the dissipation rates.

In the upper layer, the depth-median values of εK ≈ 1.2 · 10−9 W kg−1 usually exceed
those of εFSP

K ≈ 1.2 · 10−10 W kg−1 by one order of magnitude (Fig. 10a). From early July
through mid-October, the depth-median values of εK exceeded the depth-median values of
εFSP

K by approximately one order of magnitude. By contrast, at the depths of 150 m to 250 m,
the median values of εK and εFSP

K are often close to each other (Fig. 10b). In this layer, the ver-
tical longwave disturbances dominate the variations of vertical shear and strain. Their spectra
are similar to Garrett-Munk spectra (Ostrovskii et al, 2021), and the FSP framework is better
suited for estimating the turbulent dissipation rate. Notice that in the lower layer, the TSM
may underestimate the turbulent dissipation rate due to weakening of the density stratifica-
tion, reducing the accuracy of the estimate of the turbulent patch length. The cross-evaluation
of both methods is helpful for understanding the uncertainties involved in the estimation of
the turbulent dissipation rate.

5.2 Depth profile of the diapycnal diffusivity compiled from two sets of
estimates based on the TSM and FSP approach

To model realistic mixing in a numerical simulation, the proper parameterization must be
specified using resolved scale parameters. Based on the survey-median estimates of Kρ

and KFSP
ρ (Fig. 11), it is desirable to compile a background profile of diapycnal diffusivity

accounting for the features of vertical mixing addressed by both TSM and FSP. The upper
part of the survey-median Kρ profile provides a better description of the background pro-
file of the diapycnal diffusivity in the depth range from 70 to approximately 190 m because
the TSM correctly accounts for the contribution of shortwave disturbances. In the mid-depth
range from 190 to 280 m, the estimated survey-median values of Kρ and KFSP

ρ obtained by
both methods are rather close to each other. Finally, in the lower part from 280 to 350 m depth,
the survey-median KFSP

ρ values better represented the background profile of the diapycnal
diffusivity. Overall, a strong nonlinear change in diapycnal diffusivity with depth is observed.
Below the mixed layer (from 65 to 190 m) where the density stratification is strong, the back-
ground diapycnal diffusivity exhibits two maxima. One of these is associated with the lower
boundary of the mixed layer, and the other is associated with the layer with maximal values
of Vz (see Ostrovskii et al (2021)). Below, a quasi-exponential decrease of the diapycnal dif-
fusivity is observed (from 8 · 10−5 to 10−5 m2 s−1). At the depths of 180–250 m, a weakly
stratified layer is present, where the background diapycnal diffusivity varies from 3 ·10−6 m2

s−1 to 10−5 m2 s−1. This depth range includes the upper boundary of the East Sea Interme-
diate Water (ESIW) (Yamada et al, 2004; Park et al, 2014; Yoshikawa et al, 1999; Yoon and
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Kawamura, 2002; Lee et al, 2011; Park and Lim, 2018). The low values of the background
diapycnal diffusivity suggest that only short-term events associated with mesoscale eddies
and strong near-inertial waves, as well as double diffusion processes, may be responsible for
the intermittently higher diffusivity and vertical exchange between the ESIW and the upper
layer (Ostrovskii et al, 2021; Stepanov et al, 2023). In the lower part of the water column,
the increase in the background diapycnal diffusivity with depth can be associated with the
interaction of shear flow (Primorye Current) with the continental slope. Such interactions can
induce enhanced mixing associated with arrested lee waves (Legg and Klymak, 2008; Kly-
mak et al, 2010). In this layer, the background diapycnal diffusivity increases from 8 · 10−6

m2 s−1 to 2 · 10−5 m2 s−1. Notably, enhanced vertical mixing near the bottom was found
in various regions of the open ocean, where the diapycnal diffusivity reached a value higher
than 10−4 m2 s−1 (Kunze et al, 2002). Diapycnal diffusivity reaches a value of 5 · 10−5 m2

s−1 near the Yermak Plateau (Fer et al, 2010) and reaches approximately 10−4 m2 s−1 in the
Storfjorden Fjord (Fer, 2006).

6 Conclusions
This study addressed the vertical mixing induced by shear-driven turbulence in the continen-
tal slope region of the northwestern Sea. Based on the high-resolution vertical profiles of
temperature and salinity obtained by an Aqualog profiler, the spatial scales of the turbulent
patches in the density profiles were estimated using the Thorpe-scale method. Based on the
relation between the Ozmidov and Thorpe scales and the Osborn relation, the turbulent dissi-
pation rate and the diapycnal diffusivity were obtained in the intermediate layer at the depths
from 70 to 260 m. The vertical heat and salt fluxes in this layer were also derived. Quantita-
tive estimates of the turbulent mixing showed that in the depth range from 70 to 150 m, the
turbulent dissipation rate and the diapycnal diffusivity reached higher values relative to the
underlying water layer at the depth greater than 150 m. Strong turbulent mixing resulted in
the intensification of the vertical turbulent exchange of heat and salt. The downward vertical
heat flux could exceed 10.0 W m−2, and the upward vertical salt flux ranged from −5 ·10−9

to 3 ·10−9 (kg salt) (kg seawater)−1 m s−1.
We compared the survey-median full-depth profiles of the turbulent dissipation rate

derived by using the Thorpe-scale method and the finescale parameterization framework and
found that both estimates were of the same order of magnitude only in the layer at the depths
from 200 to 280 m. In the upper layer at the depths from about 70 to 150 m, the Thorpe-scale
method estimate of the turbulent dissipation rate was significantly (approximately one order
of magnitude) greater than that of the finescale parameterization framework. We suppose that
this difference is due to the limitations of the finescale parameterization framework, which
does not fully account for the contribution of vertical shortwave disturbances to the shear and
strain variations. By contrast, for the lower part of the water column at the depth greater than
260 m, we found that the turbulent dissipation rate estimated using the finescale parameter-
ization framework tends to be higher than that derived using the Thorpe-scale method. This
discrepancy may be associated with the limitations of the Thorpe scale method under weak
density stratification. Smith (2020) modified the Thorpe-scale method by estimating the avail-
able overturn potential energy and ignoring the abovementioned discrepancies under weak
density stratification. We hope to apply Smith’s approach in our future studies. In our opinion,
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the Thorpe-scale method yields a robust estimate of the vertical mixing intensity in the sub-
surface layer, and the finescale parameterization framework is more suitable for application to
the deeper layer. This comparison highlights the necessity of choosing appropriate methods
and frameworks to obtain reliable quantitative estimates of the vertical mixing intensity from
the surface to the bottom of the sea in regions with strong seasonal variations in stratification
and multiscale dynamics.

The generalized profile for background diapycnal diffusivity includes the estimates of
diapycnal diffusivity obtained using both the Thorpe-scale method and finescale parame-
terization framework. This model shows strong nonlinear behavior with depth and can be
useful for improving the performance of high-resolution ocean general circulation models of
basin-wide cyclonic gyre in the northern part of the Sea.
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FIGURE CAPTIONS

Fig. 1 Survey-averaged geostrophic circulation data were obtained from the AVISO
dataset (https://www.aviso.altimetry.fr/en/data/data-access.html), and the colored topography
was obtained from the ETOPO1 (Amante and Eakins, 2009) in the northwestern Sea. The
location of the Aqualog profiler mooring station is shown by the red asterisk.

Fig. 2 An example of a density profile (σθ ) at 00 h 18 s on 26 April 2015 and the
corresponding profiles of (b) buoyancy frequency (N) of the turbulent patches, (c) Thorpe dis-
placement (LD = (zn− zm)) (3), (d) Thorpe scale (LT ), and (e) dissipation rates (εK) obtained
using Thorpe scale analysis.

Fig. 3 The time-depth plot of the background buoyancy frequency (N) estimated from all
profiles. Values of N < 10−1 cph were excluded from the analysis.

Fig. 4 Time-depth plot of the gradient Richardson number (Ri) estimated from all data.
The white dots indicate the regions of the data profiles that experienced favorable conditions
for double diffusion.

Fig. 5 Time-depth plot of the turbulent dissipation rate (εK ,W kg−1) (a) and diapycnal dif-
fusivity (Kρ , m2 s−1) (b) derived using the Thorpe-scale method and full-depth data profiles.
The values of εK > 10−8 W kg−1 and Kρ > 10−4 m2 s−1 are shown by large markers. The
values of εK < 10−20 W kg−1 and Kρ < 10−7 m2 s−1 are not shown. Notice that the upper
parts of the profiles are plotted to show the data in more detail.

Fig. 6 The survey-median values of the turbulent dissipation rate (εK , W kg−1) (a) and
the diapycnal diffusivity (Kρ , m2 s−1) (b) derived by applying the Thorpe-scale method for
processing the full-depth profiles of σθ . The 95% bootstrap confidence intervals are shown
with color shading.

Fig. 7 The survey median values of the turbulent dissipation rate (εK , W kg−1) (a) and the
diapycnal diffusivity (Kρ , m2 s−1) (b) derived by applying the Thorpe-scale method to all of
the data profiles. The 95% bootstrap confidence intervals are shown with color shading.

Fig. 8 Time-depth plot of the vertical heat flux (Q, W m−2 (a)) and salt flux (JS, (kg salt)
(kg seawater)−1 m s−1) (b) estimated following formula (5) from all of the data. The positive
values are for the downward-directed fluxes.

Fig. 9 The survey-median turbulent dissipation rate (a) and the diapycnal diffusiv-
ity profiles (b) derived using the Thorpe-scale method (TSM, red lines) and the finescale
parameterization framework (FSP, blue lines) from the full-depth data profiles. The 95%
bootstrapped confidence intervals are shown with corresponding color shading.

Fig. 10 Daily mean time series of the depth-median values of the turbulent dissipation rate
derived using the Thorpe-scale method (TSM, red lines) and the finescale parameterization
framework (FSP, blue lines) from all of the data binned into two layers: (a) at the depths of
70-150 m and (b) at the depths of 150-250 m.

Fig. 11 Background diapycnal diffusivity data composed of survey median values of
diapycnal diffusivity Kρ and KFSP

ρ derived via the Thorpe-scale method (TSM, red bars) and
the finescale parameterization framework (FSP, blue bars), respectively.
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Fig. 1 Survey-averaged geostrophic circulation data were obtained from the AVISO dataset (https://www.aviso.
altimetry.fr/en/data/data-access.html), and the colored topography was obtained from the ETOPO1 (Amante and
Eakins, 2009) in the northwestern Sea. The location of the Aqualog profiler mooring station is shown by the red
asterisk.

Fig. 2 An example of a density profile (σθ ) at 00 h 18 s on 26 April 2015 and the corresponding profiles of (b)
buoyancy frequency (N) of the turbulent patches, (c) Thorpe displacement (LD = (zn − zm)) (3), (d) Thorpe scale
(LT ), and (e) dissipation rates (εK ) obtained using Thorpe scale analysis.
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Fig. 3 The time-depth plot of the background buoyancy frequency (N) estimated from all profiles. Values of N <
10−1 cph were excluded from the analysis.

Fig. 4 Time-depth plot of the gradient Richardson number (Ri) estimated from all data. The white dots indicate the
regions of the data profiles that experienced favorable conditions for double diffusion.
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Fig. 5 Time-depth plot of the turbulent dissipation rate (εK ,W kg−1) (a) and diapycnal diffusivity (Kρ , m2 s−1) (b)
derived using the Thorpe-scale method and full-depth data profiles. The values of εK > 10−8 W kg−1 and Kρ > 10−4

m2 s−1 are shown by large markers. The values of εK < 10−20 W kg−1 and Kρ < 10−7 m2 s−1 are not shown. Notice
that the upper parts of the profiles are plotted to show the data in more detail.
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Fig. 6 The survey-median values of the turbulent dissipation rate (εK , W kg−1) (a) and the diapycnal diffusivity
(Kρ , m2 s−1) (b) derived by applying the Thorpe-scale method for processing the full-depth profiles of σθ . The 95%
bootstrap confidence intervals are shown with color shading.
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Fig. 7 The survey median values of the turbulent dissipation rate (εK , W kg−1) (a) and the diapycnal diffusivity (Kρ ,
m2 s−1) (b) derived by applying the Thorpe-scale method to all of the data profiles. The 95% bootstrap confidence
intervals are shown with color shading.
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Fig. 8 Time-depth plot of the vertical heat flux (Q, W m−2 (a)) and salt flux (JS, (kg salt) (kg seawater)−1 m s−1)
(b) estimated following formula (5) from all of the data. The positive values are for the downward-directed fluxes.
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Fig. 9 The survey-median turbulent dissipation rate (a) and the diapycnal diffusivity profiles (b) derived using the
Thorpe-scale method (TSM, red lines) and the finescale parameterization framework (FSP, blue lines) from the full-
depth data profiles. The 95% bootstrapped confidence intervals are shown with corresponding color shading.
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Fig. 10 Daily mean time series of the depth-median values of the turbulent dissipation rate derived using the Thorpe-
scale method (TSM, red lines) and the finescale parameterization framework (FSP, blue lines) from all of the data
binned into two layers: (a) at the depths of 70-150 m and (b) at the depths of 150-250 m.
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Fig. 11 Background diapycnal diffusivity data composed of survey median values of diapycnal diffusivity Kρ and
KFSP

ρ derived via the Thorpe-scale method (TSM, red bars) and the finescale parameterization framework (FSP, blue
bars), respectively.
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