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Abstract

Precipitation exceedance probabilities play a critical role in engineering design, risk assessment, and floodplain management.

While climate variability and change impact the frequency and intensity of heavy rainfall, the assumption that extreme precip-

itation is stationary in time, as implemented in official guidance like Atlas 14, can underestimate present and future hazards.

Previous studies show that conditioning the statistical distribution parameters on time-varying climate covariates can improve

estimates of nonstationary precipitation frequencies. However, this approach increases the number of parameters to be es-

timated, exacerbating parametric uncertainty. To address this, we propose a nonstationary and spatially varying model for

process-informed precipitation frequency analyses. Specifically, we assume that the robust effects of climate covariates on the

probability distribution of extreme rainfall are heterogeneous in space. We employ a hierarchical Bayesian model, leveraging

Gaussian processes and extreme value theory, and apply this model to infer nonstationary rainfall exceedance probabilities

for the Western Gulf Coast. The proposed approach is highly flexible, naturally allows the use of stations with incomplete

observational records, identifies robust temporal trends along with smooth return level estimates, and quantifies parametric

uncertainty. This framework can be used to improve adaptation guidance (such as IDF curves) in other regions.
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Estimates of precipitation frequency are widely 
used in risk assessment and management. Yet 
despite recognition that interannual variability and 
climate change affect hazards, most current 
guidance (e.g. Atlas 14) assumes stationarity.

Motivation

Fagnant et. al (2020): moving window analysis on stations in SE Texas and W 
Louisiana. Estimated precipitation frequencies and trends vary dramatically 
between nearby stations, motivating more robust estimation strategies.

We assume that the impacts of climate on extreme 
precipitation characteristics are spatially coherent, 
represented by a latent spatial field describing the 
smoothly varying GEV parameters (details 
provided below).

Bayesian Hierarchical Model
Annual maximum rainfall at location s and year t 
follows the Generalized Extreme Value (GEV) 
distribution

Process-Informed Nonstationary Model 
We condition the GEV parameters on climate time 
series xj(t) (log of global CO2 concentration)

    

Latent parameters are smooth in space, 
implemented with a Gaussian Process 
hierarchical prior. We conduct Bayesian 
Inference via Markov Chain Monte Carlo.

y(s, t) ∼ GEV(μ(s, t), σ(s, t), ξ)

μ(s, t) = μ0(s) +
J

∑
j=1

βμ
j (s)xj(t) σ(s, t) = σ0(s) +

J

∑
j=1

βσ
j (s)xj(t)

Methodology

References

Conclusions

Comparison with Atlas 14

Well Calibrated and Reduced Uncertainties

(L) Quantiles of the observation records given the simulated posterior GEV distributions. An ideal model would have a uniform distribution.
Return level estimates in Houston with uncertainty boundary using (M) nonstatiaonry model at separate stations (R) Spatially Varying Covariate Model

Our Spatially Varying Covariates model:
1. Identifies robust and spatially coherent trends
2. Improves estimation
We find increasing risk of 24-hour precipitation over the study area 
driven by climate change. This model can be used for IDF curves and to 
other spatially and temporally varying climate hazards.

Atlas 14 Spatially Varying Covariate Model
Stationarity Stationary Process-Informed Nonstationarity
Regionalization Region of Influence Hierarchical Gaussian Process
Inference L-moments Bayesian Inference

We estimate higher current (2022) hazard than Atlas 14 in most of the 
domain. Our current estimates are lower in the area directly impacted by 
Hurricane Harvey (SE Texas; 2017).

Knowledge Gap
Incorporating nonstationarity into precipitation 
frequency estimates can dramatically amplify 
parametric uncertainty. Here, we demonstrate 
how hierarchical spatial pooling can enhance 
inference for nonstationary extreme value models.

Our Spatially Varying Covariate Model improves estimates by (1) reducing uncertainty compared to conventional 
nonstationary model simulated at separate stations and (2) achieving statistical calibration.

Perica, S., Pavlovic, S., St Laurent, M., Trypaluk, C., Unruh, D., & Wilhite, O. (2018). Precipitation-
Frequency Atlas of the United States. Volume 11, Version 2.0. Texas.
Nielsen-Gammon, J. W. (2020). Observation-Based Estimates of Present-Day and Future Climate 
Change Impacts on Heavy Rainfall in Harris County.
Ossandón, Á., Rajagopalan, B., & Kleiber, W. (2021). Spatial-temporal multivariate semi-Bayesian 
hierarchical framework for extreme precipitation frequency analysis. Journal of Hydrology, 600, 
126499.
Fagnant, C., Gori, A., Sebastian, A., Bedient, P. B., & Ensor, K. B. (2020). Characterizing 
spatiotemporal trends in extreme precipitation in Southeast Texas. Natural Hazards, 104, 1597-1621.

Return level estimates from the spatially varying covariate model minus that from Atlas 14

Robust Trends in Extreme Precipitation

Posterior mean of coefficients of the anomalies of log of CO2 concentration on (T) the location and (B) the scale parameters estimated from (L) nonstatiaonry model at separate 
stations and (R) spatially varying covariate model

Spatially Consistent Increases in Heavy Rainfall Probabilities

Posterior mean of return levels estimates (T) in 2022 (B) difference between 2022 and 1940 for the (L) 10 year and (R) 100 year return periods
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