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Abstract

Wildfires and heatwaves have recently affected the hydrological system in unprecedented ways due to climate change. In cold
regions, these extremes cause rapid reductions in snow and ice albedo due to soot deposition and unseasonal melt. Snow and
ice albedo dynamics control net shortwave radiation and the available energy for melt and runoff generation. Many albedo
algorithms in hydrological models cannot accurately simulate albedo dynamics because they were developed or parameterised
based on historical observations. Remotely sensed albedo data assimilation (DA) can potentially improve model performance by
updating modelled albedo with observations. This study seeks to diagnose the effects of remotely sensed snow and ice albedo DA
on the prediction of streamflow from glacierized basins during wildfires and heatwaves. Sentinel-2 20-m albedo estimates were
assimilated into a glacio-hydrological model created using the Cold Regions Hydrological Modelling Platform (CRHM) in two
Canadian Rockies glacierized basins, Athabasca Glacier Research Basin (AGRB) and Peyto Glacier Research Basin (PGRB).
The study was conducted in 2018 (wildfires), 2019 (soot/algae), 2020 (normal), and 2021 (heatwaves). DA was employed to
assimilate albedo into CRHM to simulate streamflow and was compared to a control run (CTRL) using off-the-shelf albedo
parameters. Albedo DA benefited streamflow predictions during wildfires for both basins, with a KGE coefficient improvement
of 0.18 and 0.20 in AGRB and PGRB, respectively. Four-year DA streamflow predictions were superior to CTRL in PGRB, but
DA was slightly better in AGRB. DA was not beneficial to streamflow predictions during heatwaves. These results show that
albedo DA can reveal otherwise unknown albedo and snowpack dynamics occurring in remote glacier accumulation zones that
are not well simulated by model predictions alone. These findings corroborate the power of observational tools to incorporate
near real-time information into hydrological models to better inform water managers of the streamflow response to wildfires
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Abstract

Wildfires and heatwaves have recently affected the hydrological system in unprecedented ways due to climate
change. In cold regions, these extremes cause rapid reductions in snow and ice albedo due to soot deposition
and unseasonal melt. Snow and ice albedo dynamics control net shortwave radiation and the available energy
for melt and runoff generation. Many albedo algorithms in hydrological models cannot accurately simulate
albedo dynamics because they were developed or parameterised based on historical observations. Remotely
sensed albedo data assimilation (DA) can potentially improve model performance by updating modelled
albedo with observations. This study seeks to diagnose the effects of remotely sensed snow and ice albedo DA
on the prediction of streamflow from glacierized basins during wildfires and heatwaves. Sentinel-2 20-m albedo
estimates were assimilated into a glacio-hydrological model created using the Cold Regions Hydrological
Modelling Platform (CRHM) in two Canadian Rockies glacierized basins, Athabasca Glacier Research Basin
(AGRB) and Peyto Glacier Research Basin (PGRB). The study was conducted in 2018 (wildfires), 2019
(soot/algae), 2020 (normal), and 2021 (heatwaves). DA was employed to assimilate albedo into CRHM to
simulate streamflow and was compared to a control run (CTRL) using off-the-shelf albedo parameters. Albedo
DA benefited streamflow predictions during wildfires for both basins, with a KGE coefficient improvement
of 0.18 and 0.20 in AGRB and PGRB, respectively. Four-year DA streamflow predictions were superior to
CTRL in PGRB, but DA was slightly better in AGRB. DA was not beneficial to streamflow predictions during
heatwaves. These results show that albedo DA can reveal otherwise unknown albedo and snowpack dynamics
occurring in remote glacier accumulation zones that are not well simulated by model predictions alone.
These findings corroborate the power of observational tools to incorporate near real-time information into
hydrological models to better inform water managers of the streamflow response to wildfires and heatwaves.

Keywords: Albedo, Data Assimilation, Wildfires, Heatwaves, Cold Regions Hydrological Model (CRHM),
Streamflow Prediction, Glacier Hydrology, Sentinel-2.

1. Introduction

In an era of global environmental change, hydrological models need to account for processes resulting from
unprecedented combinations of forcing meteorology, state variables, and parameters. Although the hydrolo-
gical community has made advances in creating physically based process hydrology models, many process
representations are based on historical behaviour. Recent wildfires and heatwaves worldwide, especially in
Canada (Baars et al. , 2019; Parisien et al. , 2023), challenge the calculation of net shortwave radiation using
snow and ice albedo algorithms based on historical representations. Snow and ice surfaces can be darkened
by wildfire soot deposition. Likewise, snow surfaces can be darkened by accelerated snowmelt caused by rapid
above-average temperature changes from heatwaves. These two conditions strongly impact melt energy for
the seasonal snowpack, perennial snowfields and mountain glaciers, resulting in faster melt than might be
estimated without consideration of rapid surface darkening.

Shortwave (SW) radiation input into glacierized basins is often the most important source of available energy
for melt and runoff generation. Albedo, therefore, controls the amount of SW radiation entering snow and
ice surfaces and the availability of melt energy. The mechanism controlling snow and ice albedo decrease due
to wildfire soot deposition is straightforward. It depends on the amount of soot deposited over a surface and
whether or not that soot would be washout by melt or be further developed by algae growth (Aubry-Wake et
al. , 2022a; Bertoncini et al. , 2022; Esser et al., accepted manuscript). Heatwaves, in contrast, have a more
intricate effect on snow and ice albedo. Rapid above-temperature changes can cause accelerated snowmelt
(Koboltschnig et al. , 2009; Box et al. , 2022) and consequently earlier exposure of firn and ice; however,
these same high temperatures will most likely not further decrease the albedo of firn and ice in nature. It is
unknown whether or not current hydrological model albedo algorithms are able to account for such different



interplay of environmental conditions in a nonstationary changing climate, given they were developed and
parameterised based on historical observations. Up-to-date albedo observations are, therefore, necessary to
update hydrological model albedo algorithms. The availability of near real-time, high-resolution satellite
data with shorter revisit times combined with the advancement of albedo retrieval algorithms has provided
superior quality albedo data for effective assimilation into hydrological models.

Glacio-hydrological models are a set of numerical representations of hydrological processes that together
culminate in the ability to predict surface water and energy budget terms, the states of soil moisture, ground-
water storage, snowpacks, and glacier mass balance and fluxes of evaporation, sublimation, and streamflow.
These models are forced with meteorological variables and parameterized with environmental information,
and they can be used to simulate hydrologically-relevant variables such as snow water equivalent (SWE)
(Wrzesien et al. , 2017; Marsh et al. , 2020) to unobserved locations or to diagnose previous flood (Hamlet
and Lettenmaier, 2007; Pomeroy et al. , 2016) and drought (Fang and Pomeroy, 2007; Mishra and Singh,
2011) events. Numerical weather precipitation models can force hydrological models for short-term flood
forecasting to prepare riverine communities for flooding (Alfieri et al. , 2013; Thieken et al. , 2023). Finally,
climate projections coupled with hydrological models can guide governments and environmental planners
regarding a region’s future state of water resources (Milly et al. , 2002; Bléschl et al. , 2019). All these
applications make hydrological modelling a crucial tool to learn from the past and prepare for short- and
long-term changes in the hydrological cycle to avoid the large cost of floods and droughts. The global costs
of floods and drought-related (plus heatwaves and wildfires) extreme events attributed to climate change
amounts to US$ 127 billion per year between 2000 and 2019 (Newman and Noy, 2023).

There are three main types of hydrological models depending on the manner in which how hydrological
processes are represented. These range from empirical, semi-empirical, to physically based hydrological mo-
dels (Beven, 2012). Ideally models should represent hydrological processes as physically-based as possible
(Paniconi and Putti, 2015); however, often inefficiencies in model physical processes development are masked
by heavy calibration (Menard et al. , 2021). The physically based effort is a pledge to make hydrological
models more robust to unprecedented environmental conditions (Kreibich et al. , 2022). Models that heavi-
ly rely on empiricism to represent hydrological processes are more likely to be deemed unsuccessful under
conditions that have not been observed in the past. For instance, the uncertainty in end-of-century mean
flows can be over 40% due to the choice of hydrological models of various degrees of physical process re-
presentation (Krysanova et al. , 2017). Moreover, these unprecedented environmental conditions will likely
be more common under climate change-induced modifications in the overall hydrological system (Bloschl et
al. , 2019; Queen et al. , 2021). Therefore, it is crucial that process representation in hydrological models
be as physically based as possible for riverine communities to be prepared for upcoming extreme hydrologi-
cal events. However, developing robust physical process representation is time-consuming. In the meantime,
other techniques should be explored to account for inherent process representation inefficiencies that are still
represented semi-empirically in physically based models (Beven, 2012).

One way to correct for the lack of physical representation in hydrological modelling is through DA. In simple
terms, DA tries to create an optimal estimate (&) of a true real-world state () by combining a modelled state
(m) and a corresponding observation (0). The optimal state Z is a weighted sum ofm and o. The weights are
defined by the uncertainty in m ando, favouring the less uncertain estimate of £. The observation uncertainty,
or measurement error, is usually defined a priori based on the literature or ground-truthing. On the other
hand, the modelling error can be determined using many available techniques, which are usually based on
some sort of Monte Carlo simulations that can capture the spread in multiple model trajectories (Reichle,
2008). The most commonly used technique in hydrology and snow modelling is the Ensemble Kalman Filter
(EnKF) (Andreadis and Lettenmaier, 2006; Clarket al. , 2006, 2008; Slater and Clark, 2006; Huang et al. ,
2017; Lv and Pomeroy, 2020), which is a less computationally expensive version of the previously developed
Extended Kalman Filter (EKF) (Reichle et al. , 2002). The EnKF method calculates the modelling error
based on an ensemble of simulated model states forced by perturbed variables. The simulations are carried
out until the most recent available observation. Then, the Kalman gain is calculated, allowing the optimal
state estimate to be calculated and replaced in the model for future simulations (Evensen, 1994). The EnKF is



advantageous against other smoothing DA techniques because it can be implemented in a forecasting mode by
calculating modelling error using only one available observation (Reichle, 2008). This EnKF characteristic is
suitable for improving streamflow forecasting systems (Huang et al. , 2017). Among many snow and hydrology
variables, remotely sensed albedo DA has been utilized in large-scale land surface models (LSMs) to estimate
SWE (Dumont et al. , 2012; Malik et al. , 2012; Wang et al. , 2015), but not yet in a full hydrological model
capable of predicting streamflow.

Some hydrological models, especially those dedicated to the simulation of snow and ice processes important
to cold regions, have a dynamic albedo simulation algorithm. Accurate simulation of albedo is critical to
define the net shortwave radiation of snowpacks and glaciers, as shortwave radiation is the primary source of
available energy for melt. Albedo algorithms intend to simulate temporal changes in surface albedo within
a spatial modelling unit arising from soil moisture variations, vegetation phenology, addition of fresh snow
cover, snow depletion, and firn and glacier ice exposure. In the case of partially or completely covered
snowpacks, the albedo varies due to solar angle diurnal and seasonal variations, snow grain size (Marks and
Dozier, 1992), the amount of snow-free surfaces (Pomeroy et al. , 1998), and the amount of light-absorbing
particles (LAPs) in snow (Warren and Wiscombe, 1980). Empirical snow albedo estimation algorithms have
been developed and applied satisfactorily in the past (Gray and Landine, 1987; Verseghy, 2012); however, the
conditions to which they were developed have changed drastically with climate change. In the case of bare
ground and short vegetation, these algorithms usually apply a constant known albedo for fresh snow and a
decay function until it reaches a depth in which the snow-free albedo starts to contribute, and ultimately, a
constant snow-free albedo is used. The albedo is reset when fresh snow accumulates on the ground, and the
decay function starts again. Physically based radiative transfer algorithms have been developed to simulate
snow and ice albedo (Wiscombe and Warren, 1980; Gardner and Sharp, 2010). Some of these physically based
algorithms can also account for the introduction of LAPs into the snowpack (Zhang et al. , 2017; McKenzie
Skiles et al. , 2018). Although these physically based algorithms should be more robust in their ability to
estimate albedo in a changing climate with more wildfires and heatwaves, they are usually complex and,
therefore, rarely implemented in hydrological models (Pietroniro et al. , 2007; Bergstrém and Lindstrém,
2015; Hamman et al. , 2018; Pomeroy et al. , 2022), especially algorithms capable of accounting for LAPs
deposition. Studies usually determine the LAPs radiate forcing and its respective melt, but are unable to
directly couple them into a hydrological model (Flanneret al. , 2007; Zhang et al. , 2017; McKenzie Skiles et
al. , 2018; Magalhaes et al. , 2019), unless the model is directly forced by albedo observations (Aubry-Wake
et al. , 2022a).

Albedo can also be estimated using remotely sensed imagery. Spectral albedo can be simply calculated by
dividing the reflected spectral radiance by the incoming solar radiation at the surface for a given region of
the solar electromagnetic spectrum. Besides hyperspectral sensors, most remote sensing systems only have a
few narrow spectral bands, and a conversion to the full broadband solar spectrum is necessary to calculate
albedo. This conversion is usually done using narrow-to-broadband equations developed for the most common
sensors using field spectroscopy libraries or radiative transfer simulations (Liang, 2000; Greuell et al. , 2002;
Li et al. , 2018). In addition, because most high-resolution multi-spectral remote sensing systems operate at
nadir viewing angles, they cannot observe albedo variations due to different sensor-solar geometries. One way
to overcome that is to use coarse resolution systems with off-nadir capabilities, such as the Visible Infrared
Imaging Radiometer Suite (VIIRS) or the Moderate Resolution Imaging Spectroradiometer (MODIS), to
calculate a Bidirectional Reflectance Distribution Function (BRDF) (Roujean et al. , 1992; Wanner et al.
, 1995; Li et al. , 2001). This BRDF information can be downscaled to Landsat-era (30-m) and Sentinel-
2 (20-m) resolutions in soil and vegetation surfaces (Shuai et al. , 2011). These methodologies have been
successfully applied for soil and vegetation surfaces, but they were suboptimal on snow and ice surfaces
due to sensor saturation prior to the launch of Landsat-8. With the advancement in sensor radiometric
technology onboard Landsat-8 and Sentinel-2 platforms, surface reflectance can be estimated over snow and
ice at high-resolution and, in conjunction with BRDFs, calculate albedo over snow and ice (Wang et al. |
2016; Li et al. , 2018; Bertoncini et al. , 2022). The high revisit time of Sentinel-2 platforms has allowed
such technologies to capture rapid snow and ice albedo changes caused by wildfire soot deposition and its



associated SW radiative forcing (Bertoncini et al. , 2022).

The degree to which streamflow predictions during melt of snow and ice can be improved by high-resolution
remotely sensed albedo DA into hydrological models has not been assessed yet. Given the importance of
simulating accurate current and future streamflows and the increasing trends of unprecedented wildfire and
heatwaves (Jolly et al. , 2015; Kirchmeier-Young et al. , 2019; Al-Yaari et al. , 2023; Parisien et al. , 2023),
accounting for these unrepresented processes in glacio-hydrological models can be crucial. Because current
hydrological model’s albedo algorithms are not able to account for rapid and unseasonal snow and ice albedo
changes (Pietroniro et al. , 2007; Bergstrom and Lindstrém, 2015; Hamman et al. , 2018; Pomeroyet al. |
2022; Wheater et al. , 2022), albedo DA provides a path forward in improving this process’s representation.
Modular physically based models such as CRHM (Pomeroy et al. , 2022) provide a suitable platform to test
albedo DA in cold regions. Although coarse-resolution remotely sensed snow and ice albedo DA into LSMs
has been performed to estimate SWE in the past (Dumont et al. , 2012; Malik et al. , 2012; Wang et al. ,
2015), not until recently that high-resolution remotely sensed snow and ice albedo estimates became reliable
and frequent enough (Li et al. , 2018; Bertonciniet al. , 2022) to have an impact on hydrological model
streamflow predictions. Therefore, no studies have assessed the impact of remotely sensed high-resolution
albedo DA into a cold regions hydrological model on streamflow predictions during extreme wildfire and
heatwave conditions, especially in glacierized mountain headwater basins.

The purpose of this chapter is to diagnose the effects of remotely sensed high-resolution snow and ice
albedo data assimilation on the prediction of streamflow of high mountain glacierized basins during wildfires
and heatwaves. The specific objectives are (i) to develop and evaluate a cloud-computing remotely sensed
snow and ice albedo retrieval framework, (ii) to develop a framework for remotely sensed albedo DA into a
physically-based cold regions hydrological model, and (iii) to assess the impact of albedo DA on streamflow
prediction of glacierized basins during wildfire and heatwave conditions. The albedo DA framework was
developed and tested in the Athabasca Glacier and Peyto Glacier research basins in the Canadian Rockies
during contrasting environmental conditions that included wildfires and heatwaves between the 2018 and
2021 water years (WYs). The framework was developed based on 20-m Sentinel-2 imagery albedo estimates
that were assimilated into CRHM to assess the impact of wildfires and heatwaves on streamflow predictions.

2. Material and Methods
2.1. Study Area

Two glacierized basins in the Canadian Rockies, Alberta, were used as study areas for this research: Atha-
basca Glacier and Peyto Glacier research basins (Figure 1). AGRB is in Jasper National Park and is part
of the Global Water Futures Observatory (GWFO) and operated by the Centre for Hydrology, University
of Saskatchewan. AGBR is a glacier outlet of the Columbia Icefield, the largest icefield in the Canadian
Rockies and a triple continental drainage divide between the Mackenzie, Nelson, and Columbia river basins
which flow into the Arctic, Atlantic, and Pacific oceans, respectively. AGBR has an area of 29.3 km? and
sits between 1926 and 3459 m of elevation (as of 2011), with 58% of its area covered by glacier ice (as of
2016) (Pradhananga and Pomeroy, 2022). AGBR is equipped with two automatic weather stations (AWS),
Athabasca Ice and Athabasca Moraine, and one streamflow gauge. PGRB drains into the Nelson river basin.
PGRB has an area of 22.4 km? and sits between 1907 and 3152 m (as of 2014), with 44% of its area covered
by glacier ice (as of 2016) (Pradhananga and Pomeroy, 2022). PGRB has one AWS (Peyto Main) and a
streamflow gauge and has been the subject of intense scientific studies since the 1960s. For more information
about these research basins and their instruments the readers are referred to Pradhananga et al.(2021) and
Pradhananga and Pomeroy (2022).
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Figure 1: Athabasca Glacier Research Basin (AGRB, left) and Peyto Glacier Research Basin (PGRB, right)
study areas in the Canadian Rockies, Alberta. Glacier ice and snow Hydrological Response Units (HRUs)
used as examples for result discussions are highlighted in red.

2.2. Study Period and Environmental Conditions

The study was conducted between July 2017 and September 2021, and streamflow evaluation was performed
for the four complete WYs inside this period (2018, 2019, 2020, and 2021). The 2018 year was the worst
interior British Columbia wildfire season to date (Parisien et al. , 2023) — as these fires were generally upwind
of the study basins they impacted the sites with smoke and soot deposition (Aubrey-Wakeet al. , 2022). The
2019 year did not have any major wildfires; however, field inspections revealed that albedo remained low in
the Athabasca Glacier from soot and algae growth feeding off soot deposited in 2017 and 2018 (Aubry-Wake
et al. , 2022a; Bertoncini et al. , 2022; Esser et al. , accepted manuscript). The 2020 year had no major
wildfires and can be considered a control year with greatly reduced soot and algae. The 2021 year was
characterized by intense heat and an unprecedented heat dome that dominated the region for many days
in late June and early July (Lin et al. , 2022). Although there was also a considerable Western Canada
wildfire season in 2021, only light smoke was observed in the study basins; therefore, this year was not
considered a high-activity wildfire season. The 2017 year was also a high-activity wildfire season. However,
DA evaluation was not performed in that year because Sentinel-2B satellite images were only available from
July 2017 onwards and thus not spanning the whole glacier ablation period. The Sentinel-2B satellite launch
conferred high revisit rates every 2 to 5 days in the region.

2.3. Cloud-computing Remotely Sensed Albedo Framework Implementation

High-resolution remotely sensed albedo was estimated using a framework developed by Shuai et al. (2011)
for Landsat images, updated by Li et al. (2018) for Sentinel-2 images, and applied by Bertonciniet al. (2022)
in the Columbia Icefield to assess the impacts of wildfires on albedo and net SW radiation. To extend the
application for use in hydrological models, Bertoncini et al. (2022)’s framework was implemented in the
Google Earth Engine (GEE) cloud-computing platform. The algorithm was slightly modified to run in GEE.
The main differences from Bertoncini et al. (2022) include the following: the use of both MODIS Aqua and
Terra platforms to retrieve BRDF, which was made to simplify the quality control (QC) steps with more
observations; the BRDF inversion method allowed negative coefficients, but the inversion was run once more
without the negative coefficient to alleviate the issue since there is no non-negative least squares option in
GEE; and also in order to make the framework widespread applicable instead of using station-measured
incoming SW radiation, ERA5-Land 9-km incoming SW radiation was utilized. In addition, Sentinel-2
reflectance atmospheric correction was performed using the 6S model (Vermoteet al. , 1997) through its



Python implementation (Py6S) instead of Sen2Cor.

In summary, the framework utilizes BRDF information from MODIS to account for differences in spectral
albedo due to sensor-solar angular variability. This BRDF information is then downscaled to Sentinel-2
20-m resolution, and the high spatial resolution spectral albedo is converted to a broadband albedo using Li
et al. (2018) conversion equations for Sentinel-2. The algorithm can be applied worldwide because it was
implemented in GEE. The algorithm was run for both study area basins, and the mean snow and ice 20-m
albedo within each HRU was extracted for DA. The station-measured albedo at Athabasca Ice AWS was
utilized to evaluate the remotely sensed albedo estimates. This evaluation standard error was used as the
satellite albedo measurement error for DA in both basins since the pixel that Peyto Main AWS falls within
is not representative of snow and ice albedo due to infrastructure and bare soil contamination.

2.4. CRHM Hydrological Modelling

CRHM was used to predict streamflow in both basins without (CTRL) and with albedo data assimilation
(DA). The CRHM configuration employed was similar to that of Pradhananga et al. (2022), with an updated
firn and ice HRU designation from the two 2021-08-12 Sentinel-2 images in Figure 1. CRHM is a modular
physically based hydrological model with a glacier energy and mass balance and routing modelling modules
(Pomeroyet al. , 2022). The models were set up with 90 and 65 HRUs for AGRB and PGRB, respectively.
The CTRL run used off-the-shelf constant albedos for ice (0.30) and firn (0.55). For spin-up purposes, the
model was run from 2015-10-01 to 2021-09-30. Both models were forced with hourly station-measured air
temperature, relative humidity, wind speed, incoming short- and long-wave radiation, and precipitation using
the Athabasca Moraine and Peyto Main AWSs (Figure 1). These forcing variables were quality-controlled
using the Fang et al. (2019) methodology. No calibration was performed in the CTRL or DA runs. Another
difference in model configuration from Pradhananga and Pomeroy (2022) is that this study used a glacier
and firn melt module employing a katabatic calculation of turbulent energy fluxes based on Grisogono and
Oerlemans (2001) and tested in Peyto Glacier by Munro (2004) and Aubry-Wake et al. (2022b). This
katabatic module represents the contribution of sub-daily glacier katabatic winds to the overall melt of ice
and firn, advancing upon the less physically based configuration utilized by Pradhananga and Pomeroy
(2022).

Snow albedo was simulated using the same algorithm employed in the Canadian Land Surface Scheme
(CLASS) (Verseghy, 2012). The CRHM version used in this study has four other albedo algorithms capable
of simulating snow albedo, including from observations and simply using a constant albedo. The model can
calculate albedo using Gray and Landine (1987)’s method, which accounts for snow-covered area depletion
in shallow snowpacks. The model can also simulate albedo utilizing Bakeret al. (1990)’s method, which is
based on a decay function that refreshes when snowfall occurs. Verseghy’s algorithm evolves upon Barker’s
by accounting for differences between dry and wet snow and also taking into consideration daily mean
temperatures, which is crucial in the context of heatwaves. Verseghy’s algorithm was chosen to be used in
this study given the widespread use of CLASS inside land surface and hydrology prediction systems in cold
regions, e.g., in the Modélisation Environmentale Communautaire (MEC) - Surface and Hydrology (MESH)
model (Pietroniro et al. , 2007; Wheater et al. , 2022). The chosen albedo algorithm feeds albedo information
to the utilized energy balance snowmelt model SNOBAL (Marks et al. , 1998); therefore, it is expected that
albedo assimilation will also have a large impact on snow depth and SWE.

2.5. Ensemble Kalman Filter Assimilation Framework

The DA period started in July 2017 when Sentinel-2 images became available at a higher revisit frequency,
with the addition of Sentinel-2B. One individual Sentinel-2 scene was sufficient to cover each basin. Sentinel-
2 images with less than 30% cloud cover were selected for albedo generation and as a DA date. If clouds
or shadows completely covered an HRU, DA was not performed, but assimilation was executed for the
other HRUs on the same date. DA was conducted using an EnKF method, following Clark et al. (2006)
and Lv and Pomeroy (2020). EnKF was run with 20 ensemble members. Station-measured variables were
perturbed with standard deviations displayed in Table 1. The standard deviation for less uncertain forcings



(air temperature, relative humidity, incoming short- and long-wave radiation) was reduced to half of that
used by Lv and Pomeroy (2020) since there is evidence that previously employed perturbation standard
deviations were disproportionately large for these variables. For instance, Tanget al. (2023) have shown that
hydrological modelling uncertainty due to temperature forcing is closer to 2 °C instead of the commonly
used 5 °C. Wind speed and precipitation remain highly uncertain variables, and their standard deviations
were kept the same as Lv and Pomeroy (2020).

Table 1: Station-measured forcings perturbed by prescribed standard deviations. The type of perturbation
is also displayed.

Forcing Perturbation type Standard deviation
Air temperature [°C] Additive 2.50

Relative humidity [%] Additive 5

Wind speed [m/s] Additive 2

Incoming short-wave [W/m?  Multiplicative 0.15

Incoming long-wave [W/m?]  Additive 25

Precipitation [mm] Multiplicative 0.50

The implemented EnKF framework generates an optimal albedo estimate (&) between the CRHM modelled
(a) and Sentinel-2 observed (o) albedo by weighing the modelling (¢2,) and measurement error variance
(02) using the Kalman gain (K),

o

a=01-K)a,+Ka, (1)
K= o7/(07, +00) (2)

Modelling error (02,) was determined by the departure from the mean of the 20 modelled albedos, and
measurement error (02) was defined by utilizing the standard error from Sentinel-2 albedo evaluation with
Athabasca Ice AWS. Snow depth, SWE, snowpack cold content, water in the snowpack, firn and ice total
water equivalents were also updated proportionally to K. Other related variables were updated to maintain
physical coherence when updating the latter state variables. For example, snow density was updated based
on the new snow depth and SWE states. The above DA process was repeated the same number of times as of
available Sentinel-2 albedo estimates for each basin until the whole period was covered. CRHM streamflow
simulations were continued for an extra two days with old model states into the new assimilation interval.
This procedure was performed to cover the first two days in which streamflow calculated with the new states
was still being routed through the basin. The period of two days was chosen because it covers the time of
concentration for both basins.

2.6. Streamflow Evaluation

Model performance with and without DA was only assessed in the last four WYs because they had a complete
Sentinel-2 albedo time series. These years also encompassed very contrasting environmental conditions: a
heavily wildfire soot-impacted WY (2018); a mildly soot-impacted WY (2019) from algae feeding from 2017
and 2018 soot; a normal WY (2020); and a WY impacted by heatwaves (2021). Streamflow prediction
performance was estimated by the Nash-Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe, 1970),
bias, RMSE, and the KGE coefficient (Guptaet al. , 2009). The evaluation was made considering the entire
four WY periods and on a WY basis. It is worth noting that streamflow in these two glacierized basins is
limited to the spring and summer seasons (May to Sept.).

3. Results
3.1. Remotely Sensed Albedo Evaluation



Remotely sensed albedo presented satisfactory results for the Athabasca Ice AWS evaluation. Twenty-eight
matching observations were available for evaluation. Albedo correlation was 0.96, bias was 0.026, RMSE was
0.060, and the regression model standard error (o,) was 0.046 (Figure 2). It was important to calculate o as
this metric determines the remote sensing measurement error necessary for DA. In summary, snow albedos
were less accurate than ice albedos. Snow albedos had a higher spread and positive bias, whereas ice albedo
errors were more evenly distributed around the 1:1 line. These results were similar to those previously found
in the literature with r, bias, and RMSE values between 0.82 and 0.88 (Shuai et al. , 2011; Bertonciniet
al. , 2022), -0.029 and 0.019, and 0.025 and 0.043 (Shuaiet al. , 2011; Wang et al. , 2016; Li et al. , 2018;
Bertoncini et al. , 2022), respectively.
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Figure 2: Remotely sensed albedo evaluation for Athabasca Ice AWS.

Figure 3 shows both basins’ mid-summer remotely sensed snow and ice albedo maps. These maps demon-
strate the vast spatial variability of intra-HRU and -basin snow and ice albedos. Such spatial variabilities
cannot be captured by modelling in scales smaller than its HRU units. Although the intra-HRU albedo
variability was averaged out before DA was performed, the collective variations caused by wildfires and
heatwaves can generate different integrated responses. This heterogeneity suggests that the remotely sensed
albedos can contribute new information to a cold regions DA framework. Intra-basin snow and ice albedo
variability is also observed in both basins. For example, in AGRB, there is a clear distinction between lower
glacier ice albedos and the higher albedos from the Columbia Icefield. The transition from snow to firn
albedos is also evident in PGRB. This date also exhibits an area in which albedo was not retrieved for the
most terminal glacier HRU in PGRB. Masked albedo values in Figure 3 can occur if clouds and shadows
obstruct the area or if the coarse resolution BRDF retrieval is unable to generate enough observations for
a particular landcover class. DA was not performed when there were no snow and ice 20-m albedo pixels
inside an HRU, and the modelling continued with its old state variables. Note that there were 68 and 33
dates with available remotely sensed albedo estimates for assimilation in AGRB and PGRB, respectively.
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Figure 3: Remotely sensed snow and ice albedos for both basins during mid-summer conditions. Light grey
corresponds to masked areas due to snow- and ice-free pixels, obstruction by clouds and shadows, or if the
BRDF retrieval was not possible for that landcover class.

3.2. Albedo DA Streamflow Evaluation

DA and CTRL streamflow evaluation metrics had accurate results for most analyzed years. In the heavily
wildfire-impacted year of 2018, DA outperformed CTRL for both basins. The KGE difference between DA
and CTRL was 0.18 and 0.20 for AGRB and PGRB, respectively. In 2019 (soot algae growth) and 2020
(normal year), DA was only beneficial for PGRB. In 2021, the year affected by heatwaves and a few light
late summer wildfires, DA did not improve streamflow predictions for either basins, indicating that other
mechanisms might have influenced streamflow predictions during heatwave conditions or that the operation
of the albedo algorithm in CRHM could not be improved upon by assimilating observations. The four-year
overall evaluation revealed that albedo DA substantially benefited streamflow predictions in PGRB (KGE
improvement of 0.12), but only a slight advantage was found for streamflow predictions in AGRB (KGE
improvement of 0.02) (Table 2). The four-year overall evaluation NSEs for AGRB (0.74) and PGRB (0.78)
were above the mean of maximum values (0.64) found in 20 studies that predicted streamflow with the
CRHM model (Pomeroy et al. , 2022).

Table 2: Streamflow evaluation metrics for AGRB and PGRB. Metrics were calculated for the combined four
melt seasons and each melt season individually (May 1 to Sept. 30), since streamflow rarely occurs outside
that period.

Athabasca Glacier Research Basin (AGRB)

Period NSE NSE
DA CTRL
2018 0.63 0.43
2019 0.54 0.67
2020 0.83 0.82
2021 0.83 0.86
4-year 0.74 0.73
Peyto Glacier Research Basin (PGRB) Peyto Glacier Research Basin (PGRB) Peyto Glacier Research 1
Period NSE NSE
DA CTRL
2018 0.82 0.64
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2019 0.68

2020 0.85
2021 0.71
4-year 0.78

0.22
0.56
0.77
0.63

Improvements in streamflow predictions occurred because DA decreased streamflow compared to the CTRL
run, reducing its positive bias. This situation was observed particularly during the wildfires of 2018 for
both basins, but also in 2019, 2020, and the four-year period for PGRB. The overall decrease in positive
bias by DA is noticeable in Figure 4, in which the CRTL streamflow (red) appears distinctly larger than
the DA streamflow (blue) in years that improvement was observed, except for 2021 in PGRB when CTRL
streamflow was higher than DA. The reason for the overall DA decrease in streamflow predictions will be

further discussed in section 5.4.3.
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As stated in section 5.4.2, satellite albedo DA improvements were observed in years when DA streamflow
predictions were lower than CTRL and bias was positive. The benefit of satellite DA was caused by a decrease
in modelled glacier albedo combined with an increase in snowcover in spring and summer (Figures 5, 6, and
Table 2). This mechanism occurs because the associated melt decreases considerably while snowcover covers
glacier ice, considering the relatively high albedo snow generates less meltwater than relatively low albedo
ice for the same shortwave insolation fluxes. The DA streamflow used for evaluation was the mean of all
20 ensembles. This mean is lower if more ensembles have prolonged spring and summer snowcover over ice.
Since the benefits of DA stem from a decrease in streamflow, snowcover over ice has a larger influence on
melt than the decrease in albedo introduced by DA. In AGRB, the ice albedo decrease introduced by DA
was larger than in PGRB. At the same time, the DA snowcover over ice was smaller in AGRB (Figures 5
and 6). The integrated response was that AGRB streamflow was less sensitive to DA than in PGRB. These
results indicate that the benefit of satellite albedo DA stems not only from the albedo itself, but also from
associated changes in other model states and glacier configuration.
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Figure 5: AGRB SWE and albedo DA mean, control, and ensembles for the four melt seasons at the
highlighted glacier ice HRU in Figure 1.
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Figure 6: PGRB SWE and albedo DA mean, control, and ensembles for the four melt seasons at the
highlighted glacier ice HRU in Figure 1.

3.4. Albedo DA Differences Between Snow and Ice HRUs

A prolonged spring and summer snowcover over glacier ice is not the only cause of decreased streamflow
in these basins. Because streamflow at the outlet of glacierized basins is an integrated response of mainly
snow, firn, and ice melt, the melt at higher elevation snow and firn HRUs is also relevant to the overall
streamflow contribution. Figures 7 and 8 show the modelled albedo during wildfire (2018) and heatwave
(2021) conditions for snow and glacier ice HRUs in AGRB and PGRB, respectively. Figure 7 illustrates
that although AGRB DA albedo is lower for glacier ice during wildfires and heatwaves, it is higher in snow-
dominated regions. The larger albedo in AGRB snow compensates for the smaller albedo in glacier ice in
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years (e.g., 2018) when DA improved streamflow predictions. Figure 8 shows that albedos were commonly
smaller with DA in PGRB snow, but in ice, they were only persistently lower than CTRL during heatwaves.
A larger DA PGRB ice albedo explains why streamflow prediction improvements are better for this basin
since the positive bias in CTRL is decreased even further. During the 2021 heatwaves, DA could not
substantially improve streamflow predictions in either basin. However, AGRB DA was closer to observed
streamflows when compared to PGRB. This difference can be explained by the longer persistence of DA
snowcover over ice in PGRB than AGRB. DA snow albedo in PGRB was closer to CTRL, thus contributing
to an even smaller streamflow for that year (Figure 8). The results suggest that the albedo decay algorithm
was capable of simulating albedo in a heatwave, but could not predict the lower albedos due to soot from
wildfires.

AGRB Snow HRU - 2018 AGRB Snow HRU - 2021
S o S o
8§ 8
(0] (0]
2 | — pa z
<
S+ — CITRL S
T | T | | T T | T | | T
May Jun Jul Aug Sep Oct May Jun Jul Aug Sep Oct
Time [hours] Time [hours]
AGRB Ice HRU - 2018 AGRB Ice HRU - 2021
3o 3o
Z o] g o]
2 2
< B < B
N N
o o
T | T | | T T | T | | T
May Jun Jul Aug Sep Oct May Jun Jul Aug Sep Oct
Time [hours] Time [hours]

Figure 7: AGRB spring and summer DA and CTRL albedos at the snow and glacier ice HRUs highlighted
in Figure 1. The 2018 and 2021 years are shown to represent wildfire and heatwave conditions, respectively.
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Figure 8: PGRB spring and summer DA and CTRL albedos at the snow and glacier ice HRUs highlighted
in Figure 1. The 2018 and 2021 years are shown to represent wildfire and heatwave conditions, respectively.

4. Discussions
4.1. Albedo DA During Wildfire and Heatwave Conditions

The results presented in the previous sections have demonstrated that albedo DA can improve streamflow
simulations during wildfires but not during heatwaves. The streamflow improvement response to albedo DA
in the soot-feeding algae year was only considerable in PGRB. These results reveal somewhat contrasting
processes happening in different zones of these basins. Over glacier ice, DA decreased albedo considerably
for AGRB due to wildfire soot deposition, a process that was expected and confirmed in previous studies
(Aubry-Wake et al. , 2022a; Bertoncini et al. , 2022). In PGRB, the decrease in ice albedo due to DA was
not as pronounced because of prolonged spring and summer snowcover over ice. SWE is another state that
is updated proportionally to albedo. Because these states are the mean of 20 ensembles, the likelihood of all
ensembles converging in the absence of a snowpack becomes lower when several ensembles present elevated
SWE values. Figures 5 and 6 show that the SWE ensemble spread in PGRB was wider than in AGRB,
contributing to a shorter period of exposed ice in PGRB. This mechanism could have been caused by deeper
snowpacks observed in terminal sections of PGRB and more frequent spring and summer snowfall events. The
effect of prolonged snowcover when compared to control simulations in snow DA has been reported before,
usually leading to snow depletion simulations closer to observations (Smyth et al. , 2020; Alonso-Gonzdlez et
al. , 2022). It is worth noting that once the snow is depleted and firn and ice are exposed, temperature-driven
albedo decrease ceases. This mechanism should be captured by the albedo decay algorithm that uses constant
albedo values for exposed firn and ice. The latter can potentially explain why streamflow predictions were
not sensitive to albedo DA during the heatwave year.

Unlike ice, snow has a different response to albedo DA. Albedo DA has shown to be larger than modelled by
CTRL in AGRB high-elevation snow-dominated regions. The introduction of remotely sensed albedo through
DA has revealed that snow was not completely melted in the AGRB high-elevation HRU examples displayed
in Figure 7, i.e., albedo did not reach the 0.55 firn value. The low CTRL snow albedos can be a limitation of
albedo algorithms based on decay functions, such as the one used hereby, which were developed for seasonal
snowpacks at much lower elevations. A comparison of three empirical models with a full physically based
model (closer to observations) has shown that empirical decay albedo models, indeed, underestimate snow
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albedo (Gardner and Sharp, 2010). On the other hand, DA snow albedo is often below CTRL in PGRB, but
rarely reaches the firn value of 0.55 (Figure 8). This result suggests that snow-dominated PGRB surfaces
would have a lower DA albedo than CTRL, since they are more heterogeneous due to greater firn and ice
exposure than in AGRB. CTRL seems to miss processes well described at lower elevations but not at glacier
accumulation zones in both basins. This finding calls for a better representation of glaciological albedo
processes capable of accounting for the peculiarities of localized effects (Marshall and Miller, 2020).

This study tested two main assumptions by introducing remotely sensed albedo in a cold regions DA frame-
work. First, soot deposition would decrease snow and ice albedo during extreme wildfire activity, such as in
2018. This assumption was confirmed by previous studies (Aubry-Wakeet al. , 2022a; Bertoncini et al. , 2022)
and hereby for ice in AGRB and snow in PGRB. A greater albedo in the AGRB snow HRU example can
be explained by the larger elevation range observed between snow and ice regions in AGRB (Pradhananga
and Pomeroy, 2022). This larger elevation range creates a scenario in which snow-covered plateaux are at
elevations more prone to new snowfall, suppressing the effect of soot deposition over snow at a faster pace.
Rapid recovery from soot deposition over high-elevation snow in AGRB has been previously described in
Bertoncini et al. (2022). Second, heatwaves would accelerate melt and expose ice or firn unseasonally. This
process does not seem to substantially affect AGRB ice since exposure in 2021 is similar to other years. Ho-
wever, albedo is lower for snow during heatwaves when compared to wildfire years. Substantial snowmelt and
decreased albedo in glacier snow due to extended periods of above-average temperature have been reported
before in Greenland (Boxet al. , 2022) and the Austrian Alps (Koboltschnig et al. , 2009). This mechanism
suggests that heatwaves have a greater influence on high-elevation snow-covered plateaux albedo decreases
than does wildfire soot in AGRB. On the other hand, there is a larger sensitivity to wildfires than heatwaves
for PGRB snow, perhaps because of more firn and ice exposure than in AGRB. PGRB ice shows greater
albedo decrease during heatwaves due to longer ice exposure. In addition, the albedo algorithm is expected
to be more robust during heatwaves than wildfires because it considers daily mean temperatures, limiting
most albedo DA benefits to wildfire years.

4.2. Tmplications for Streamflow Prediction in a Changing Climate

Unprecedented wildfires and heatwaves are expected to increase with climate change (Jolly et al. , 2015;
Kirchmeier-Young et al. , 2019; Al-Yaari et al. , 2023; Parisien et al. , 2023) and, hence, are likely to
affect glacier contribution to streamflow. Although this is a somewhat intuitive assumption, this study has
demonstrated inter- and intra-basin peculiarities in how the effects of wildfires and heatwaves will contribute
to snow and ice melt. The findings show that wildfires and heatwaves can decrease glacier ice albedo, but the
period that ice is covered by snow is the primary governing factor controlling ice melt. Likewise, the amount
of summer precipitation falling as snowfall is another factor governing albedo dynamics in snow-dominated
regions. This mechanism creates a scenario where the elevation difference from the terminal glacier to high-
elevation snow plateaus dictates whether these basins would be affected by either wildfires or heatwaves.
For instance, in AGRB where this elevation difference was higher than in PGRB, DA generated an increase
in snow albedo. This finding alone reveals something that would not be possible using modelling alone;
remotely sensed albedos were needed in a DA modelling framework to understand this process in a virtually
inaccessible region. There lies the power of observational tools in aiding hydrological models beyond the
conditions in which they were developed.

There are many implications of remotely sensed albedo DA for streamflow predictions under climate change.
The most important one is that this study showed that even though DA was not beneficial for streamflow pre-
diction during heatwaves, it was beneficial in the overall four-year evaluation in PGRB and favourable during
wildfires and similar to CTRL in other years in AGRB. From this perspective, remotely sensed albedo DA
is recommended under unprecedented hydrological extremes imposed by climate change; however, caution
should be taken when interpreting albedo DA results during heatwaves. The latter calls for further investi-
gation into other processes that might have contributed to albedo DA degradation of streamflow predictions
under heatwaves beyond what has been discussed here. Remotely sensed albedo DA can also better inform
hydrological modelling during wildfires and heatwaves. For instance, events of decreased albedo can hap-
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pen in the future in high-elevation snow-dominated regions but be buffered subsequently by fresh snowfall,
which can only be confirmed with certainty via remotely sensed albedos since precipitation measurements
are usually taken at much lower rainfall-dominated elevations. Users of hydrological predictions can then
understand de facto whether these extreme events will affect downstream streamflows.

4.3. Uncertainty within DA Modelling Framework

The DA modelling framework has worked satisfactorily in most simulated years; however, a few factors
contributed to the uncertainty in modelling streamflow and other model states. First, although snow and
ice remotely sensed albedo estimates were satisfactory here and elsewhere (Wang et al. , 2016; Li et al. |
2018; Bertonciniet al. , 2022), there is still a 5% uncertainty (o, = 0.046) in albedo estimation. This 5%
uncertainty cannot be neglected in glacier ice albedo values. Therefore, even if modelling uncertainty is larger
than 5%, this value would be, on average, the smallest uncertainty possible of an optimal albedo estimate
for a particular assimilation date. Second, assimilation frequency can contribute to the influence of DA in
modelling albedo and other states. AGRB (68 estimates) had more than double the number of assimilation
dates of PGRB (33 estimates). The lower number of assimilation dates in PGRB could have contributed
to longer periods of snowcover over ice, since albedo correction from a new remotely sensed update would
take longer to occur. Finally, uncertainty in hydrological modelling can also affect streamflow prediction
within a DA framework. This study presented DA NSE values of 0.74 and 0.78 for AGRB and PGRB,
respectively. These NSE values are higher than the mean of maximum values (0.64) found in 20 studies that
conducted uncalibrated streamflow predictions using the CRHM model (Pomeroy et al. , 2022). Nonetheless,
these NSE values are not perfect, i.e., equal to 1, representing that there are still uncertainties in streamflow
prediction that can be attributed to model structure, forcing errors, parameter errors, algorithm deficiencies,
and uncertainty caused by the DA EnKF implementation.

5. Conclusions

This research implemented and tested a remotely sensed albedo DA framework to predict streamflow in two
highly glacierized Canadian Rockies’s basins during environmental conditions ranging from normal, wildfire,
and heatwave dominated. Glacier ice remotely sensed albedos presented satisfactory evaluation results (r =
0.96, bias = 0.026, RMSE = 0.060, and o, = 0.046) that were needed for assimilation. Albedo DA improved
streamflow predictions in the heavily wildfire-impacted year of 2018 for both basins — a KGE improvement
of 0.18 and 0.20 for AGRB and PGRB, respectively. DA in PGRB was beneficial for all years but 2021. In
the soot-feeding algae year, streamflow improvement due to albedo DA was only considerable in PGRB. DA
substantially enhanced overall four-year streamflow prediction in PGRB but just slightly in AGRB. DA’s
streamflow prediction improvements were caused by a balance between changes in albedo of high-elevation
snow and glacier ice. In AGRB, snow albedo was increased by DA due to frequent summer snowfall events
that buffered the streamflow generated from decreased glacier ice albedo in lower elevations. In PGRB,
snow albedo was decreased by DA, especially during wildfires. However, glacier ice DA albedo was only
decreased during short periods of ice exposure caused by a prolonged spring and summer snowpack. The
latter mechanism results from several ensembles generating elevated SWE values during spring and summer
in PGRB glacier ice. These findings reveal that wildfires and heatwaves are capable of decreasing glacier ice
albedo, but the resultant melt contribution to streamflow within a DA framework will depend on snowpack
albedo and SWE dynamics.

The cloud-computing remotely sensed snow and ice albedo retrieval framework developed in this study could
generate results with comparable accuracy to previous studies, while providing global reproducibility at high
spatial and temporal resolutions. Before this study, albedo in snow-dominated glacier accumulation zones
was based solely on albedo modelling developed at relatively lower elevations. This albedo representation
could not account for the rapid recovery of albedo with fresh snowfall during wildfire and heatwave seasons.
This finding was only possible utilizing high-resolution remotely sensed albedo estimates that could reach
virtually inaccessible regions. The assimilation of these remotely sensed albedo estimates into the physically
based CRHM model improved streamflow predictions for most of the analyzed years. Moreover, using albedo
DA revealed contrasting processes happening in poorly observed glacier zones that resulted in different
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streamflow responses to wildfires and heatwaves. Considering that the environmental conditions observed
during the study are expected to increase in a future of climate change, it can be advantageous to use
remotely sensed high-resolution snow and ice albedo DA continuously for better streamflow predictions in
glacierized basins during wildfires and heatwaves. This study’s findings also indicate that the response of
glacierized basin streamflow to wildfires and heatwaves is not always as expected due to the interplay of
different factors such as fresh snowfall, soot deposition, and unseasonal melt with the albedo algorithm.
Using observational tools such as DA can help narrow water managers’ uncertainty when making decisions
based on hydrological predictions under a warmer and more wildfire prone future.
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