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Abstract

Recently, antiferroelectric and antiferroelectric-like materials have regained interest for electronic devices, such as field-effect

transistors, memory, and transducers. Particularly, in micro/nano-electromechanical coupling systems, such as actuators, these

innovative materials, with their peculiar phase transition between antiferroelectric and ferroelectric phases, show promise in

offering large electro-strain, fast response, and low power consumption devices. However, compared to the numerous compu-

tational models of ferroelectric actuators, numerical modeling of antiferroelectric and antiferroelectric-like actuators remains

relatively unexplored. In this paper, we propose a phenomenological model of a uni-axial antiferroelectric and antiferroelectric-

like actuators based on their switching polarization behavior. Specifically, both the double hysteresis loop of antiferroelectric

materials and the pinched hysteresis loop of antiferroelectric-like materials can be captured by two hyperbolic tangent func-

tions. This allows us to cast a polarization-dependent strain and piezoelectric tensor into the constitutive laws. The proposed

model is then implemented into a finite element framework, in which the voltage-induced deformation can be solved using the

Newton-Raphson procedure. Numerical examples of both antiferroelectric and antiferroelectric-like actuators are illustrated

and compared with experimental data, showing our proposed model can serve as a useful tool for the design and development

of antiferroelectric and antiferroelectric-like actuators.
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Abstract
Recently, antiferroelectric and antiferroelectric-like materials have regained interest for electronic devices,
such as field-effect transistors, memory, and transducers. Particularly, in micro/nano-electromechanical
coupling systems, such as actuators, these innovative materials, with their peculiar phase transition between
antiferroelectric and ferroelectric phases, show promise in offering large electro-strain, fast response, and
low power consumption devices. However, compared to the numerous computational models of ferroelectric
actuators, numerical modeling of antiferroelectric and antiferroelectric-like actuators remains relatively
unexplored. In this paper, we propose a phenomenological model of a uni-axial antiferroelectric and
antiferroelectric-like actuators based on their switching polarization behavior. Specifically, both the double
hysteresis loop of antiferroelectric materials and the pinched hysteresis loop of antiferroelectric-like materials
can be captured by two hyperbolic tangent functions. This allows us to cast a polarization-dependent strain
and piezoelectric tensor into the constitutive laws. The proposed model is then implemented into a finite
element framework, in which the voltage-induced deformation can be solved using the Newton-Raphson
procedure. Numerical examples of both antiferroelectric and antiferroelectric-like actuators are illustrated
and compared with experimental data, showing our proposed model can serve as a useful tool for the design
and development of antiferroelectric and antiferroelectric-like actuators.

K E Y W O R D S

Phenomenological, Antiferroelectric, Antiferroelectric-like, Actuator

1 INTRODUCTION

Piezoelectric actuator has been being an essential application in microelectromechanical coupling systems (MEMS) due to
excellent coupling coefficients of piezoelectric materials such as lead zirconate titanate (PZT). Moreover, PZT also displays
ferroelectric (FE) behavior, which refers to the presence of spontaneous polarization in the absence of external electric field
and its ability to be switched under external stimuli such as electric field or mechanical stress. An analogous behavior is
observed in the anti-ferroelectric (AFE) effect, where the electromechanical coupling becomes evident as the material transitions
from an anti-ferroelectric to a ferroelectric phase. However, in anti-ferroelectric materials, often characterized with double
polarization-versus-electric field (P-E) hysteresis loop, the macroscopic net spontaneous polarization at zero external fields
is zero or negligible due to the opposite orientation of adjacent dipole moments1,2. In terms of actuator application, AFE
actuators are particularly intriguing compared to ferroelectric-based device because large induced electro-strain can be generated
from the external electric field, in which the extra strain is provided from the extrinsic volume change effect3. Moreover, the
electro-strain in AFE actuators is often experiencing abrupt generation of deformation, making them compelling for digital
on-off actuation switch4,5. It is also noteworthy to mention that AFE materials are generally more attractive in memory and
energy storage applications as it offers higher charge density and larger recoverable energy from the double P-E hysteresis
loop, as such many lead zirconate (PbZrO3 or PZ)-based materials have been the main candidates for these applications for
the past decades2. Despite of owning interesting property, PZ-based AFE materials have not been widely adopted in MEMS
industry because of the incompatibility with complementary metal oxide semiconductor (CMOS) technology and lead-containing
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feature3. Antiferroelectric behavior does not only manifest in PZ-based materials, on the other parallel body of work, Hafnium
oxdide (HfO2) and Zirconium oxide (ZrO2) have already been used in semiconductor technology as high dielectric materials
for decades until the recent discovery of ferroelectric behavior in Silicon-doped Hafinum oxide (Si:HfO2)6 and solid solution
of Hafinum Zirconium oxide (HfxZr1–xO2 or HZO)7 has re-ignited research interest in these material structures. Unlike the
perovskite material structure, e.g. PZT, ferroelectric behavior in flourite structure of HZO can be achieved by stabilizing the
orthorombic phase with dopants such as Si, Al, Zr, La, Y (see3 and references therein). Interestingly, high dopant density
can even result in a pinched P-E hysteresis loop, resembling the double loops of AFE materials8,9. However, the AFE-like
origin of such pinched loop is argued to be the result of phase transition between the non-polar tetragonal phase and the polar
orthorombic phase in contrast to the anti-parallel spontaneous polarization of two adjacent unit-cells in AFE materials. Here,
the term AFE-like is used to indicate the different origins of the double hysteresis loop as compared to PZ-based material. It
should be noted that the AFE-like behavior can also be rooted from other causes, such as space charges at the grain boundary or
defect dipole10. Nevertheless, both AFE and AFE-like behavior is of great importance, not only as an essential new candidate
for field-effect transistor1,11,3, but also for actuator, transducer and energy harvester12,13. Therefore, it is necessary to develop
robust computational model for these innovative materials, which is the motivation of this paper.

Until now, there have been various computational models for ferroelectric actuator made of PZT. In the context of continuum
mechanics, these models can be divided into two main categories. The first class of ferroelectricity modeling is based on
micro-electromechanics, in which the polarization switching in each grain is described via the discrete transformation from one
domain invariant into the other based on the energy-switching criteria for single crystalline14 and polycrystalline ferroelectric
materials15. Although the underlying physics of domain switching was successfully modeled by finite element method16,17, large
number of grains is required for accuracy, leading to very high computational cost and rendering the micro-electromechanics
approach impractical for structural analysis. On the other hand, in the second approach based on phenomenological observation,
the ferroelectric switching is characterized through a set of internal variables such as irreversible polarization and strain,
demonstrating more favorable computational effort. In this approach, the macroscopic response where the predicting hysteresis
effect of electric displacement or mechanical strain is described through fitted functions that usually derived from the choice of
free energy density within a thermodynamic consistency framework18,19,20 such that the evolution of internal variables satisfy
the second-law of thermodynamics through the introduction of dissipation potential21,22,23. In our previous work, we have also
proposed a simplified thermodynamic-consistency model for the prediction of ferroelectric micro-actuator24,25. It should be
noted that under the assumption of actuator working range, thermodynamic laws is not necessarily enforced as in the case of
Preisach operator-based modeling approach26,27,in which the irreversible polarization is represented by a Preisach-operator28 as
a nonlinear function of history of applied electric field and subsequently defined the electromechanical coupling coefficient. Due
to its practicability, Preisach-based model is more suitable for structural elements actuator such as beams and shells29,30.

Despite of its promising potential, the computational modeling of AFE or AFE-like actuators is scarce in comparison to their
FE counterpart. A noteworthy exception work based on micro-electromechanics model was proposed in31, in which the AFE to
FE phase transition is described by the phase change between quasi-cubic to tetragonal. In addition, phase-field method has
also been employed to model the microstructure evolution of ferroelectric and antiferroelectric materials, since the double loop
hysteresis can be resolved by extending higher-order terms in the Landau-Ginsburg-Devonshire energy32. Nevertheless, the
phase-field method also suffers the same computational cost inefficiency similar to the micro-electromechanics approach. Hence,
from the modeling point of view, it is necessary to develop a phenomenological model for AFE or AFE-like actuator, which is
the objective of this paper. In this work, the exclusive double hysteresis phenomenon is characterized by hyperbolic tangent
functions to describe the switching polarization, which has been successfully employed in ferroelectric field transitor33,34 in
recent years. By fitting the coefficients in the switching polarization function, completely and partially pinched hysteresis loop
can be achieved, offering the flexibility to capture both AFE and AFE-like phenomenon. Subsequently, sharing the same spirit
of Preisach-based method26,27, the double switching polarization will be treated as a dependent variable of the piezoelectric
coupling tensor as well as the irreversible strain tensor in the constitutive laws, from which the electric field-induced deformation
of AFE and AFE-like actuator can be determined from finite element method. This paper is structured as following: in Section 2,
we will briefly present the general description of electromechanical coupling governing equations with the decomposition of
total strain and polarization into reversible and irreversible components. The description of irreversible polarization will be given
in Section 2, which also introduces the nonlinearity to the boundary value problem. Section 3 will present the finite element
implementation including the linearization and discretization forms, from which nonlinear solutions can be obtained. Numerical
results of the proposed method will be demonstrated in Section 4, presenting the responses of AFE and AFE-like actuators.
Finally, some concluding remarks will be drawn in Section 5.
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F I G U R E 1 Schematic of a continuum AFE or AFE-like body.

2 THEORETICAL FORMULATION

This section will present the theoretical formulation of our proposed AFE and AFE-like actuator model. The continuum
description of piezoelectric material is presented, emphasizing on the decomposition of total mechanical strain and polarization
into reversible and irreversible components, in which irreversible polarization determines the hysteresis behavior. Subsequently,
a phenomenological model of irreversible polarization describing AFE and AFE-like response is presented. The established
constitutive relations are then cast into finite element framework from which numerical solutions of AFE and AFE-like actuator
can be obtained.

2.1 Continuum description

Let us consider a AFE or AFE-like solid Ω, bounded by the boundary ∂Ω such that ∂Ω = ∂Ωu ∪ ∂Ωφ = ∂Ωσ ∪ ∂Ωq and
∂Ωu ∩ ∂Ωσ = ∅, ∂Ωφ ∩ ∂Ωq = ∅ as shown schematically in Fig. 1. The sub-boundary domain ∂Ωu and ∂Ωφ are the portion of
boundary on which displacement and electric potential are prescribed, respectively, whereas ∂Ωσ and ∂Ωq are the boundary
subjected to mechanical traction force t = σ · n and electrical charge q = –D · n, respectively, with n denotes the unit normal
vector, σ and D are the stress tensor and electric displacement vector. In the absence of body force and body charge, the stress
and electric displacement are governed by the following equations27

∇ · σ = 0, in Ω, (1a)

∇ · D = 0, in Ω, (1b)

subjected to the boundary conditions

u = ū, on ∂Ωu , (2a)

φ = φ̄, on ∂Ωφ , (2b)

t = σ · n = t̄, on ∂Ωσ , (2c)

q = D · n = –q̄, on ∂Ωq , (2d)
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in which ∇ = ∂
∂xi

is the differential operator and the ¯(◦) denotes the prescribed variables. Besides, the kinematic variables (total)
strain ε and electric field E can be obtained from displacement and electric potential fields, respectively, as following

ε =
1
2

(∇u + u∇), (3a)

E = –∇φ, (3b)

for small deformation assumption of ceramic piezoelectric materials27. Following26 and reference therein, to describe the
hysteresis effect, it is possible to decompose the total strain and polarization into reversible and irreversible parts as follows

ε = εr + εi, (4a)

P = Pr + Pi, (4b)

where εr and Pr are reversible strain and polarization, respectively, whereas εi and Pi denote irreversible strain and polarization,
respectively. The reversible components attribute the the linear response in the constitutive relationships, meanwhile the
irreversible components represent nonlinear hysteresis behavior of the material response. As a result, the constitutive laws of the
Cauchy stress σ and electric displacement D in nonlinear piezoelectricity read27

σ = C :
(
ε – εi(Pi)) – e(Pi) · E, (5a)

D = e(Pi) :
(
ε – εi(Pi)) + κ · E + Pi, (5b)

showing the central role of the irreversible polarization Pi in material response. Particularly, by adopting the assumption of
volume preservation during domain switching event in ferroelectric material27,29, the irreversible strain εi is related to the
irreversible polarization as follows

εi =
3
2
εs ∥Pi∥

Ps

(
eP ⊗ eP – I

)
, (6)

where εs and Ps denote the saturated strain and polarization coefficients, respectively, eP is the polarization direction (in this work
the polarization is assumed to be the same as the direction of applied electric field, i.e. eP =

[
0, 0, 1

]
) and I is the second-order

identity tensor. Note that with the assumption of eP, the model is limited to uni-axial loaded actuator27. Furthermore, based on
the observation that piezoelectric effect only appears when the material is poled and disappears under the vanishing of switching
polarization, the piezoelectric tensor is also assumed to be a function of irreversible polarization as follows

e
(
Pi) =

∥Pi∥
Ps e, (7)

where e is the (linear) piezoelectric tensor. The magnitude of irreversible polarization often results in the Pi
z component, rendering

the model of a fixed polarization direction under uni-axial electric loading27. This restriction greatly simplifies the derivation of
tangent stiffness moduli as will be shown in the next sections, but for now let us present the model of irreversible polarization for
the double hysteresis characteristic of AFE and AFE-like materials.

2.2 Mathematical description of irreversible polarization

Phenomenological modeling approach assumes that material response can be represented by a mathematical model, which is
then calibrated to fit with observation. In such manner, ferroelectric polarization switching was modeled by hysteresis operators
such as the Preisach-operator35. However, the Preisach-operator is not applicable for AFE and AFE-like material response that
is characterized by double hysteresis loop. In this work, we adopt the irreversible polarization model from33,34 as follows

Pi(E) =
Ps

2

[
tanh

[
E – E2

c

2γ

]
– tanh

[
–E – E1

c

2γ

]]
, (8)

with
γ =

Ec

log
( 1+Pr /Ps

1–Pr /Ps

) , (9)
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F I G U R E 2 Examples of irreversible polarization. The saturated polarization loop for increasing and decreasing electric
field, Pi+ and Pi–, respectively. (a) Ferroelectric behavior. (b) Antiferroelectric-like behavior.

where E is the applied electric field, Pr and Ps are remanent and saturated polarization, respectively; Ec, E1
c and E2

c are the
coercive electric fields. Furthermore, the field-dependent polarization loop is separated into two branches, i.e. increasing and
decreasing electric field

Pi+(E) = Pi(E), for increasing E, (10)

Pi–(E) = –Pi(–E), for decreasing E. (11)

The above model is extended from Miller’s nonlinear capacitor model36, in which only one hyperbolic tangent function is
required to produce ferroelectric polarization switching, i.e. single hysteresis loop as shown in Fig. 2a, meanwhile the additional
hyperbolic tangent function in this work offers a possibility to capture the AFE and AFE-like behavior as shown in Fig. 2b. It
is important to note that such polarization corresponds to the fully saturated state, i.e. when the electric field is large enough
to align all dipole moments. In realistic situation, the applied electric field is not necessarily uniform or alternating between
positive and negative signals. The arbitrary electric signal can lead to unsaturated switching polarization, which displays as the
minor loop within the major hysteresis loop as shown in Fig. 2. To accommodate such scenarios for AFE and AFE-like actuator,
we adapt the strategy proposed in37, where the minor loop is represented by the rate of change of irreversible polarization as

∂Pi,minor

∂E
= Γ

∂Pi(E)
∂E

, (12)

where Pi is the saturated polarization at applied electric field E as defined in Eq. (8), Γ is a decay function given as

Γ = 1 – tanh

[√
Pi,minor – Pi

ξPs – Pi,minor

]
, (13)

with ξ = ±1 for increasing and decreasing electric field, respectively. By virtue of Eq. (13), the rate of change of the minor
loop approaches the change of the major loop when Pi,minor → Pi, hence Γ → 1. On the other hand, the rate of change of the
minor loop polarization becomes insignificant when ∥Pi,minor∥ → ∥ξPs∥. In the original work37, the minor hysteresis loop was
obtained for ferroelectric irreversible polarization as demonstrated in Fig. 2a, whereas in this current paper, we speculate the
minor hysteresis loop of AFE and AFE-like materials can be governed by the same decay function and result in the minor loops
illustrated by the dotted lines in Fig. 2b. As emphasized in37, the decay function Γ is simply a mathematical convenience to
represent the smaller rate of change of the minor polarization as compared to saturated one, hence it bears no physical meaning
as such alternative form of decay function Γ can be used to better fit with the observation.

More importantly, by tuning the AFE parameters Ec, E1
c and E2

c , various shapes of AFE and AFE-like hysteresis can be
obtained. Fig. 3 demonstrates different types of P-E loop can be obtained from Eq. (8) for different values of Ec, E1

c and E2
c . These

loops include the ’square’ and ’slanted’ double loop (Fig. 3a and 3b) that are often found in AFE PZ-based materials, as well as a
pinched hysteresis loop in AFE-like HZO-based material. Interestingly, when one of the coercive field E1

c vanishes and the other
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F I G U R E 3 Irreversible polarization model for various combinations of coercive field parameters results in (a) square double
loop; (b) slanted double loop; (c) pinched single loop and (d) single loop.

two coercive fields coincide, a single hysteresis loop of ferroelectric behavior can be also retrieved. As can seen from Fig. 3,
lower value of Ec produces a P-E loop with a more dominant AFE phase at low electric field, whereas increasing Ec can induce
the phase transition from AFE to FE at lower electric field and further increased Ec generates a resemble of pinched hysteresis
loop at zero electric field. It should be remarked that the production of AFE and AFE-like hysteresis loop is purely from the
hyperbolic tangent functions rather than physical causes as emphasized in36. Furthermore, the generated switching polarization
is aligned with the applied electric field, complementing with the uni-axial electrical loading assumption in the previous section.

To this end, with the nonlinear expression of irreversible polarization for arbitrary applied electric field by Eq. (8) and Eq. (12),
the continuum description AFE and AFE-like actuator is complete. It is of great importance to point out that while the adopted
irreversible polarization models were mainly employed to capture P-E hysteresis in previous works33,34,36,37 for nonlinear
ferroelectric and anti-ferroelectric capacitors and transistors, in our current work the irreversible polarization model is further
exploited to capture induced deformation from applied electric field. For this purpose, the irreversible polarization will be cast
into the continuum description of AFE and AFE-like solid such that the boundary value problem can be numerically solved in
finite element framework in the next section.

3 FINITE ELEMENT FORMULATION

In order to derive the finite element formulation of AFE and AFE-like actuator, let us first consider the total potential of
piezoelectric solid defined as follows38

π(ε, E) =
1
2

∫
Ω

σ :
(
ε – εi) dΩ –

1
2

∫
Ω

D · E dΩ –
∫
∂Ωσ

u · t̄ dA +
∫
∂ΩD

φω̄ dA , (14)



E 7

in which the mechanical stress σ and electric displacement D are defined in Eq. (5). Upon employing variational principle on
Eq. (14), the weak-form can be obtained as

δπ(ε, E) =
∫
Ω

δε : σ dΩ –
∫
Ω

δE · D dΩ –
∫
∂Ωσ

δu · t̄ dA +
∫
∂ΩD

δφω̄ dA = 0. (15)

Based on Eq. (5) and Eq. (8), the integrands in Eq. (15) are nonlinear, thus can be then linearized as

δπ(ε, E) + ∆δπ(ε, E) = 0, (16)

in which the linearization of the variation of the internal energy is given as

∆δπ(ε, E) =
∫
Ω

δε :
∂σ

∂ε
: ∆ε dΩ +

∫
Ω

δε :
∂σ

∂E
·∆E dΩ

–
∫
Ω

δE · ∂D
∂ε

: ∆ε dΩ –
∫
Ω

δE · ∂D
∂E

·∆E dΩ

=
∫
Ω

δε : C : ∆ε dΩ +
∫
Ω

δε : Eσ ·∆E dΩ

–
∫
Ω

δE · ED : ∆ε dΩ –
∫
Ω

δE ·K ·∆E dΩ , (17)

where the tangent elastic tensor C, the tangent piezoelectric tensors Eσ and ED are, and the tangent dielectric tensor K can be
determined from the constitutive laws Eq. (5). Specifically, the tangent elastic tensor C and the tangent piezoelectric tensor ED

can be obtained as

C = C, (18a)

ED = e
(
Pi(E)

)
, (18b)

which are the elastic tensor and the irreversible polarization-dependent linear piezoelectric tensor Eq. (7), respectively. On the
other hand, in combination with Eq. (8), the tangent piezoelectric tensor Eσ and the tangent dielectric tensor K can be obtained
by using chain rule as following

Eσ =
∂σ

∂E
= C :

∂εi

∂E
–
∂e
∂E

· E – e = C :
∂εi

∂Pi ·
∂Pi

∂E
–

∂e
∂Pi ·

∂Pi

∂E
· E – e, (19a)

K =
∂D
∂E

=
∂e
∂E

:
(
ε – εi) – e

∂εi

∂E
+ κ +

∂Pi

∂E
, (19b)

where
∂e
∂E

=
3
2

1
Ps

∂∥Pi∥
∂E

(
eP ⊗ eP – I

)
, (20)

is obtained from Eq. (7). It can be seen that the tangent moduli in Eq. (19) can be computed from the rate of change of irreversible
polarization with respect to applied electric field using Eq. (8) and Eq. (12). As mentioned in previous section, the current work
aims to simulate the uni-axial actuator, in which the applied electric field direction is aligned with the induced polarization, i.e.
Ez and Pi

z, while other components of the electric field and irreversible polarization vectors are zeros, further simplifying the
computation of tangent moduli in Eq. (19). Furthermore, it should be noted that, in contrast to thermodynamic consistent model
in ferroelectricity25 where the irreversible polarization is determined from dissipation potential, the evolution of irreversible
polarization in the current work is given explicitly from Eq. (8) and Eq. (12) as a function of electric field profile. Although this
approach does not enforce thermodynamic principle, it is still applicable for modeling actuator in working range as shown in27

where Preisach-operator is employed and solved numerically by quasi-Newton method. Similarly, in order to solve the boundary
value problem numerically, we employ finite element discretization to approximate displacement and electric potential fields, u
and φ, respectively, as well as their variations as follows

u = Nuû, δu = Nuδû, (21a)

φ = Nφφ̂, δφ = Nφδφ̂, (21b)
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where Nu and Nϕ are the matrices contains basis shape functions, û and ϕ̂ are the nodal displacement and electric potential,
respectively. Subsequently, total strain and electric field can be approximated as

ε = Buû, δε = Buδû, (22a)

E = Bφφ̂, δE = Bφδφ̂, (22b)

where Bu and Bφ are the matrices of derivative of shape functions.
Upon substituting Eq. (22) into Eq. (15), the discretization of the variation of the internal energy can be obtained as

δπh =
∫
Ω

[
δûT (Bu)Tσ – δϕ̂

T
(Bφ)TD

]
dΩ –

[∫
∂Ωσ

(Nu)T t̄ dA +
∫
∂ΩD

(Nφ)T ω̄ dA
]

= 0. (23)

Similarly, the discretization form of the linearization of variation of internal energy can be obtained by substituting Eq. (22) into
Eq. (17) as

∆δπh =
∫
Ω

δûT (Bu)TCBu∆û dΩ +
∫
Ω

δûT (Bu)TEσBφ∆φ̂ dΩ

–
∫
Ω

δφ̂T (Bφ)TEDBu∆û dΩ –
∫
Ω

δφ̂T (Bφ)TKBφ∆φ̂ dΩ . (24)

Finally, substituting Eq. (23) and Eq. (24) into Eq. (16) and employing the arbitrariness of test functions, the system of linear
equations of incremental displacement and electric potential in each Newton-Raphson step can be obtained as follows[

Kuu
t Kuϕ

t

Kϕu
t Kϕϕ

t

][
∆û
∆φ̂

]
=
[

fu

fφ

]
–
[

ru
i

rφi

]
, (25)

where the stiffness matrices and force vectors can be found in details in the Appendix. Note that as the current work focuses on
the actuating application, electric potential is imposed as the Dirichlet boundary conditions and the displacement field is updated
during Newton-Raphson procedure as

uk+1
n+1 = uk

n+1 + ∆un+1, (26)

where n and k is the time step and Newton-Raphson step, respectively, ∆un+1 is the incremental displacement solution of the
system of linear equations Eq. (25). Note that at each time step, the irreversible polarization can be explicitly computed from its
rate of change with respect to applied electric field as

Pi
n+1 = Pi

n +
∂Pi

∂E

∣∣∣∣
n

(En+1 – En), (27)

in which ∂Pi

∂Ez
is determined from Eq. (8) and Eq. (12), En+1 and En are the electric field at time step n + 1 and n, respectively.

4 NUMERICAL RESULTS

This section presents the numerical results from our proposed model for AFE and AFE-like materials. Specifically, we will
study the induced uniaxial strain in AFE materials such as niobium-doped and lanthanum-doped lead zirconate titanate stannate
(PNZST and PLZST, respectively) and compare the numerical prediction with experimental uniaxial actuation data. On the
other hand, the behavior of AFE-like material will be studied in a silicon-doped hafnium oxide nano-cantilever, in which
pinched-hysteresis P-E loop is compared with experimental result and from which numerical displacement can be estimated.

4.1 Antiferroelectric actuator

In this section, we will demonstrate the capability of the proposed method in modeling anti-ferroelectric actuator. Specifically,
the method will be employed to model the polarization and strain hysteresis loops and compare with experimental data of
uniaxial actuation for PNZST and PLZST thick films from4. While both having antiferroelectric response, the two doping
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F I G U R E 4 Schematic of PNZST and PLZST cube actuator of dimension L = 1 mm with bottom and top electrodes.
Displacement constraint is applied to allow longitudinal deformation along z-direction under applied voltage.

compositions result in different shape of polarization hysteresis loop, ’square’ transition was found in PNZST whereas ’slanted’
shape occurred with PLZST, which are generally challenging for computational modeling. Therefore, the objective of this
example is to utilize the measured polarization loop for fitting hysteresis parameters in Eq. (8), and consequently predict the
induced longitudinal strain. The desired longitudinal strain can be achieved by considering a simple geometry of a cube of
dimension 1mm consists of grounded bottom electrode on the bottom surface, whereas applying alternating voltage on the top
electrode on the top surface assuming polarization direction is in z-direction. In addition, the displacement constraint of the cube
sample is shown schematically in Fig. 4.

The anti-ferroelectric cube sample is assumed to have the same elastic properties as PZT-5H (similar to the assumption
from5) for both PNZST and PLZST, while the dielectric permittivities follow the measurement from4 and presented in Table 1.
Additionally, in order to match numerical predictions from our model with experimental results, the longitudinal piezoelectric
coefficient e33 and the hysteresis parameters Ec, E1

c , E2
c , Pr, Ps, εs are fitted and presented in Table 1.

As a result of the applied sinusoidal electric field in z-direction (as shown in Fig. 6), the induced polarization and strain
hysteresis loops are shown in Fig. 5, where good agreement can be observed between numerical and measurement results. The
proposed model is able to capture both ’square’ and ’slanted’ shape of polarization loops for both material samples. Furthermore,
the induced-strain in anti-ferroelectric materials is essentially obtained, especially the electric field corresponding to the AFE to
FE phase transition. However, the mechanical response when material undergoing FE to AFE phase transition was not well
captured as the numerical result underpredict the induced deformation. Nevertheless, produced strain for both PNZST and
PLZST are satisfactorily predicted, showing the capability of the proposed model in handling varied anti-ferroelectric behaviors.

For a closer look, we present the induced strain as a function of time step in Fig. 6. As can be seen from the insets, the
PNZST sample exhibits a more abrupt deformation than that in PLZST one from time step 12 to 17 before reaching maximum
deformation at saturated polarization at time step 25. Such difference at sudden deformation is related to their ’square’ and
’slanted’ polarization hysteresis, respectively.

4.2 Antiferroelectric-like actuator

In this next example, we will analyze the antiferroelectric-like response of an actuator. To demonstrate numerical prediction, we
consider a simple cantilever beam of silicon-doped hafnium oxide of thickness 100 nm sandwiched between two electrodes
of negligible thickness and the deposited on top of a silicon layer of thickness 500 nm as shown schematically in Fig. 7. The
elastic properties of the stack is given in Table 2 where isotropic elasticity is assumed for both hafnium oxide layer39 and
silicon substrate40. In addition, the piezoelectric and dielectric coefficients of hafnium oxide are chosen from first-principle
calculation41. Antiferroelectric-like behavior is often found in si-doped hafnium oxide9,42 where the polarization hysteresis
exhibits a pinch at low electric field, similar to the hysteresis shape shown in Fig. 3c. To mimic such behavior, the hysteresis
material parameters in Eq.(8) are chosen as, which results in a typical polarization hysteresis.
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T A B L E 1 Material properties of PNZST and PLZST for the problem depicted in Fig. 4. The elastic and dielectric material
parameters are adapted from5,4, whereas the piezoelectric and hysteresis parameters are fitted from our numerical model. Note
that the coefficients are given in terms of Voigt notation for transversely isotropic material.

PNZST PLZST

Elastic moduli 109(N/m2) Elastic moduli 109(N/m2)

C11 C12 C13 C33 C44 C11 C12 C13 C33 C44
126 84.1 84.1 126 23 126 84.1 84.1 126 23

Piezoelectric Piezoelectric

e33(C/m2) e33(C/m2)
9 2

Relative dielectric permittivity Relative dielectric permittivity

κ33 κ33
283 434

AFE parameters AFE parameters

Pr(C/m2) Ps(C/m2) εs Pr(C/m2) Ps(C/m2) εs

0.22 0.23 0 0.1 0.11 0
Ec(MV/m) E1

c (MV/m) E2
c (MV/m) Ec(MV/m) E1

c (MV/m) E2
c (MV/m)

1.8 9.3 15 3 16.5 19
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F I G U R E 5 Comparison between simulation and experiment from4. (a-b) Polarization and strain hysteresis of PNZST. (c-d)
Polarization and strain hysteresis of PLZST.
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F I G U R E 6 Uniaxial deformation of (a) PNZST and (b) PLZST sample for sinusoidal applied electric field Ez (blue curve).
Top figure shows the displacement of the top surface of the sample, meanwhile the magnitude displacement uz distribution
snapshots at time step 12, 17 and 25 (corresponding to the electric field at Ec, E1

c and Emax) shown the bottom figures.

L

W

V

F I G U R E 7 Schematic of AFE-like nano-cantilever of length L = 10µm and width W = 1µm, subjected to voltage across applied on the electrodes.
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T A B L E 2 Material properties of the multilayer micro-actuator depicted in Fig. 7. HfO2 and Si are assumed be isotropic
elastic materials39,40. The piezoelectric and dielectric permittivity of HfO2 are adopted from first principle calculation41 whereas
AFE parameters are fitted from numerical results.

HfO2 layer

Young’s modulus (109 N/m2) Poisson ratio Piezoelectric constants (C/m2)

Y ν e31 e33 e15
240 0.3 -1.1 -1.44 -0.2

Relative dielectric permittivity AFE parameters

κ11 κ33 Pr(C/m2) Ps(C/m2) Ec(MV/m) E1
c (MV/m) E2

c (MV/m)
40 40 0.2 0.22 100 70 190

Silicon layer

Young’s modulus (109 N/m2) Poisson ratio

Y ν
169 0.064
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F I G U R E 8 Polarization and displacement hysteresis loops in HfO nano-cantilever described in Fig. 7. (a) P-E hysteresis
loop, measurement polarization from42. (b) Numerical displacement hysteresis loop at the tip of the beam for different saturated
strain coefficient εs.

The AFE-like cantilever is modeled by linear hexahedral element as shown in Fig. 7, where the displacements are constrained
at x = 0, the bottom and top surfaces of the hafnium layer are subjected to voltage difference, to mimic the bottom and top
electrode electrical conditions. In order to compare the numerical results with measured data, an sinusoidal voltage of 33.53 V
is applied on the top electrode under the quasi-static assumption. As a result, the polarization and strain hysteresis loops can
be obtained and presented in Fig. 8. Fig. 8a shows a good agreement between predicted and measured electric displacement.
Additionally, the mechanical response of AFE-like actuator is also obtained, however due to lacking of experimental data, we
choose to study the influence of saturated strain coefficient εs, which was fitted to zero in the case of AFE actuator in previous
example. For the AFE-like actuator, numerical displacement at the tip of the beam when εs = 0 and εs = 0.002 is presented in
Fig. 8b, showing a great influence of εs on the induced deformation of AFE-like actuator where maximum displacement is 75 nm
and 200 nm, respectively.

Furthermore, the mechanical displacement of the AFE-like actuator under non-uniform applied electric field is investigated.
Specifically, the top electrode of the cantilever beam is subjected to bipolar and unipolar applied electric field with the maximum
voltage magnitude of 33.53 V as shown in Fig. 9a and Fig. 9b, respectively. While the first triangular waveforms, corresponding to
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maximum applied voltage, result in the saturated major hysteresis loop similar to previous uniform applied field. The decreasing
electric field magnitude induces minor hysteresis loops that are confined in the major loops as shown in Figs. 9c and 9d for
electric displacement Dz. Consequently, the minor loops of polarization hysteresis lead to the minor loops of the beam tip
displacement shown in Figs. 9e and 9f, demonstrating the capability of our proposed model for capturing mechanical response
of AFE-like actuator for arbitrary input signal.
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F I G U R E 9 Minor hysteresis loops modeling. (a,b) Decreasing bipolar and unipolar electric field. (c,d) Minor electric
displacement loops under bipolar and unipolar electric field. (e,f) Minor displacement loops (at the beam tip) under bipolar and
unipolar electric field.
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5 CONCLUSIONS

In this paper, we have proposed a computational model of antiferroelectric-like actuator. The core ingredient of the proposed
model is the expression of irreversible polarization through two hyperbolic tangent functions which involves AFE-FE and
FE-AFE switching coercive fields. Furthermore, the piezoelectric coupling tensor is assumed to be dependent on the switching
polarization, which can reflect the appearance of electromechanical coupling at the phase transition of AFE to FE. In addition,
the remanent strain is assumed to be directly related to the switching polarization. Finally, the antiferroelectric-like model is
implemented into FEM framework in which the nonlinear function is solved by Newton-Raphson procedure. The proposed
model can capture various behaviors of both AFE and AFE-like actuators, including the ’square’ double loop in pure AFE-type,
slanted loop in relaxor-type and pinched-type hysteresis in which numerical results of electric displacement shows excellent
agreement with measurement data. Furthermore, the induced-strain are also validated with experimental results of AFE material.
The proposed method was also employed to model AFE-like actuator, in which both saturated and minor polarization and
displacement hysteresis loops are captured. However, the mechanical response of AFE-like material requires further experimental
investigation for validation. Moreover, although the proposed method assumes explicit expression for the irreversible polarization
that might not satisfy thermodynamic law, it can act as a guidance for future work where thermodynamic consistent model will
be devised.
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APPENDIX

FINITE ELEMENT APPROXIMATION
In this Appendix, the stiffness matrices and force vectors in Section 3 are given in the following

Kuu
t =

∫
Ω

(Bu)TCBu dΩ , (1a)

Kuϕ
t =

∫
Ω

(Bu)TEσBϕ dΩ , (1b)

Kϕu
t =

∫
Ω

(
Bϕ

)TEDBu dΩ , (1c)

Kϕϕ
t =

∫
Ω

(
Bϕ

)TKBϕ dΩ , (1d)

ru
i =

∫
Ω

(Bu)Tσ dΩ , (1e)

rϕi =
∫
Ω

(
Bϕ

)T
D dΩ , (1f)

fu =
∫
∂Ω

(Nu)T t̄ d∂Ω , (1g)

fϕ =
∫
∂Ω

(
Nϕ

)T
ω̄ d∂Ω , (1h)

where the approximating matrices for the displacement and electric potential are

Nu =
[
N1 N2 · · · N8

]
, (2a)

Nφ =
[
N1 N2 · · · N8

]
, (2b)
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in which Ni =

Ni 0 0
0 Ni 0
0 0 Ni

, with Ni are the linear shape functions of hexahedral element. Moreover, by using the kinematic

relationships (3), the matrices of derivatives of shape functions Bu and Bφ are given as

Bu =
[
Bu,1 Bu,2 · · · Bu,8

]
, (3a)

Bφ =
[
Bφ,1 Bφ,2 · · · Bφ,8

]
, (3b)

where

Bu,i =



Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

0 Ni,z Ni,y

Ni,z 0 Ni,x

Ni,y Ni,x 0


, Bφ,i =

–Ni,x 0 0
0 –Ni,y 0
0 0 –Ni,z

, (4)

where Ni,x, Ni,y, Ni,z are the spatial derivative of the shape functions with respect to x, y, z directions, respectively.
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