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Abstract

This article is focused on the design of an LMI-based observer for the class of disturbance-affected nonlinear systems. Two

novel LMI conditions are derived by deploying a more general form of the matrix multiplier compared to the one used in the

literature. The first method is based on the use of the H [?] criterion, while the second one utilises an ISS notion. Both LMIs

are developed by employing the reformulated Lipschitz property, a well-known LPV approach and the new variant of Young

inequality. The key element of the proposed LMI conditions is the incorporation of the novel matrix multipliers which allow us

to include some additional decision variables as compared to the methods proposed in the literature. These additional variables

add extra degrees of freedom, thus enhancing the LMI feasibility. Furthermore, the effectiveness of the proposed methodologies

is showcased through a numerical example.
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Summary

This article is focused on the design of an LMI-based observer for the class of
disturbance-affected nonlinear systems. Two novel LMI conditions are derived by
deploying a more general form of the matrix multiplier compared to the one used
in the literature. The first method is based on the use of the ∞ criterion, while
the second one utilises an ISS notion. Both LMIs are developed by employing the
reformulated Lipschitz property, a well-known LPV approach and the new variant
of Young inequality. The key element of the proposed LMI conditions is the incor-
poration of the novel matrix multipliers which allow us to include some additional
decision variables as compared to the methods proposed in the literature. These ad-
ditional variables add extra degrees of freedom, thus enhancing the LMI feasibility.
Furthermore, the effectiveness of the proposed methodologies is showcased through
a numerical example.
KEYWORDS:
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1 INTRODUCTION

Over the past few decades, the topic of state estimation for dynamical systems has emerged as a pivotal research interest in control
system engineering. This is because grasping real-time information about the state of the system is crucial in various applications.
Several operations in the control system domain, for instance, controlling systems, monitoring systems, and decision-making,
are executed using such real-time data. One of the techniques used to collect real-time measurements is to deploy sensors
on physical systems. However, the quantity and quality of sensors are frequently restricted in practical scenarios due to cost
and physical constraints. Hence, observers become an indispensable components in modern-day applications assisting in the
collection of current knowledge of systems, for example, autonomous vehicle tracking1, the state-of-charge estimation of LI-ion
battery model2, cardiovascular application3, and so on.

Observer design for linear systems has been extensively studied and proven to be quite effective. In the paper4, the proposed
Luenberger observer was the first state estimation method established for linear systems. Compared to linear systems, the de-
velopment of nonlinear observers is still an arduous problem. As a consequence, an abundant amount of research has been
carried out in this domain, and various approaches have been proposed. The authors of the articles5,6 developed the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF) techniques for the state estimation of nonlinear systems. However,
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the sliding-mode observer and the high-gain observer are deployed for the same task in the papers7,8. Recently, linear ma-
trix inequality (LMI)-based methodologies have earned a substantial amount of interest, and several results are outlined in the
publications1,9,10.

Among these approaches, few LMI methods are dependent on the S-Procedure lemma11, the Riccati equations12, and the
Young inequality13. Though each technique provides a conservative LMI condition, there is the possibility for enhancement.
The authors of the articles9,14 utilised the ∞ criterion in the observer design for the estimation of the state in the presence of
noise. An alternative for the ∞ criterion is the use of the input-to-state stability (ISS) property. An ISS notion was introduced in
the paper15. Further, the authors of the letter16 had proposed an ISS-Lyapunov function to use the ISS property for the stability
of systems. An observer based on the ISS-Lyapunov function was proposed in the publications17,18,19. All these cited papers
provide efficient state estimation. Along with this, an ISS-Lyapunov function aids in obtaining an LMI condition.

The objective of the proposed article is to design a nonlinear observer for disturbance-affected systems that reconstructs the
states of systems with better noise compensation. In order to achieve the aforementioned goal, two novel LMI conditions are
formulated to compute the observer gain by utilising the ∞ criterion and the ISS condition. These established LMIs are derived
by incorporating the well-known linear parameter varying (LPV) approach, a variant of Young inequality, and the reformulated
Lipschitz property. The primary component of the novel LMIs is the newly defined matrix multipliers. The integration of this
matrix multiplier with the LMI framework is inspired by the work presented in the paper9,20,21. The deployment of such a matrix
multiplier adds some additional numbers of decision variables inside LMIs and enhances the LMI feasibility.

The remainder of this article is structured in the following manner: Section 2 encompasses the notations and the recapitula-
tion of some preliminaries and background results related to the LMI-based observer design. The articulation of the problem
statement is illustrated in Section 3. Further, the development of ∞ criterion-based LMI condition is showcased in Section 4.
Section 5 includes the LMI synthesis using the notion of ISS. A few comments on the proposed matrix multipliers-based LMIs
are discussed in Section 6. Later on, the efficiency of the derived LMI conditions, and the performance of the observer are
emphasised in Section 7 through a numerical example. In last, Section 8 comprises some conclusions and future perspectives.

2 NOMENCLATURE AND SOME BACKGROUND RESULTS

2.1 Glossary
Throughout the article, the subsequent notations are employed:

• ‖𝑒‖ and ‖𝑒‖2
denote the euclidean and the 2 norms of a vector 𝑒, respectively. Its initial value at 𝑡 = 0 is represented

by 𝑒0.
• We define a vector of the canonical basis of ℝ𝑠 in the following manner:

𝑒𝑠(𝑖) = (0,… , 0,

𝑖th
⏞⏞⏞

1 , 0,… , 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠 components

)⊤ ∈ ℝ𝑠, 𝑠 ≥ 1.

• 𝐈 and 𝐎 indicate an identity matrix and a null matrix, respectively.
• The transpose of matrix 𝐴 is symbolised by 𝐴⊤.
• 𝐴 ∈ 𝐒𝑛 implies that a matrix 𝐴 ∈ ℝ𝑛×𝑛 is symmetric. The terms 𝜆min(𝐴) and 𝜆max(𝐴) signify the minimum and maximum

eigenvalues of the same matrix 𝐴, respectively.
• Within a symmetric matrix, repeated blocks are represented by using the symbol (⋆).
• For any matrix 𝐴 ∈ ℝ𝑛×𝑛, 𝐴 > 0 (𝐴 < 0) signifies that 𝐴 is a positive definite matrix (a negative definite matrix).

Similarly, a positive semi-definite matrix (a negative semi-definite matrix) is denoted by 𝐴 ≥ 0 (𝐴 ≤ 0).
• 𝐴 = block-diag(𝐴1,… , 𝐴𝑛) is a block-diagonal matrix having elements 𝐴1,… , 𝐴𝑛 in the diagonal.
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2.2 Preliminaries
The objective of this segment is to provide an overview of the mathematical tools and background results that will be required
in the elaboration of the main outcomes.
Definition 1 (Input-to-State stability16). Let us consider a generalised class of nonlinear systems:

𝜁̇ = 𝑓 (𝜁, 𝑢), (1)
where 𝜁 ∈ ℝ𝑛 and 𝑢 ∈ ℝ𝑠 denote the states and input of the systems, respectively. The function 𝑓 ∶ ℝ𝑛×ℝ𝑠 → ℝ𝑛 is piece-wise
continuous in 𝑡, and it is assumed to be locally Lipschitz in 𝜁 and 𝑢. The system (1) is input-to-state stable if there exist a class
 function 𝛽 and a class  function 𝛾 such that for any initial state 𝜁0, and any bounded input 𝑢(𝑡), solution 𝜁 (𝑡) exists for all
𝑡 ≥ 0 and satisfies:

‖𝜁 (𝑡)‖ ≤ 𝛽(‖𝜁0‖, 𝑡) + 𝛾(‖𝑢‖∞),∀𝑡 ≥ 0. (2)
Definition 2 (ISS-Lyapunov function16). A smooth function 𝑉 (𝜁 ) ∶ ℝ𝑛 → ℝ is an ISS-Lyapunov function for the system (1) if
and only if there exist class ∞ functions 𝛼𝑖 ∈ (1 ≤ 𝑖 ≤ 4), such that it fulfills

𝛼1(‖𝜂‖) ≤ 𝑉 (𝜂) ≤ 𝛼2(‖𝜂‖) (3)
𝑉̇ (𝜂, 𝑢) ≤ −𝛼3(‖𝜂‖) + 𝛼4(‖𝑢‖), (4)

for any 𝜂 ∈ ℝ𝑛 and 𝑢 ∈ ℝ𝑠.
Definition 3. Let us consider two vectors

𝐴 =
(

𝑎1 𝑎2 … 𝑎𝑛
)⊤ , and 𝐵 =

(

𝑏1 𝑏2 … 𝑏𝑛
)⊤ .

Then one can define an auxiliary vector 𝐴𝐵𝑖 ∈ ℝ𝑛,∀𝑖 ∈ {0,… , 𝑛} corresponding to 𝐴 and 𝐵 in the following manner:

𝐴𝐵𝑖 =

⎧

⎪

⎨

⎪

⎩

(

𝑏1 𝑏2 … 𝑏𝑖 𝑎𝑖+1 … 𝑎𝑛
)⊤
, for 𝑖 = 1,… , 𝑛

𝐴, for 𝑖 = 0.
(5)

Lemma 1 (10). Let 𝜒 ∶ ℝ𝑛 → ℝ𝑛 be a nonlinear function. Then, the ensuing two statements are equivalent:
i) The function 𝜒 satisfies the subsequent inequality:

‖𝜒(𝑋) − 𝜒(𝑌 )‖ ≤ 𝜒𝜒‖𝑋 − 𝑌 ‖, ∀𝑋, 𝑌 ∈ ℝ𝑛, (6)
i.e., it is globally Lipschitz.

ii) For all, 𝑖, 𝑗 = 1,… , 𝑛, there exist functions 𝜒𝑖𝑗 ∶ ℝ𝑛 ×ℝ𝑛 → ℝ, and constants 𝜒𝑖𝑗min
and 𝜒𝑖𝑗max

such that ∀𝑋, 𝑌 ∈ ℝ𝑛,

𝜒(𝑋) − 𝜒(𝑌 ) =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝜒𝑖𝑗𝑖𝑗(𝑋 − 𝑌 ), (7)

where 𝑖𝑗 = 𝑒𝑛(𝑖)𝑒⊤𝑛 (𝑗), and 𝜒𝑖𝑗 ≜ 𝜒𝑖𝑗(𝑋𝑌𝑗−1 , 𝑋𝑌𝑗 ). The functions 𝜒𝑖𝑗(⋅) are globally bounded as follows:
𝜒𝑖𝑗min

≤ 𝜒𝑖𝑗 ≤ 𝜒𝑖𝑗max
. (8)

Lemma 2. For any two vectors 𝑋, 𝑌 ∈ ℝ𝑛 and a matrix 𝑍 > 0 ∈ 𝐒𝑛, the following matrix inequality holds:
𝑋⊤𝑌 + 𝑌 ⊤𝑋 ≤ 𝑋⊤𝑍−1𝑋 + 𝑌 ⊤𝑍𝑌 . (9)

In the paper9, the authors had introduced a new variant of (9), which is given by
𝑋⊤𝑌 + 𝑌 ⊤𝑋 ≤ 1

2
(𝑋 +𝑍𝑌 )⊤𝑍−1(𝑋 +𝑍𝑌 ). (10)

In this article, both of the aforementioned Young inequalities (9) and (10) are employed to prevent bilinear multiplications
between some unknown decision variables, and to tackle the nonlinearities in the Lyapunov analysis, respectively.

In the sequel, the main contributions of this article are presented.
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3 ARTICULATING PROBLEM STATEMENT

Let us consider the subsequent equations which represent a class of disturbance-affected nonlinear systems with nonlinear
outputs:

𝑥̇ = 𝐴𝑥 + 𝐺𝑓 (𝑥) + 𝐵𝑢 + 𝐸1𝜔1,
𝑦 = 𝐶𝑥 + 𝐹𝑔(𝑥) +𝐷1𝜔2,

(11)
where

i) 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ ℝ𝑝 denote the states and the measurements of the systems, respectively. The input of the system is described
by 𝑢 ∈ ℝ𝑠.

ii) 𝜔1 ∈ ℝ𝑞1 and 𝜔2 ∈ ℝ𝑞2 are the exogenous signals such as noise or disturbances affecting the system dynamics and outputs,
respectively.

iii) 𝐴,𝐺,𝐵, 𝐶, 𝐹 , 𝐸1 and 𝐷1 are known constant matrices of appropriate dimensions.
Since there are no specific constraints imposed on the dimension of the disturbances 𝜔1 and 𝜔2, or on the structure of the

matrices 𝐸1 and 𝐷1, the model (11) can be reformulated as:
𝑥̇ = 𝐴𝑥 + 𝐺𝑓 (𝑥) + 𝐵𝑢 + 𝐸𝜔,
𝑦 = 𝐶𝑥 + 𝐹𝑔(𝑥) +𝐷𝜔,

(12)

where 𝐸 =
[

𝐸1 𝐎
]

, 𝐷 =
[

𝐎 𝐷1
]

, and 𝜔 =
[

𝜔1
𝜔2

]

.

The system (11) depicts a more generalized form and is often encountered in practical scenarios. Whereas, the form (12)
facilitates the simplification of the observer design.

The functions 𝑓 (⋅) ∶ ℝ𝑛 → ℝ𝑚 and 𝑔(⋅) ∶ ℝ𝑛 → ℝ𝑟 are assumed to be globally Lipschitz. The detailed form of 𝑓 (⋅) and 𝑔(⋅)
are illustrated as follows:

𝑓 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1(𝐻1𝑥)
⋮

𝑓𝑖(

𝜈𝑖
⏞⏞⏞
𝐻𝑖𝑥 )
⋮

𝑓𝑚(𝐻𝑚𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (13)

and

𝑔(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔1(𝐺1𝑥)
⋮

𝑔𝑖(

𝜃𝑖
⏞⏞⏞
𝐺𝑖𝑥 )
⋮

𝑔𝑟(𝐺𝑟𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

where 𝐻𝑖 ∈ ℝ𝑛̄×𝑛 ∀𝑖 ∈ {1,… , 𝑚} and 𝐺𝑖 ∈ ℝ𝑝̄×𝑛 ∀𝑖 ∈ {1,… , 𝑟}.
The ensuing observer form is employed for the state estimation purpose:

̇̂𝑥 = 𝐴𝑥̂ + 𝐺𝑓 (𝑥̂) + 𝐵𝑢 + 𝐿(𝑦 − 𝑦̂),
𝑦̂ = 𝐶𝑥̂ + 𝐹𝑔(𝑥̂).

(15)
where 𝑥̂ is the estimated state, and 𝐿 ∈ ℝ𝑛×𝑝 is the observer gain matrix.

The estimation error of the observer (15) is defined as 𝑥̃ = 𝑥− 𝑥̂. From (12) and (15), the subsequent estimation error dynamic
is obtained:

̇̃𝑥 = 𝔸𝑥̃ + 𝐺𝑓 (𝑥, 𝑥̂) − 𝐿𝐹 𝑔̃(𝑥, 𝑥̂) + 𝔼𝜔, (16)
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where
𝔸 = 𝐴 − 𝐿𝐶, (17)
𝔼 = 𝐸 − 𝐿𝐷, (18)

𝑓 (𝑥, 𝑥̂) = 𝑓 (𝑥) − 𝑓 (𝑥̂) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1(𝜈1)
𝑓2(𝜈2)
⋮

𝑓𝑚(𝜈𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1(𝜈̂1)
𝑓2(𝜈̂2)
⋮

𝑓𝑚(𝜈̂𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

, (19)

𝑔̃(𝑥, 𝑥̂) = 𝑔(𝑥) − 𝑔(𝑥̂) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑔1(𝜃1)
𝑔2(𝜃2)
⋮

𝑔𝑟(𝜃𝑟)

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎣

𝑔1(𝜃̂1)
𝑔2(𝜃̂2)
⋮

𝑔𝑟(𝜃̂𝑟)

⎤

⎥

⎥

⎥

⎥

⎦

. (20)

Since 𝑓 (⋅) and 𝑔(⋅) are globally Lipschitz, then through utilisation of Lemma 1, there exist functions 𝑓𝑖𝑗 ∶ ℝ𝑛̄ × ℝ𝑛̄ → ℝ,
𝑔𝑖𝑗 ∶ ℝ𝑝̄ ×ℝ𝑝̄ → ℝ, and known constants 𝑓𝑎𝑖𝑗 , 𝑓𝑏𝑖𝑗 , 𝑔𝑎𝑖𝑗 and 𝑔𝑏𝑖𝑗 , which fulfill:

𝑓 (𝑥, 𝑥̂) =
𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑖𝑗𝑖𝑗𝐻𝑖𝑥̃, (21)

𝑔̃(𝑥, 𝑥̂) =
𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔𝑖𝑗𝑖𝑗𝐺𝑖𝑥̃, (22)

where 𝑖𝑗 = 𝑒𝑛(𝑖)𝑒⊤𝑛 (𝑗), 𝑖𝑗 = 𝑒𝑛(𝑖)𝑒⊤𝑛 (𝑗), 𝑓𝑖𝑗 ≜ 𝑓𝑖𝑗(𝜈𝑖𝜈̂𝑖,𝑗−1 , 𝜈𝑖𝜈̂𝑖,𝑗 ) and 𝑔𝑖𝑗 ≜ 𝑔𝑖𝑗(𝜃
𝜃̂𝑖,𝑗−1
𝑖 , 𝜃𝜃̂𝑖,𝑗𝑖 ).

The functions 𝑓𝑖𝑗 , 𝑔𝑖𝑗 satisfy:
𝑓𝑎𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ 𝑓𝑏𝑖𝑗 ; 𝑔𝑎𝑖𝑗 ≤ 𝑔𝑖𝑗 ≤ 𝑔𝑏𝑖𝑗 .

Without loss of generality, we presume that 𝑓𝑎𝑖𝑗 = 0 and 𝑔𝑎𝑖𝑗 = 0, that is,
0 ≤ 𝑓𝑖𝑗 ≤ 𝑓𝑏𝑖𝑗 , (23)
0 ≤ 𝑔𝑖𝑗 ≤ 𝑔𝑏𝑖𝑗 . (24)

One can refer to the paper9 for additional information about this.
By employing (21) and (22), the error dynamic (16) is reformulated as follows:

̇̃𝑥 = 𝔸𝑥̃ +
𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑖𝑗𝐺𝑖𝑗𝐻𝑖𝑥̃ −

𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔𝑖𝑗𝐿𝐹𝑖𝑗𝐺𝑖𝑥̃ + 𝔼𝜔. (25)

Remark 1. In various practical applications, it is possible to have 𝑓𝑎𝑖𝑗 , 𝑔𝑎𝑖𝑗 ≠ 0. In such cases, (25) is rewritten as

̇̃𝑥 =
(

𝔸 +
𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑎𝑖𝑗𝐺𝑖𝑗𝐻𝑖 −

𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔𝑎𝑖𝑗𝐿𝐹𝑖𝑗𝐺𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
̃

)

𝑥̃ +
𝑚,𝑛̄
∑

𝑖,𝑗=1
(𝑓𝑖𝑗 − 𝑓𝑎𝑖𝑗 )
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑓𝑖𝑗

𝐺𝑖𝑗𝐻𝑖𝑥̃ −
𝑟,𝑝̄
∑

𝑖,𝑗=1
(𝑔𝑖𝑗 − 𝑔𝑎𝑖𝑗 )
⏟⏞⏞⏟⏞⏞⏟

𝑔̃𝑖𝑗

𝐿𝐹𝑖𝑗𝐺𝑖𝑥̃ + 𝔼𝜔.

It yields:
̇̃𝑥 = ̃𝑥̃ +

𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑖𝑗𝐺𝑖𝑗𝐻𝑖𝑥̃ −

𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔̃𝑖𝑗𝐿𝐹𝑖𝑗𝐺𝑖𝑥̃ + 𝔼𝜔. (26)

For the error dynamic (26), the functions 𝑓𝑖𝑗 and 𝑔̃𝑖𝑗 satisfy (23) and (24), respectively. Moreover, both forms, i.e., (25) and (26)
are analogous.

The objective of this letter is to develop new LMI conditions that compute the observer gain 𝐿, such that
1) When 𝜔 = 0, the estimation error dynamic (25) is converging towards zero at 𝑡→ ∞.
2) When 𝜔 ≠ 0, the estimation error dynamic (25) converges asymptotically with maximum noise attenuation at 𝑡→ ∞.
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In the literature, numerous LMI-based methodologies have been established for tackling the aforementioned problem. For in-
stance, one can refer to the articles14,9,10. Each of these approaches provides an improved LMI condition through the utilisation
of different mathematical tools. Despite advances in this area of LMI relaxations, the resulting LMIs remain conservative, so
there is a potential for further enhancements. In the subsequent sections, two novel LMIs will be proposed by employing a newly
defined matrix multiplier.

4 THE SYNTHESIS OF A ROBUST CIRCLE-CRITERION BASED LMI CONDITION

This section is dedicated to the development of the new LMI condition. In order to mitigate the impact of external dis-
turbances/noise 𝜔 on the estimated states, the ∞ criterion is commonly used in the control system domain (Refer to the
papers9,14,22), and it is illustrated as

‖𝑥̃‖𝑛2 ≤
√

𝜇‖𝜔‖2𝑞2
+ 𝜈‖𝑥̃0‖2, (27)

where 𝜇 > 0. The term √

𝜇 indicates the disturbance attenuation level, and 𝜈 > 0 is to be estimated. The condition stated in the
criterion (27) ensures the asymptotic stability of the error dynamic (25) at 𝑡→ ∞ along with optimal disturbance compensation.

In order to analyse the ∞ stability of the error dynamic (25), let us consider the following quadratic Lyapunov function:
𝑉 (𝑥̃) = 𝑥̃⊤𝑃 𝑥̃, where 𝑃 > 0 ∈ 𝐒𝑛. (28)

The error dynamic (25) fulfills the ∞ criterion (27) if it admits a Lyapunov function (28) such that
 ≜ 𝑉̇ (𝑥̃) + ‖𝑥̃‖2 − 𝜇‖𝜔‖2 ≤ 0. (29)

Remark 2. If the inequality (29) is true, then one can obtain:
𝑡

∫
0

𝑉̇ (𝑥̃, 𝜏) + ‖𝑥̃(𝜏)‖2 − 𝜇‖𝜔(𝜏)‖2 ≤ 0 (30)

Since ∀𝑡 ≥ 0 𝑉 (𝑥̃(𝑡)) ≥ 0, the following inequality is derived:
−𝑉 (𝑥̃0) + ‖𝑥̃‖2𝑛2 − 𝜇‖𝜔‖

2
𝑞2

≤ 0 when 𝑡→ ∞. (31)
It leads to

‖𝑥̃‖2𝑛2 ≤ 𝜇‖𝜔‖2𝑞2
+ 𝑉 (𝑥̃0). (32)

Additionally, we have 𝑉 (𝑥̃0) ≤ 𝜆max(𝑃 )‖𝑥̃0‖2, and it yields:
‖𝑥̃‖2𝑛2 ≤ 𝜇‖𝜔‖2𝑞2

+ 𝜆max(𝑃 )‖𝑥̃0‖2. (33)
Inequality (33) is equivalent to (27) if we consider 𝜈 = 𝜆max(𝑃 ) > 0. Hence, the error dynamic (25) satisfies the∞ criterion (27)
if it possesses a Lyapunov function (28) which fulfills (29).

Further, 𝑉̇ (𝑥̃) is calculated along the trajectories of (25), and illustrated as follows:

𝑉̇ (𝑥̃) = 𝑥̃⊤(𝔸⊤𝑃 + 𝑃𝔸)𝑥̃ + 𝑥̃⊤
[( 𝑚,𝑛̄

∑

𝑖,𝑗=1
𝑓𝑖𝑗𝑃𝐺𝑖𝑗𝐻𝑖

)

+

( 𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑖𝑗𝑃𝐺𝑖𝑗𝐻𝑖

)⊤]

𝑥̃

− 𝑥̃⊤
[( 𝑟,𝑝̄

∑

𝑖,𝑗=1
𝑔𝑖𝑗𝑃𝐿𝐹𝑖𝑗𝐺𝑖

)

+

( 𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔𝑖𝑗𝑃𝐿𝐹𝑖𝑗𝐺𝑖

)⊤]

𝑥̃ + 𝑥̃⊤(𝑃𝔼)𝜔 + 𝜔⊤(𝔼⊤𝑃 )𝑥̃.

(34)

From (29) and (34), we get:

 =
[

𝑥̃
𝜔

]⊤ [𝐴⊤𝑃 + 𝑃𝐴 − 𝑃𝐿𝐶 − 𝐶⊤𝐿⊤𝑃 + 𝐈𝑛 𝑃𝐸 − 𝑃𝐿𝐷
(⋆) −𝜇𝐈𝑞

] [

𝑥̃
𝜔

]

+
[

𝑥̃
𝜔

]⊤ [ 𝑚,𝑛̄
∑

𝑖,𝑗=1

([

(𝑃𝐺𝑖𝑗)
𝐎

]

[

𝑓𝑖𝑗𝐻𝑖 𝐎
]

+
[

𝑓𝑖𝑗𝐻𝑖 𝐎
]⊤

[

(𝑃𝐺𝑖𝑗)
𝐎

]⊤)][

𝑥̃
𝜔

]

+
[

𝑥̃
𝜔

]⊤ [ 𝑟,𝑝̄
∑

𝑖,𝑗=1

([

(−𝑃𝐿𝐹𝑖𝑗)
𝐎

]

[

𝑔𝑖𝑗𝐺𝑖 𝐎
]

+
[

𝑔𝑖𝑗𝐺𝑖 𝐎
]⊤

[

(−𝑃𝐿𝐹𝑖𝑗)
𝐎

]⊤)][

𝑥̃
𝜔

]

.

(35)



Shivaraj Mohite ET AL 7

Now, the necessary condition to obtain  ≤ 0 is established as follows:
𝐿 + ℕ1 + ℕ2 ≤ 0, (36)

where
𝐿 =

[

𝐴⊤𝑃 + 𝑃𝐴 − 𝑅⊤𝐶 − 𝐶⊤𝑅 + 𝐈𝑛 𝑃𝐸 − 𝑃𝐿𝐷
(⋆) −𝜇𝐈𝑞

]

, (37)

ℕ1 =
𝑚,𝑛̄
∑

𝑖,𝑗=1

([

(𝑃𝐺𝑖𝑗)
𝐎

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑈⊤
𝑖𝑗

𝑓𝑖𝑗

ℍ𝑖
⏞⏞⏞
[

𝐻𝑖 𝐎
]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑉𝑖𝑗

+𝑉 ⊤
𝑖𝑗 𝑈𝑖𝑗

)

, (38)

ℕ2 =
𝑟,𝑝̄
∑

𝑖,𝑗=1

([

(−𝑅⊤𝐹𝑖𝑗)
𝐎

]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑀⊤

𝑖𝑗

𝑔𝑖𝑗

𝔾𝑖
⏞⏞⏞
[

𝐺𝑖 𝐎
]

⏟⏞⏞⏟⏞⏞⏟
𝑁𝑖𝑗

+𝑁⊤
𝑖𝑗𝑀𝑖𝑗

)

, (39)

and 𝑅⊤ = 𝑃𝐿.
To improve the readability, the subsequent notations are introduced for the further part of this section:

𝑈 =
[

𝑈⊤
11 … 𝑈⊤

1𝑛̄ … 𝑈⊤
𝑚1 … 𝑈⊤

𝑚𝑛̄

]⊤ , (42)
𝑉 =

[

𝑉 ⊤
11 … 𝑉 ⊤

1𝑛̄ … 𝑉 ⊤
𝑚1 … 𝑉 ⊤

𝑚𝑛̄

]⊤ , (43)
𝑀 =

[

𝑀⊤
11 … 𝑀⊤

1𝑝̄ … 𝑀⊤
𝑟1 … 𝑀⊤

𝑟𝑝̄

]⊤
, (44)

𝑁 =
[

𝑁⊤
11 … 𝑁⊤

1𝑝̄ … 𝑁⊤
𝑟1 … 𝑁⊤

𝑟𝑝̄

]⊤
, (45)

where 𝑈𝑖𝑗 , 𝑉𝑖𝑗 , 𝑀𝑖𝑗 and 𝑁𝑖𝑗 are defined in (38) and (39).
Further, 𝑉 and 𝑁 can be expressed as

𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉11
𝑉12
⋮
𝑉1𝑛̄
⋮
𝑉𝑚1
⋮
𝑉𝑚𝑛̄

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℍ1 𝐎 … 𝐎 … 𝐎 … 𝐎
⋆ ℍ1 … 𝐎 … 𝐎 … 𝐎
⋆ ⋆ ⋱ 𝐎 … 𝐎 … 𝐎
⋆ ⋆ ⋆ ℍ1 … 𝐎 … 𝐎
⋆ ⋆ ⋆ ⋆ ⋱ 𝐎 … 𝐎
⋆ ⋆ ⋆ ⋆ ⋆ ℍ𝑚 … 𝐎
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋱ 𝐎
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ℍ𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ℍ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓11𝐈
𝑓12𝐈
⋮
𝑓1𝑛̄𝐈
⋮

𝑓𝑚1𝐈
⋮

𝑓𝑚𝑛̄𝐈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
Φ

= ℍΦ, (46)

𝑁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁11
𝑁12
⋮
𝑁1𝑝̄
⋮
𝑁𝑟1
⋮
𝑁𝑟𝑝̄

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝔾1 𝐎 … 𝐎 … 𝐎 … 𝐎
⋆ 𝔾1 … 𝐎 … 𝐎 … 𝐎
⋆ ⋆ ⋱ 𝐎 … 𝐎 … 𝐎
⋆ ⋆ ⋆ 𝔾1 … 𝐎 … 𝐎
⋆ ⋆ ⋆ ⋆ ⋱ 𝐎 … 𝐎
⋆ ⋆ ⋆ ⋆ ⋆ 𝔾𝑟 … 𝐎
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋱ 𝐎
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝔾𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝔾

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔11𝐈
𝑔12𝐈
⋮
𝑔1𝑝̄𝐈
⋮
𝑔𝑟1𝐈
⋮
𝑔𝑟𝑝̄𝐈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
Ψ

= 𝔾Ψ, (47)

where ℍ𝑖 and 𝔾𝑖 are described in (38) and (39), respectively. By incorporating all these notations, (46) and (47), one can rewrite
ℕ1 and ℕ2 as

ℕ1 = 𝕌⊤(ℍΦ) + (ℍΦ)⊤𝕌, (48)
ℕ2 = 𝕄⊤(𝔾Ψ) + (𝔾Ψ)⊤𝕄. (49)
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ℤ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑍11 𝑍𝑎112
… 𝑍𝑎11𝑛̄

𝑍𝑏1121
𝑍𝑏1122

… 𝑍𝑏112𝑛̄
… 𝑍𝑏11𝑚1

𝑍𝑏11𝑚2
… 𝑍𝑏11𝑚𝑛̄

𝑍𝑎112
𝑍12 … 𝑍𝑎21𝑛̄

𝑍𝑏1221
𝑍𝑏1222

… 𝑍𝑏122𝑛̄
… 𝑍𝑏12𝑚1

𝑍𝑏12𝑚2
… 𝑍𝑏12𝑚𝑛̄

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ … ⋮ ⋮ ⋱ ⋮
𝑍𝑎11𝑛̄

𝑍𝑎21𝑛̄
… 𝑍1𝑛̄ 𝑍𝑏1𝑛̄21

𝑍𝑏1𝑛̄22
… 𝑍𝑏1𝑛̄2𝑛̄

… 𝑍𝑏1𝑛̄𝑚1
𝑍𝑏1𝑛̄𝑚2

… 𝑍𝑏1𝑛̄𝑚𝑛̄
𝑍𝑏1121

𝑍𝑏1221
… 𝑍𝑏1𝑛̄21

𝑍21 𝑍𝑎122
… 𝑍𝑎12𝑛̄

… 𝑍𝑏21𝑚1
𝑍𝑏21𝑚2

… 𝑍𝑏21𝑚𝑛̄
𝑍𝑏1122

𝑍𝑏1222
… 𝑍𝑏1𝑛̄22

𝑍𝑎122
𝑍22 … 𝑍𝑎22𝑛̄

… 𝑍𝑏22𝑚1
𝑍𝑏22𝑚2

… 𝑍𝑏22𝑚𝑛̄
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ … ⋮ ⋮ ⋱ ⋮
𝑍𝑏112𝑛̄

𝑍𝑏122𝑛̄
… 𝑍𝑏1𝑛̄2𝑛̄

𝑍𝑎12𝑛̄
𝑍𝑎22𝑛̄

… 𝑍2𝑛̄ … 𝑍𝑏2𝑛̄𝑚1
𝑍𝑏2𝑛̄𝑚2

… 𝑍𝑏2𝑛̄𝑚𝑛̄
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
𝑍𝑏11𝑚1

𝑍𝑏12𝑚1
… 𝑍𝑏1𝑛̄𝑚1

𝑍𝑏21𝑚1
𝑍𝑏22𝑚1

… 𝑍𝑏2𝑛̄𝑚1
… 𝑍𝑚1 𝑍𝑎1𝑚2

… 𝑍𝑎1𝑚𝑛̄
𝑍𝑏11𝑚2

𝑍𝑏12𝑚2
… 𝑍𝑏1𝑛̄𝑚2

𝑍𝑏21𝑚2
𝑍𝑏22𝑚2

… 𝑍𝑏2𝑛̄𝑚2
… 𝑍𝑎1𝑚2

𝑍𝑚2 … 𝑍𝑎2𝑚𝑛̄
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ … ⋮ ⋮ ⋱ ⋮
𝑍𝑏11𝑚𝑛̄

𝑍𝑏12𝑚𝑛̄
… 𝑍𝑏1𝑛̄𝑚𝑛̄

𝑍𝑏21𝑚𝑛̄
𝑍𝑏22𝑚𝑛̄

… 𝑍𝑏2𝑛̄𝑚𝑛̄
… 𝑍𝑎1𝑚𝑛̄

𝑍𝑎2𝑚𝑛̄
… 𝑍𝑚𝑛̄

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (40)

where 𝑍𝑖𝑗 > 0 ∈ 𝐒𝑛̄, 𝑍𝑎𝑘𝑖𝑗
≥ 0 ∈ 𝐒𝑛̄ ∀𝑖, 𝑘 ∈ {1,… , 𝑚},&𝑗 ∈ {1,… , 𝑛̄}; 𝑍𝑏𝑘𝑗𝑖𝑗

≥ 0 ∈ 𝐒𝑛̄,∀𝑖 ∈ {2,… , 𝑚}, 𝑘 ∈ {1,… , 𝑚 −
1},&𝑗 ∈ {1,… , 𝑛̄} such that ℤ > 0.

𝕊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆11 𝑆𝑎112 … 𝑆𝑎11𝑝̄ 𝑆𝑏1121 𝑆𝑏1122 … 𝑆𝑏112𝑝̄ … 𝑆𝑏11𝑟1 𝑆𝑏11𝑟2 … 𝑆𝑏11𝑟𝑝̄
𝑆𝑎112 𝑆12 … 𝑆𝑎21𝑝̄ 𝑆𝑏1221 𝑆𝑏1222 … 𝑆𝑏122𝑝̄ … 𝑆𝑏12𝑟1 𝑆𝑏12𝑟2 … 𝑆𝑏12𝑟𝑝̄
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ … ⋮ ⋮ ⋱ ⋮
𝑆𝑎11𝑝̄ 𝑆𝑎21𝑝̄ … 𝑆1𝑝̄ 𝑆𝑏1𝑝̄21 𝑆𝑏1𝑝̄22 … 𝑆𝑏1𝑝̄2𝑝̄ … 𝑆𝑏1𝑝̄𝑟1 𝑆𝑏1𝑝̄𝑟2 … 𝑆𝑏1𝑝̄𝑟𝑝̄
𝑆𝑏1121 𝑆𝑏1221 … 𝑆𝑏1𝑝̄21 𝑆21 𝑆𝑎122 … 𝑆𝑎12𝑝̄ … 𝑆𝑏21𝑟1 𝑆𝑏21𝑟2 … 𝑆𝑏21𝑟𝑝̄
𝑆𝑏1122 𝑆𝑏1222 … 𝑆𝑏1𝑝̄22 𝑆𝑎122 𝑆22 … 𝑆𝑎22𝑝̄ … 𝑆𝑏22𝑟1 𝑆𝑏22𝑟2 … 𝑆𝑏22𝑟𝑝̄
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ … ⋮ ⋮ ⋱ ⋮
𝑆𝑏112𝑝̄ 𝑆𝑏122𝑝̄ … 𝑆𝑏1𝑝̄2𝑝̄ 𝑆𝑎12𝑝̄ 𝑆𝑎22𝑝̄ … 𝑆2𝑝̄ … 𝑆𝑏2𝑝̄𝑟1 𝑆𝑏2𝑝̄𝑟2 … 𝑆𝑏2𝑝̄𝑟𝑝̄
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
𝑆𝑏11𝑟1 𝑆𝑏12𝑟1 … 𝑆𝑏1𝑝̄𝑟1 𝑆𝑏21𝑟1 𝑆𝑏22𝑟1 … 𝑆𝑏2𝑝̄𝑟1 … 𝑆𝑟1 𝑆𝑎1𝑟2 … 𝑆𝑎1𝑟𝑝̄
𝑆𝑏11𝑟2 𝑆𝑏12𝑟2 … 𝑆𝑏1𝑝̄𝑟2 𝑆𝑏21𝑟2 𝑆𝑏22𝑟2 … 𝑆𝑏2𝑝̄𝑟2 … 𝑆𝑎1𝑟2 𝑆𝑟2 … 𝑆𝑎2𝑟𝑝̄
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ … ⋮ ⋮ ⋱ ⋮
𝑆𝑏11𝑟𝑝̄ 𝑆𝑏12𝑟𝑝̄ … 𝑆𝑏1𝑝̄𝑟𝑝̄ 𝑆𝑏21𝑟𝑝̄ 𝑆𝑏22𝑟𝑝̄ … 𝑆𝑏2𝑝̄𝑟𝑝̄ … 𝑆𝑎1𝑟𝑝̄ 𝑆𝑎2𝑟𝑝̄ … 𝑆𝑟𝑝̄

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41)

where𝑆𝑖𝑗 > 0 ∈ 𝐒𝑝̄, 𝑆𝑎𝑘𝑖𝑗 ≥ 0 ∈ 𝐒𝑝̄ ∀𝑖, 𝑘 ∈ {1,… , 𝑟},&𝑗 ∈ {1,… , 𝑝̄};𝑆𝑏𝑘𝑗𝑖𝑗 ≥ 0 ∈ 𝐒𝑝̄, ∀𝑖 ∈ {2,… , 𝑟}, 𝑘 ∈ {1,… , 𝑟−1},&𝑗 ∈
{1,… , 𝑝̄} so that 𝕊 > 0.

The deployment of the new variant of Young inequality (10) on (48) and (49) yield:
ℕ1 ≤

1
2
(𝑈 + ℤℍΦ)⊤ℤ−1(𝑈 + ℤℍΦ), (50)

ℕ2 ≤
1
2
(𝑀 + 𝕊𝔾Ψ)⊤𝕊−1(𝑀 + 𝕊𝔾Ψ), (51)

where the matrices ℤ and 𝕊 are defined in (40) and (41), respectively.
Hence, the condition (36) is reformulated as

𝐿 + 1
2
(𝑈 + ℤℍΦ)⊤ℤ−1(𝑈 + ℤℍΦ) + 1

2
(𝑀 + 𝕊𝔾Ψ)⊤𝕊−1(𝑀 + 𝕊𝔾Ψ) ≤ 0. (52)

Inequalities (23) and (24) imply that each element insideΦ andΨ is bounded and belong to convex sets𝑚 and 𝑟, respectively.
The sets 𝑚 and 𝑟 are defined as follows:

𝑚 ≜
{

Φ ∶ 0 ≤ 𝑓𝑖𝑗 ≤ 𝑓𝑏𝑖𝑗 ,∀𝑖 ∈ {1,… , 𝑚}& 𝑗 ∈ {1,… , 𝑛̄}
}

,

𝑟 ≜
{

Ψ ∶ 0 ≤ 𝑔𝑖𝑗 ≤ 𝑔𝑏𝑖𝑗 ,∀𝑖 ∈ {1,… , 𝑟}& 𝑗 ∈ {1,… , 𝑝̄}
}

.
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The set of vertices of 𝑚 and 𝑟 are given by
𝜙 =

{

{11,… ,1𝑛̄,… ,𝑚1,… ,𝑚𝑛̄} ∶ 𝑖𝑗 ∈ [0, 𝑓𝑏𝑖𝑗 ]
}

, (53)

𝜓 =
{

{11,… ,1𝑝̄,… ,𝑟1,… ,𝑟𝑝̄} ∶ 𝑖𝑗 ∈ [0, 𝑔𝑏𝑖𝑗 ]
}

. (54)
Therefore, the inequality (52) is rewritten as

𝐿 +

[

1
2
(𝑈 + ℤℍΦ)⊤ℤ−1(𝑈 + ℤℍΦ)

]

∀ Φ∈𝜙

+

[

1
2
(𝑀 + 𝕊𝔾Ψ)⊤𝕊−1(𝑀 + 𝕊𝔾Ψ)

]

∀ Ψ∈𝜓

≤ 0. (55)

Now, we are ready to state the following theorem:
Theorem 1. Let us consider the matrices ℤ, 𝕊, which are expressed in the form of (40), (41), respectively. The estimation
error dynamic (25) is ∞ asymptotically stable if there exist two matrices 𝑃 > 0 ∈ 𝐒𝑛 and 𝑅 ∈ ℝ𝑝×𝑛 such that the ensuing
optimization problem is solvable:

min 𝜇 subject to
⎡

⎢

⎢

⎣

𝐿 (𝑈 + ℤℍΦ)⊤ (𝑀 + 𝕊𝔾Ψ)⊤
(⋆) −2ℤ 𝐎
(⋆) (⋆) −2𝕊

⎤

⎥

⎥

⎦

< 0, ∀Φ ∈ 𝜙, ∀Ψ ∈ 𝜓 ,
(56)

where 𝐿, 𝑈 , ℍ, 𝑀 and 𝔾 are specified in (37), (42), (46), (44) and (47), respectively. The gain matrix 𝐿 is calculated by
utilising 𝐿 = 𝑃 −1𝑅⊤.
Proof. The implementation of the Schur Lemma on the expression (55) yields the LMI (56). From convexity principle which
is proposed in the paper11, the error dynamics (25) satisfies ∞ criterion (27) with 𝜈 = 𝜆max(𝑃 ) > 0 and minimum 𝜇 obtained
from the solution of LMI (56) if LMI (56) is solved for all Φ ∈ 𝐹𝑚 and Ψ ∈ 𝐺𝑟 . Hence, proved.

In order to ensure the stability of the estimation error dynamic (25) in the absence of the exogenous disturbances (i.e., 𝜔 = 0),
one can follow the succeeding remark:
Remark 3. At 𝜔 = 0, an inequality (29) becomes:

𝑉̇ (𝑥̃) + ‖𝑥̃‖2 ≤ 0. (57)
An inequality (57) leads to the exponential stability condition 𝑉̇ (𝑥̃) ≤ −𝜎𝑉 (𝑥̃), along with 𝜎 = 1

𝜆max(𝑃 )
> 0. Since the error

dynamics (25) admits the exponential stability criterion, it ensures that the error dynamics (25) is exponentially stable when
𝜔 = 0.

In the next part, we propose a second LMI approach.

5 NEW LMI DESIGN BY EXPLORING ISS CRITERION

In this section, the novel LMI condition is derived by incorporating the ISS notion with a popular LPV approach, which ensures
the stability of the error dynamic (25).

In order to facilitate the lucidity of the presentation and to enhance the comprehensibility of the contributions, this section is
divided as follows:
1. In the first part, we will derive certain conditions which guarantee that the error dynamic (25) is ISS w.r.t. 𝜔.
2. Later on, a necessary criterion in the form of an LMI is deduced by deploying these conditions.

5.1 Establishing the essential criterion for ISS
The following theorem provides the required conditions which ensure the ISS behaviour of the system (25) w.r.t. 𝜔:
Theorem 2. I) The error dynamic (25) is ISS with respect to 𝜔 if it possesses an ISS-Lyapunov function (28).
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II) The trajectories of the system (25) satisfy the following constraints:

‖𝑥̃(𝑡)‖ ≤

√

𝜆max(𝑃 )
𝜆min(𝑃 )

𝑒−
𝜎
2
𝑡
‖𝑥̃0‖ +

√

𝛿
𝜎𝜆min(𝑃 )

‖𝜔‖22
, (58)

for any 2 bounded 𝜔 ∈ ℝ𝑞 .
III) In addition to this, 𝑥̃(𝑡) is bounded at 𝑡→ ∞, such that:

‖𝑥̃(∞)‖ ≤
√

𝛿
𝜎𝜆min(𝑃 )

‖𝜔‖22
. (59)

Proof. For simplicity, the proof of the theorem is provided in the subsequent parts:
• ISS-Lyapunov function:

Let us consider the Lyapunov function (28). One can easily notice that the function 𝑉 (𝑥̃) satisfies:
𝜆min(𝑃 )‖𝑥̃‖2 ≤ 𝑉 (𝑥̃) ≤ 𝜆max(𝑃 )‖𝑥̃‖2. (60)

Further, the derivative of the function 𝑉 (𝑥̃) along the trajectories of (25) is calculated and illustrated in (34).
By implementing the inequality (9) on the term 𝑥̃⊤𝑃𝔼𝜔 + 𝜔⊤𝔼⊤𝑃 𝑥̃ of (34), we obtain:

𝑥̃⊤𝑃𝔼𝜔 + 𝜔⊤𝔼⊤𝑃 𝑥̃ ≤ 𝛿−1𝑥̃⊤(𝑃𝔼)⊤(𝑃𝔼)𝑥̃ + 𝛿𝜔⊤𝜔,

where 𝛿 > 0.
Thus, the inequality (34) is reformulated as follows:

𝑉̇ (𝑥̃) ≤ 𝑥̃⊤
[

𝔸⊤𝑃 + 𝑃𝔸 + 𝔼⊤𝑃 (𝛿−1𝐈)𝑃𝔼
]

𝑥̃ + 𝑥̃⊤
[( 𝑚,𝑛̄

∑

𝑖,𝑗=1
𝑓𝑖𝑗𝑃𝐺𝑖𝑗𝐻𝑖

)

+

( 𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑖𝑗𝑃𝐺𝑖𝑗𝐻𝑖

)⊤]

𝑥̃

− 𝑥̃⊤
[( 𝑟,𝑝̄

∑

𝑖,𝑗=1
𝑔𝑖𝑗𝑃𝐿𝐹𝑖𝑗𝐺𝑖

)

+

( 𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔𝑖𝑗𝑃𝐿𝐹𝑖𝑗𝐺𝑖

)⊤]

𝑥̃ + 𝛿𝜔⊤𝜔.

(61)

Let us consider a positive scalar 𝜎 such that the following inequality holds:
[

𝔸⊤𝑃 + 𝑃𝔸 + 𝔼⊤𝑃 (𝛿−1𝐈)𝑃𝔼
]

+

[( 𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑖𝑗𝑃𝐺𝑖𝑗𝐻𝑖

)

+

( 𝑚,𝑛̄
∑

𝑖,𝑗=1
𝑓𝑖𝑗𝑃𝐺𝑖𝑗𝐻𝑖

)⊤]

+

[( 𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔𝑖𝑗𝑃𝐿𝐹𝑖𝑗𝐺𝑖

)

+

( 𝑟,𝑝̄
∑

𝑖,𝑗=1
𝑔𝑖𝑗𝑃𝐿𝐹𝑖𝑗𝐺𝑖

)⊤]

+ 𝜎𝑃 ≤ 𝑂.

(62)

It leads to:
𝑉̇ (𝑥̃) ≤ −𝑥̃⊤(𝜎𝑃 )𝑥̃ + 𝛿𝜔⊤𝜔. (63)

which gives:
𝑉̇ (𝑥̃) ≤ −𝜎𝜆max(𝑃 )‖𝑥̃‖2 + 𝛿‖𝜔‖2. (64)

From (60) and (64), one can notice that the Lyapunov function (28) fulfills (3) and (4) along with
𝛼1(𝑥̃) = 𝜆min(𝑃 )‖𝑥̃‖2, 𝛼2(𝑥̃) = 𝜆max(𝑃 )‖𝑥̃‖2, 𝛼3(𝑥̃) = −𝜎𝜆max(𝑃 )‖𝑥̃‖2 and 𝛼4(𝜔) = 𝛿‖𝜔‖2.

Since 𝑉 (𝑥̃) meets the criterion illustrated in (3) and (4), it is an ISS-Lyapunov function. Therefore, the system (25) is ISS
with respect to 𝜔 as it admits an ISS-Lyapunov function (28). Hence, statement I of Theorem 2 is proved.

• The proof of statements II and III:
From (63),

𝑉̇ (𝑥̃) ≤ −𝜎𝑉 (𝑥̃) + 𝛿‖𝜔‖2. (65)
It implies that the trajectories of 𝑉 (𝑥̃) hold:

𝑉 (𝑥̃(𝑡)) ≤ 𝑉 (𝑥̃0)𝑒−𝜎𝑡 + 𝛿𝑒−𝜎𝑡
𝑡

∫
0

e𝜎𝑠‖𝜔(𝑠)‖22d𝑠 ≤ 𝑉 (𝑥̃0)e−𝜎𝑡 +
𝛿
𝜎
(

1 − e−𝜎𝑡
)

sup
𝑠∈[0,𝑡]

‖𝜔(𝑠)‖22. (66)
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Since 0 ≤ 1 − e−𝜎𝑡 ≤ 1 and sup
𝑠∈[0,𝑡]

‖𝜔(𝑠)‖22 ≤ ‖𝜔‖22
, the inequality (66) is altered as:

𝑉 (𝑥̃(𝑡)) ≤ 𝑉 (𝑥̃0)e−𝜎𝑡 +
𝛿
𝜎
‖𝜔‖22

. (67)
As we have 𝜆min(𝑃 )‖𝑥̃(𝑡)‖2 ≤ 𝑉 (𝑥̃, 𝑡) ≤ 𝜆max(𝑃 )‖𝑥̃(𝑡)‖2, it is easy to derive:

‖𝑥̃(𝑡)‖2 ≤ 𝑉 (𝑥̃, 𝑡)
𝜆min(𝑃 )

≤
𝑒−𝜎𝑡𝑉 (𝑥̃, 0) + 𝛿‖𝜔(.)‖22

𝜆min(𝑃 )
≤
𝜆max(𝑃 )‖𝑥̃0‖2𝑒−𝜎𝑡 + 𝛿𝜎−1‖𝜔‖22

𝜆min(𝑃 )
. (68)

Thus, for any 2 bounded 𝜔,

‖𝑥̃(𝑡)‖ ≤

√

𝜆max(𝑃 )
𝜆min(𝑃 )

𝑒−
𝜎
2
𝑡
‖𝑥̃0‖ +

√

𝛿
𝜎𝜆min(𝑃 )

‖𝜔‖22
.

Hence, statement II is proved.
At 𝑡→ ∞, the inequality (58) becomes:

‖𝑥̃(𝑡)‖ ≤
√

𝛿
𝜎𝜆min(𝑃 )

‖𝜔‖22
.

Therefore, 𝑥̃(𝑡) is bounded at 𝑡→ ∞.
This ends the proof of the theorem.
Remark 4. In the case of 𝜔 = 0, the condition specified in (58) is reformulated as

‖𝑥̃(𝑡)‖ ≤

√

𝜆max(𝑃 )
𝜆min(𝑃 )

𝑒−
𝜎
2
𝑡
‖𝑥̃0‖.

Hence, the error dynamic (25) is exponentially stable in the absence of disturbances (i.e., at 𝜔 = 0).

5.2 Formulating a matrix-multipliers based LMI
This segment of the section encompasses the development of an LMI condition which is based on the aforementioned conditions
described for stability.
Theorem 3. Let us assume that there exist two symmetric positive definite matrices ℤ and 𝕊, which are defined in (40), (41),
respectively. The estimation error dynamic (25) is ISS w.r.t. 𝜔 if the following optimization problem is solvable:

min 𝛿 subject to
⎡

⎢

⎢

⎣

𝕃1
(

𝕌 + ℤ𝔽Φ
)⊤ (

𝕄 + 𝕊ℍΨ
)⊤

⋆ −2ℤ 𝐎
⋆ ⋆ −2𝕊

⎤

⎥

⎥

⎦

< 0 , ∀Φ ∈ 𝑚, ∀Ψ ∈ 𝑟,
(69)

where 𝑃 = 𝑃 ⊤ > 0 ∈ ℝ𝑛×𝑛, 𝑅 ∈ ℝ𝑝×𝑛, 𝛿, 𝜎 > 0 and
𝕃1 =

[

𝐴⊤𝑃 + 𝑃𝐴 − 𝑅⊤𝐶 − 𝐶⊤𝑅 + 𝜎𝑃 𝑃𝐸 − 𝑅⊤𝐷
(⋆) −𝛿𝐈

]

. (70)
Other variables remain consistent with those specified in Theorem 1. In addition to this, 𝐿 = 𝑃 −1𝑅⊤ aids in the determination
of the gain matrix 𝐿.
Proof. One of the essential conditions described in the proof of Theorem 1 is showcased in (62). Further, one can rewrite the
inequality (62) in the subsequent manner:

𝕃1 + ℕ1 + ℕ2 ≤ 0, (71)
where 𝕃1, ℕ1 and ℕ2 are defined in (70), (38) and (39), respectively. Additionally, 𝑅⊤ = 𝑃𝐿.
From (50) and (51), we obtain:

𝕃1 +
1
2
(𝑈 + ℤℍΦ)⊤ℤ−1(𝑈 + ℤℍΦ + 1

2
(𝑀 + 𝕊𝔾Ψ)⊤𝕊−1(𝑀 + 𝕊𝔾Ψ) ≤ 0. (72)
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Analogous to (55), the inequality (72) is rewritten as

𝕃1 +

[

1
2
(𝑈 + ℤℍΦ)⊤ℤ−1(𝑈 + ℤℍΦ)

]

∀ Φ∈𝜙

+

[

1
2
(𝑀 + 𝕊𝔾Ψ)⊤𝕊−1(𝑀 + 𝕊𝔾Ψ)

]

∀ Ψ∈𝜓

≤ 0. (73)

The Schur compliment of (73) yeilds LMI (69). According to the convexity principal11, if LMI (69) is evaluated for every
elements ofΦ ∈ 𝐹𝑚 andΨ ∈ 𝐺𝑟 , then the error dynamic (25) satisfies (62). It ensures that all conditions specified in Theorem 2
are fulfilled by the error dynamics (25). Hence, from Theorem 2, system (25) is ISS w.r.t. 𝜔. Hence, the proof is completed.

In the following segment, the effectiveness of the proposed LMIs is discussed.

6 COMMENT ON THE PROPOSED LMIs: EXPLOITING THE NUMBER OF DECISION
VARIABLES

The introduction of the newly defined matrix multipliers aids in the improvement of the LMI conditions as compared to the
existing approaches. These advancements are mainly because of the additional number of decision variables in the proposed
LMIs. Hence, these matrix multipliers play a vital role in LMI enhancement. In addition to this, one must know how these
matrix multipliers add extra numbers of decision variables. The objective of this section is to tackle such questions and to prove
the uniqueness of the proposed LMIs. First, the computation of the number of decision variables inside the derived LMIs is
presented. Further, the comparison with existing LMI approaches is provided to validate the novelty of the proposed method.

As stated earlier, the use of the matrices ℤ and 𝕊 in LMIs (56) and (69) allows the inclusion of additional numbers of decision
variables. Both LMIs contain the ensuing number of decision variables:

N𝑑𝑣1 = 𝑛𝑝 +
𝑛(𝑛 + 1)

2
+ 𝑞

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑃

+
(

𝑚𝑛̄(𝑚𝑛̄ + 1)
2

)(

𝑛̄(𝑛̄ + 1)
2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
add1

+
(

𝑟𝑝̄(𝑟𝑝̄ + 1)
2

)(

𝑝̄(𝑝̄ + 1)
2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
add2

,
(74)

where 𝑃 , add1 and add2 are the number of variables obtained from matrices 𝕃1, ℤ and 𝕊, respectively. Moreover, the terms
add1 and add2 represent the additional number of decision variables in the proposed LMIs. The total number of additional
variables is given by,

add = add1 +add2 =
(

𝑚𝑛̄(𝑚𝑛̄ + 1)
2

)(

𝑛̄(𝑛̄ + 1)
2

)

+
(

𝑟𝑝̄(𝑟𝑝̄ + 1)
2

)(

𝑝̄(𝑝̄ + 1)
2

)

. (75)
Now, let us determine the number of decision variables in the subsequent cases:

1 Case 1: Block-diagonal matrix multipliers (similar to the paper9)
If one deploys the block-diagonal matrices in the proposed LMIs, then the following number of decision variables is obtained:

N𝑑𝑣2 = 𝑛𝑝 +
𝑛(𝑛 + 1)

2
+ 𝑞 + 1

add,

where
 1

add = 𝑚𝑛̄
(

𝑛̄(𝑛̄ + 1)
2

)

+ 𝑟𝑝̄
(

𝑝̄(𝑝̄ + 1)
2

)

. (76)
 1

add denotes the number of variables obtained from block-diagonal matrices.
2 Case 2: Diagonal matrix multipliers (same as the one proposed in14)

Here, if we use ℤ and 𝕊 as the diagonal matrices, then the number of additional variables is achieved as follows:
N𝑑𝑣2 = 𝑛𝑝 +

𝑛(𝑛 + 1)
2

+ 𝑞 + 2
add,

along with
 2

add = 𝑚𝑛̄2 + 𝑟𝑝̄2. (77)
 2

add signifies the number of variables obtained from diagonal matrices.
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3 Case 3: Matrix-multiplier showcased in the paper21
Here, if we employ the matrices ℤ and 𝕊 in the form of Equation (28) of the article21, then we get:

N𝑑𝑣3 = 𝑛𝑝 +
𝑛(𝑛 + 1)

2
+ 𝑞 + 3

add,

along with
 3

add = (2𝑚 − 1)(2𝑛̄ − 1)
(

𝑛̄(𝑛̄ + 1)
2

)

+ (2𝑟 − 1)(2𝑝̄ − 1)
(

𝑝̄(𝑝̄ + 1)
2

)

. (78)
 3

add represents the number of variables obtained in Case 3.
Since 𝑚 and 𝑛̄ are positive integers, it is easy to interpret

 2
add ≤  1

add ≤  3
add ≤ add. (79)

Hence, the number of additional decision variables obtained from the proposed matrix multipliers is greater than the one
employed in the existing methods. These additional variables add extra degrees of freedom and improve the feasibility of LMI.

In the sequel, the effectiveness of the derived LMI approaches is highlighted through a numerical example.

7 EVALUATING THE PERFORMANCE OF THE PROPOSED LMIS AND THE OBSERVERS

The primary aim of this section is to emphasise the significance of the derived LMI conditions. In order to achieve this objective,
a numerical example of the Lipschitz nonlinear system is utilised.

Let us consider a nonlinear system under the form of (12) with the subsequent parameters:

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

⎤

⎥

⎥

⎥

⎥

⎦

; 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
2
0

⎤

⎥

⎥

⎥

⎥

⎦

; 𝐺 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
1 0
0 1

⎤

⎥

⎥

⎥

⎥

⎦

; 𝐸 =

⎡

⎢

⎢

⎢

⎢

⎣

1
1
1
1

⎤

⎥

⎥

⎥

⎥

⎦

; 𝐶 =
[

1 0 0 0
0 1 0 0

]

; 𝐹 =
[

1 0
0 1

]

and 𝐷 =
[

1
1

]

.

The nonlinearities of the dynamics and outputs are illustrated as
𝑓 (𝑥) =

[

𝑓1(𝐻1𝑥)
𝑓2(𝐻2𝑥)

]

=
[

sin (0.3𝑥2)
cos (0.3𝑥2𝑥3)

]

, and 𝑔(𝑥) =
[

𝑔1(𝐹1𝑥)
𝑔2(𝐹2𝑥)

]

=
[

sin (0.5𝑥2)
sin (0.5𝑥3)

]

,

where 𝐻1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
1 0 −1 0
−1 0 1 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

; 𝐻2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−1 0 1 0
1 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

;𝐹1 =
⎡

⎢

⎢

⎣

0 1 0 0
1 −1 1 0
0 0 −1 0

⎤

⎥

⎥

⎦

and 𝐹2 =
⎡

⎢

⎢

⎣

0 0 1 0
0 1 0 0
0 −1 0 0

⎤

⎥

⎥

⎦

.

Thus, 𝑚 = 2, 𝑟 = 2, 𝑛̄ = 4 and 𝑝̄ = 3.
It is easy to infer that both functions 𝑓 (𝑥) and 𝑔(𝑥) fulfill (23) and (24), respectively. Therefore, LMIs (56) and (69) can be

implemented to design the observer (15).
Let us consider the ensuing cases for the analysis of the proposed LMI performance:
I) Case 1: LMI (56) with the following matrices:

ℤ =
⎡

⎢

⎢

⎣

𝑍11 𝑍𝑏21 𝑍𝑏22
𝑍𝑏21 𝑍21 𝑍𝑎22
𝑍𝑏22 𝑍𝑎22 𝑍22

⎤

⎥

⎥

⎦

and 𝕊 =
[

𝑆11 𝑆𝑏21
𝑆𝑏21 𝑆21

]

, (80)

where 𝑍𝑖𝑗 , 𝑍𝑎𝑖𝑗 , 𝑍𝑏𝑖𝑗 ∈ ℝ𝑛̄×𝑛̄ ∀ 𝑖, 𝑗 ∈ {1, 2} and 𝑆11, 𝑆21, 𝑆𝑏21 ∈ ℝ𝑝̄×𝑝̄ are symmetric matrices such that ℤ > 0 and 𝕊 > 0.
The form of the matrices illustrated in (80) is equivalent to the one described in (40) and (41).

II) Case 2: LMI (56) along with
ℤ =

⎡

⎢

⎢

⎣

𝑍11 𝛼𝑍21 𝛼𝑍22
𝛼𝑍21 𝑍21 𝛼𝑍22
𝛼𝑍22 𝛼𝑍22 𝑍22

⎤

⎥

⎥

⎦

and 𝕊 =
[

𝑆11 𝛽𝑆21
𝛽𝑆21 𝑆21

]

, (81)

where 𝑍𝑖𝑗 = 𝑍⊤
𝑖𝑗 ∈ ℝ𝑛̄×𝑛̄, 𝑆𝑖𝑗 = 𝑆⊤𝑖𝑗 ∈ ℝ𝑝̄×𝑝̄ ∀ 𝑖, 𝑗 ∈ {1, 2}; 𝛼 = 𝛽 = 0.2 so that ℤ > 0 and 𝕊 > 0. The structure of the

matrices specified in (81) is equivalent to the one proposed in the paper20.
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III) Case 3: LMI (56) by using
ℤ = block-diag(𝑍11, 𝑍21, 𝑍22) and 𝕊 = block-diag(𝑆11, 𝑆21), (82)

where all the matrices are same as the one defined in (80) such that ℤ > 0 and 𝕊 > 0. The structure of the matrices
illustrated in (82) is similar to the one utilised in the article9.

IV) Case 4: LMI (69) by utilising the matrices specified in (80).
V) Case 5: LMI (69) by deploying the matrices illustrated in (81).

VI) Case 6: LMI (69) by employing the matrices described in (82).
VII) Case 7: LMI approach proposed in the article9. (We have considered 𝐾𝑖 = 0)

Table 1 A synopsis of LMI solutions obtained in several cases

No. Cases
Parmeters obtained from LMI solution
√

𝜇 𝛿 𝛾 =
√

𝛿
𝜎𝜆min(𝑃 )

1 Case 1 1.7226 N.A. (Not Applicable)

2 Case 2 3.4457 N.A.

3 Case 3 2.8374 N.A.

4 Case 4 N.A. 0.2652 1.6284

5 Case 5 N.A. 1.0273 32.0516

6 Case 6 N.A. 0.7351 2.7113

7 Case 7 2.0153 N.A.

The feasibility of LMIs (56) and (69) is tested in all the aforementioned cases using MATLAB LMI toolbox by considering
𝜎 = 0.01. The optimal values obtained from LMI solutions are outlined in Table 1. It showcases that the value of √𝜇 obtained
in Case 1 is better as compared to the one obtained in Case 2, Case 3 and Case 7. It interprets that the proposed LMI (56)
provides a more optimal solution with the newly defined matrix multipliers compared to other matrices used in literature and
the existing methods. Additionally, Table 1 conveys that LMI (69) provides the optimal values of 𝛿 and 𝛾 with the proposed
matrix multipliers (i.e., (80)) than with the existing matrix multipliers (that is, (81) and (82)). Thus, Table 1 aids in highlighting
the superiority of the proposed matrix-multiplier-based LMIs over the existing methods.

Further, the performance of the observer (15) is analysed for the above-mentioned cases. The initial conditions of the systems
are as follows: 𝑥0 =

[

1 1 1 1
]⊤ . The input of the system is considered as 𝑢 = 2 sin 𝑡 ∀𝑡 ∈ [0, 20]. Let us presume that the

dynamics and outputs of the systems are corrupted with the Gaussian noise (𝜔 ∼ 𝑁(0, 1)). Through the utilisation of the observer
gain matrices obtained from LMI solutions, the observer (15) is implemented in a MATLAB environment. Figure 1 represents
the plot of the estimation error (𝑥̃) obtained in Case 1. Whereas, the estimation error achieved in Case 4 and Case 7 are shown
in Figure 2 and 3, respectively. All these figures highlight the asymptotic convergence of the estimation error. In addition to this,
these figures infer that the observer (34) with the proposed LMIs (i.e., (56) and (69)) provides a better noise compensation as
compared to the method proposed in the article9. To validate this, the RMSE values of the estimation errors are computed over
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Figure 1 Estimation error (𝑥̃) for Case 1

Figure 2 Estimation error (𝑥̃) for Case 4

the duration (5 to 20 sec) and summarised in Table 2. The RMSE values of the estimation error (𝑥̃) are smaller in Case 1 and
Case 4 than in other cases. It infers that gain obtained in Case 1 and Case 4 provides better noise compensation as compared to
other cases. Hence, the significance of the proposed LMI-based observer is emphasised.

In the sequel, some concluding remarks regarding the proposed methods are provided.
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Figure 3 Estimation error (𝑥̃) for Case 7

Table 2 Comparison of RMSE values of 𝑥̃ in different cases

Different cases Estimation error (𝑥̃)
𝑥̃1 𝑥̃2 𝑥̃3 𝑥̃4

Case 1 0.0129 0.0106 0.0081 0.0099

Case 2 0.0235 0.0359 0.0169 0.0240

Case 3 0.0180 0.0263 0.0113 0.0221

Case 4 0.0025 0.0029 0.0018 0.0022

Case 5 0.0037 0.0116 0.0027 0.0055

Case 6 0.0038 0.0102 0.0028 0.0049

Case 7 0.0131 0.0254 0.0084 0.0148

8 CONCLUSIONS

This letter delved into the establishment of an LMI-based observer for nonlinear systems whose system dynamics and outputs are
affected by noise/disturbance. To determine the parameter of the proposed observer, two novel LMI conditions are developed in
this article by employing the ∞ criterion and the ISS notion. Both LMI conditions are formulated through the utilisation of the
reformulated Lipschitz property, the well-known LPV approach and a newly defined matrix multiplier. The primary component
of this new design approach is the use of a generalized matrix multiplier, which allows us to add some extra numbers of decision
variables inside LMIs. The incorporation of such additional decision variables yields the introduction of some extra numbers of
degrees of freedom, which enriches the LMI feasibility. Further, the superiority of the newly defined matrix multiplier and the
performance of the proposed LMI-based observers are highlighted through a numerical example in the MATLAB environment.
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