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Abstract

Computationally efficient nonlinear model predictive control relies on elaborate discrete-time optimal control problem (OCP)

formulations trading off accuracy with respect to the continuous-time problem and associated computational burden. Such

formulations, however, are in general not easy to implement within specialized software frameworks tailored to numerical optimal

control. This paper introduces a new multi-phase OCP interface for the open-source software acados allowing to conveniently

formulate such problems and generate fast solvers that can be used for nonlinear model predictive control (NMPC). While

multi-phase OCP (MOCP) formulations occur naturally in many applications, this work focuses on MOCP formulations that

can be used to efficiently approximate standard continuous-time OCPs in the context of NMPC. To this end, the paper discusses

advanced control parametrizations, such as closed-loop costing and piecewise polynomials with varying degree, as well as partial

tightening and formulations that leverage models of different fidelity. An introductory example is presented to showcase the

usability of the new interface. Finally, three numerical experiments demonstrate that NMPC controllers based on multi-phase

formulations can efficiently trade-off computation time and control performance.
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Abstract
Computationally efficient nonlinear model predictive control relies on elaborate discrete-time optimal

control problem (OCP) formulations trading off accuracy with respect to the continuous-time problem
and associated computational burden. Such formulations, however, are in general not easy to implement
within specialized software frameworks tailored to numerical optimal control. This paper introduces a new
multi-phase OCP interface for the open-source software acados allowing to conveniently formulate such
problems and generate fast solvers that can be used for nonlinear model predictive control (NMPC). While
multi-phase OCP (MOCP) formulations occur naturally in many applications, this work focuses on MOCP
formulations that can be used to efficiently approximate standard continuous-time OCPs in the context of
NMPC. To this end, the paper discusses advanced control parametrizations, such as closed-loop costing
and piecewise polynomials with varying degree, as well as partial tightening and formulations that leverage
models of different fidelity. An introductory example is presented to showcase the usability of the new
interface. Finally, three numerical experiments demonstrate that NMPC controllers based on multi-phase
formulations can efficiently trade-off computation time and control performance.

K E Y W O R D S

nonlinear model predictive control, real-time control, optimal control,

1 INTRODUCTION

High-performance algorithms for nonlinear model predictive control (NMPC) have extended its real-time applicability from
chemical processes to a huge variety of application areas1,2,3,4,5,6,7,8. Most NMPC implementations use a discrete-time model
with a fixed time step that is equal to the sampling time. However, more elaborate optimal control problem (OCP) formulations
have enormous potential to reduce the computational burden associated with the online optimization. Nonuniform time grids,
which have been shown to work especially well with accurate cost integration9, are an easy first step in this direction. However,
more sophisticated OCP formulations, like piecewise polynomial control parametrizations of varying degree10, closed-loop-
costing formulations11, or using models of different fidelity for parts of the horizon, are rarely used in practice, due to the
additional implementation effort. Such formulations require the problem functions as well as input and state dimensions to
vary over the horizon. To this end, this paper presents a new feature of the open-source software acados12 which allows for a
convenient formulation of multi-phase OCPs via its Python interface.

We use the term multi-phase OCP (MOCP) to describe OCP formulations that may have structurally different models,
constraints and cost formulations on parts of the horizon. In contrast the term multi-stage was used in previous works but is used
in different ways, e.g. in the context of tree-structured OCPs13,14,15 and to describe OCP formulations which only allow to vary
cost and constraint functions16. The proposed multi-phase formulation is similar to the one tackled by GPOPS-II17, which is a
commercial Matlab software package for solving multi-phase OCPs using state-of-the-art sparse NLP solvers, like IPOPT18

and SNOPT19. GPOPS-II has been successfully used for MOCPs20.
However, the focus of this paper is on MOCP formulations with OCP-structure exploiting algorithms. MOCPs have been

previously tackled in the direct multiple shooting package MUSCOD-II21, which allows multi-phase formulations with piecewise
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2 Frey ET AL.

polynomial control parametrizations and coupled processes. While MUSCOD-II focused on problems from process control with
time scales in the second to minute range,21,22, the acados software package has been successfully deployed on systems with
much shorter time scales2,3,4,5,6,7,8. Both MUSCOD-II and acados use a direct multiple shooting based formulation.

The open-source software package acados implements efficient algorithms for embedded optimal control12. It is written
in C and relies on the linear algebra package BLASFEO which provides performance-optimized routines for small to medium
sized matrix operations23. The nonlinear OCPs can be solved with acados using variants of sequential quadratic programming
(SQP), the real-time iteration (RTI)24 and advanced-step real-time iteration (AS-RTI) scheme25, as well as differential dynamic
programming (DDP)26, which was recently added27. In acados, the quadratic subproblems are solved exploiting the block
structure of optimal control problems. It has been shown that OCP structure exploiting solvers can be many times faster compared
to general sparse solvers or dense ones used with condensing28,29. A variety of quadratic programming (QP) solvers, such as
HPIPM, qpOASES, DAQP, OSQP, qpDUNES,30,31,32,33,34 are interfaced, which either tackle the OCP-structured QP directly or
after applying full or partial condensing to it35,36. The system dynamics can be handled with integration methods which are able
to propagate forward and adjoint sensitivities efficiently in addition to the nominal result12,37.

The remainder of this introduction aims at giving a brief overview on software frameworks for NMPC other than acados.
The tool CasADi38 offers a convenient symbolic framework, algorithmic differentiation and interfaces to many state-the-art
NLP solvers, like IPOPT18 and SNOPT19. A variety of software projects specialized on OCP formulations have been developed
on top of CasADis symbolic framework. The package do-mpc14, provides Python functionality to allow fast prototyping
of NMPC, moving horizon estimation (MHE) and supports tree-structured OCP formulations. In terms of solvers it relies on
the ones available in CasADi. The rockit package39, allows to conveniently formulate OCPs in Python and Matlab and
also covers MOCP formulations. In addition to the CasADi solvers, it also provides interfaces to acados and fatrop29,
which is an NLP solver highly inspired by IPOPT that exploits the optimal control problem structure. The OpEn40 software
package allows to conveniently formulate single-phase OCP problems and implements the proximal averaged Newton-type
method for optimal control (PANOC) as a Rust solver and allows to generate solvers for user defined problems from Python
and Matlab using the CasADi symbolics. The GRAMPC41 software package can generate embedded solvers from Matlab
and uses a gradient-based augmented Lagrangian method. The commercial solver FORCESPRO42 implements competitive
algorithms for NMPC which support varying dimensions between the stages42,43. However, benchmark results created with the
academic license of FORCESPRO could not be disclosed in past research28,7.

Outline. The paper introduces the multi-phase OCP formulation in Section 2 and discusses how it can be handled using
direct multiple shooting. Section 3 motivates using advanced OCP formulations which may be cast as MOCPs to design
efficient NMPC controllers. In particular, it discusses piecewise polynomial control parameterizations, partial and progressive
tightening formulations, and the use of models of different fidelity within a single OCP. Moreover, it presents and conceptually
extends closed-loop costing formulations. Section 4 discusses the efficient treatment of multi-phase formulations within the
acados software package and presents a tutorial example. Section 5 demonstrates how NMPC controllers based on the MOCP
formulations detailed in Section 3 are able to trade off computation time and control performance in ways that are not accessible
when one is limited to single-phase OCPs.

2 MULTI-PHASE OPTIMAL CONTROL PROBLEM FORMULATIONS

This section presents a continuous-time multi-phase optimal control problem (MOCP) formulation in Section 2.1 and describes
how it can be discretized using direct multiple shooting in Section 2.2.
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2.1 Continuous-time multi-phase optimal control problem

Throughout this paper, we will treat continuous-time multi-phase optimal control problems (MOCP), which can be stated as

minimize
ξ1(·),...,ξM (·),
v1(·),...,vM (·),
η1,...,ηM

M∑
k=1

∫ tk+1

tk
ℓk(ξk(t), vk(t)) dt + Ek(ξk(tk+1), ηk) (1a)

subject to 0 = x̄0 – ξ1(t1), (1b)

0 = fk(t, ξk(t), ξ̇k(t), vk(t)), (1c)

0 ≥ gk(ξk(t), vk(t)), (1d)

0 = Γk(ξk(tk+1), ηk) – ξk+1(tk+1), (1e)

0 ≥ ge(ξM(T)), (1f)

for t ∈ [tk, tk+1), k = 1, . . . , M.

The finite time horizon [0, T] is split into M fixed subintervals [tk, tk+1] with t1 = 0 and tM+1 = T . Each interval defines a phase
k ∈ {1, . . . , M}. For each phase k, an implicit ODE fk is given, which defines the state trajectory ξk : [tk, tk+1] → Rnx,k for a
given control trajectory vk : [tk, tk+1] → Rnv,k and initial state. The initial state of the first phase is given by x̄0, while the initial
state for the subsequent phases is given by the transition functions Γk : Rnx,k × Rnη,k → Rnx,k+1 , which map the terminal state of
phase k and discrete decision variables ηk ∈ Rnη,k to the initial state of the next phase, allowing for the state dimension to vary
between the phases. The functions ℓk and Ek define the path and terminal cost terms for phase k. The functions gk summarize
the inequalities imposed on states and controls in phase k. Additionally, the function ge summarizes the terminal constraints
imposed at the end of the horizon.

The transition formulation (1e) is similar to the one in MUSCOD-II44 with the addition of the discrete decision variable ηk.
Additionally, the formulation in the work by Leineweber et al.44 considers global variables and the time grid points ti as
optimization variables. The global variables are implemented as separate variables on each shooting interval and are constrained
to be equal. Global variables can be formulated in (1) by state augmentation on the full horizon. In order to have time grid
points as optimization variables, the dynamics can be augmented with a clock state and a speed of time variable acting as a
control. The differences in problem formulation can be motivated by the different solution methods implemented in acados and
MUSCOD-II, respectively. While MUSCOD-II deploys sparse linear algebra on blocks and allows linear couplings between
stages, acados uses specialized algorithms for purely OCP-structured problems in which the dynamics constraints are the only
coupling between stages.

MOCP formulations occur naturally in different application when formulating OCPs where the dynamic behavior qualitatively
changes at a certain point in time. For example, when considering walking robots45, chemical plants, where some amount of
substance is added at a certain point in time, e.g. when considering recycled waste cuts46, or multi-train scheduling20. However,
the main focus of this paper is on MOCP formulations which can be derived to approximate the solution of a continuous-time
infinite-horizon problem in the context of NMPC as discussed next.
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2.2 Multi-phase multiple shooting discretization

One can discretize MOCP (1) using direct multiple shooting47 dividing each time interval [tk, tk+1] into Nk shooting intervals.
The resulting nonlinear program (NLP) can be written as

minimize
x,u,η

M∑
k=1

Nk–1∑
j=0

Lk,j(xk,j, uk,j,∆tk,j) + Ek(xk,Nk , ηk) (2a)

subject to x1,0 = x̄0, (2b)

xk+1,0 = Γk(xk,Nk , ηk), k = 1, . . .M – 1, (2c)

xk,j+1 = ϕk,j(xk,j, uk,j), j = 0, . . . , Nk – 1, k = 1, . . .M, (2d)

0 ≥ gk,j(xk,j, uk,j), j = 0, . . . , Nk – 1, k = 1, . . .M, (2e)

0 ≥ ge(xM,NM ), (2f)

where x = (x1,0, . . . , x1,N1 , x2,0, . . . , xM,NM ), u = (u1,0, . . . , u1,N1–1, u2,0, . . . , uM,NM–1), η = (η1, . . . , ηM). The discrete values
xk,j ∈ Rnx,k represent the values of ξk(·) at the corresponding shooting nodes. The controls uk,j ∈ Rnu,k act on the jth shooting
interval of phase k. The cost functions Lk,j are called stage costs and reflect the cost integrated over the shooting interval [tk,j, tk,j+1)
with ∆tk,j = tk,j+1 – tk,j. The initial state of the first phase is given by (2b) and for subsequent stages by (2c). The discrete-time
dynamics are described by the functions ϕk,j, which represent an integration scheme applied to the continuous-time dynamic
system in (1c). Dedicated functions that compute the numerical integration of continuous-time dynamics and the solution
sensitivities are an essential component of for efficient solution of OCPs and available in acados37.

Finally, the constraint functions gk,j represent the constraints gk on shooting interval [tk,j, tk,j+1). Most commonly, the constraints
are only enforced at the initial point of the shooting interval, i.e. for xk,j, uk,j. However, it is possible to also impose them on
intermediate points. Similarly, the stage cost Lk,j often corresponds to a simple Euler integration of the continuous-time cost
ℓk over a shooting interval. Especially, when using longer intervals, higher order integration of the cost term are necessary
to retain a good approximation quality. The cost integration can be performed efficiently together with the integration of the
dynamics (1c). More details on this can be found in Section 3.4.1.

3 MULTI-PHASE OCP FORMULATIONS FOR MODEL PREDICTIVE CONTROL

This section motivates the use of multi-phase optimal control problem (MOCP) formulations for NMPC applications, in which an
ideal controller would apply the exact solution to a continuous-time infinite-horizon optimal control problem, which is presented
in Section 3.1. Moreover, Section 3.1 introduces the concept of the cost-to-go function, the importance of its approximation in
NMPC, and why MOCP formulations should be considered in this regard.

The following subsections provide examples of optimal control problem formulations which are suitable to approximate
parts of the cost-to-go term corresponding to different parts of the time horizon in successively more approximate ways. These
formulations can be cast as multi-phase problems and can thus be solved efficiently using acados. In particular, Section 3.2
motivates using models of different fideltiy for different parts of the horizon, Section 3.3 discusses piecewise polynomial control
parameterizations, Section 3.4 discusses closed-loop costing and Section 3.5 presents partial tightening.
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3.1 Continuous-time optimal control problem, model predictive control and cost-to-go

The standard infinite-horizon continuous-time optimal control problem (OCP) which we aim at approximating in various ways
in this paper can be written as

V(x̄0) = min
x(·),v(·)

∫ ∞

0
ℓ(x(t), v(t)) dt (3a)

s.t. x̄0 = x(0), (3b)

0 = f (x(t), ẋ(t), v(t)), t∈ [0,∞), (3c)

0 ≥ g(x(t), v(t)), t∈ [0,∞), (3d)

where x : [0,∞) → Rnx , v : [0,∞) → Rnv are the state and control trajectories respectively, x̄0 is the initial state value, the
function f describes the implicit system dynamics and g denotes the inequality constraints. The optimal value of OCP (3) is
defined as V(x̄0). The function V(·) is called cost-to-go and corresponds to the value function in the field of reinforcement
learning.

The goal of model predictive control (MPC) is to operate a system, which typically applies a constant control input for a fixed
sampling time ∆t. This practical constraint can be formalized as

v(t) = u0 for t ∈ [0,∆t]. (4)

Regarding OCP (3) from a dynamic programming point of view allows us to split the infinite horizon in different parts which
might be approximated in different ways. Using the principle of optimality and accounting for (4), we can rewrite (3) as

minimize
x(·),u0

∫ ∆t

0
ℓ(x(t), u0) dt + V(x(∆t))

subject to x̄0 = x(0),

0 = f (x(t), ẋ(t), u0), t∈ [0,∆t],

0 ≥ g(x(t), v(t)), t∈ [0,∆t),

(5)

which is again an OCP but with a much shorter horizon of length ∆t. Of course, the whole complexity of the problem is shifted
into the minimization of the cost-to-go term with this reformulation. However, this shows that approximating the cost-to-go is
key in the developement of an efficient NMPC controller.

In order to obtain an OCP formulation for MPC, one typically selects a finite time horizon, replaces the infinite integral in (3)
with a finite one and adds a terminal cost on the terminal state. This approximation of the cost-to-go together with (5) can be
discretized using multiple shooting, where the first shooting interval typically corresponds to (5).

Additionally, the control trajectory to approximate the closed-loop cost could be parameterized in different ways. In par-
ticular, piecewise polynomial control parameterizations and closed-loop costing are dicussed in Section 3.3 and Section 3.4.
These parameterizations correspond to piecewise continuous functions, that are not applicable to the real system, given the
practical constraint (4). However, since the cost-to-go is anyway approximated, such control parametrizations can lead to better
approximations of the cost-to-go when using longer intervals.

In the following, we derive and discuss various multiple shooting based approximate versions of (3) which apply structurally
different approximations for parts of the infinite horizon in (3) and can be be phrased as MOCPs.

3.2 Models of different fidelity

In many physical systems, models of different fidelity are available and choosing an appropriate one for NMPC might depend
on the control frequency, desired time horizon and the available solvers. The consideration of high-fidelity models is typically
beneficial for MPC performance. However, such models might be computationally demanding and can become unstable for long
time horizons, which are important to consider in OCPs in order to capture the evolution of slow dynamics and economic cost
terms. Multi-phase OCP formulations allow one to choose different models for specific parts of the horizon, allowing for many
more degrees of freedom when deriving a discrete-time finite horizon problem. Low-fidelty models are typically cheaper to
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integrate with a certain accuracy, not only due to their potentially reduced dimensionality, but also because they are usually less
stiff and thus can be handled by computationally cheaper integration schemes, such as explicit Runge-Kutta (ERK) methods.
On the other hand, high fidelty models typically comprise both fast and slow modes, which causes them to be stiff. Such stiff
models need to be handled with computationally expensive implicit Runge-Kutta (IRK) methods or a great number of very small
integration steps of ERK methods.

Moreover, some nonlinear constraints, which are expensive to evaluate, could be only included in a first part of the horizon.
This can be motivated by the practical observation that constraints tend to be active in the first part of the horizon48. For
example, modelling oscillations within a physical system can be expensive and only meaningful on short time horizons, as in the
application of wind turbine control49.

Lastly, a variety of NMPC applications rely on underlying controllers that handle the actuators. However, it can be beneficial
to directly model these actuators to accurately represent their behavior at least in the first part of the horizon. This can allow one
to specify cost and constraints that need a model of the underlying actuator. Including such considerations can unleash optimality
potential that is inaccessible otherwise.

3.3 Piecewise polynomial control parameterization

While piecewise constant control discretizations are by far the most common parameterization for multiple shooting based
MPC, formulation (2) can accommodate piecewise polynomial control parameterizations with degrees varying between shooting
intervals. The k-th component of the control trajectory on a shooting interval [τ0, τ e] could be parameterized by a polynomial

vn,k(t) =
ndeg∑
i=0

un,k,i · (t – τ0)i (6)

of degree ndeg, such that the discrete control input is given by un = (un,k,i)i=0,...,ndeg, k=1,...,nv . This parametrization offers more
degrees of freedom and can in general better approximate the optimal continuous-time control trajectory. Higher order control
parametrizations could thus allow the use of longer shooting intervals compared to a piecewise constant parametrization, while
maintaining the approximation quality of the MPC feedback law.

The practical MPC consideration in (4) motivates using a constant control parameterization on the first interval [0,∆t]. In
order to combine a constant control input on the first shooting interval with higher order control parameterizations on other
shooting intervals, an MOCP formulation is thus necessary.

For linear parametrizations, simple bounds on the inputs can be satisfied everywhere by enforcing them at the start and
end of each control interval. In contrast, for higher order polynomial parametrizations, even simple control bounds might be
violated within the shooting intervals if only enforced at the boundary points. In order to avoid excessive use of such violations,
one possibility is to enforce the control bounds at npc equidistant points within every shooting interval. For any fixed point
τ̄ ∈ [tn, tn+1], we have

vn,k(τ̄ ) =
ndeg∑
i=0

un,k,i · (τ̄ – tn)i. (7)

which results in a linear inequality constraint with coefficients (τ̄ – tn)i for every intermediate point on which a control bound is
enforced. Additionally, one could add smooth penalties on violations of the control bounds and integrate them over the shooting
intervals, see Section 3.4.1.

3.4 Cost-to-go approximation via closed-loop costing

The idea of closed-loop costing (CLC) is to apply a simple control law κ : Rnx → Rnv to the nonlinear system in (3c) and
assign the resulting cost term as a terminal cost50,51,52,11. This control law is typically a locally stabilizing linear controller, e.g.
corresponding to an LQR controller. In the Reinforcement Learning and Dynamic Programming community, this idea is more
commonly referred to as rollout of a base policy53. The cost-to-go is approximated by the integrated cost associated with the
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closed-loop system under policy κ. The closed-loop costing problem corresponding to (3) can be written as

min
x(·),v(·)

∫ T1

0
ℓ(x(t), v(t)) dt +

∫ Tclc

T1

ℓ(x(t),κ(x(t))) dt (8a)

s.t. 0 = x(0) – x̄0, (8b)

0 = f (t, x(t), ẋ(t), v(t)), t∈ [0, T1), (8c)

0 = f (t, x(t), ẋ(t),κ(x(t))), t∈ [T1, Tclc), (8d)

0 ≥ g(x(t), v(t)), t∈ [0, T1], (8e)

0 ≥ g(x(t),κ(x(t))), t∈ [T1, Tclc), (8f)

0 = ge(x(Tclc)), (8g)

where the first part of the horizon [0, T1] is the so-called control horizon and the latter part the simulation horizon or closed-
loop costing horizon. Note that the control input is only defined on the control horizon, i.e. v : [0, T1] → Rnv and the control
dimension is zero on the CLC horizon. A discrete-time result showing that the stability region grows when increasing the CLC
horizon is presented in the work by Magni and colleagues54. Note that the constraints are still imposed on the CLC horizon and
violations correspond to infinite cost values50.

Closed-loop costing problems can be expressed using two phases. In the terminal phase, the controls are replaced by the
control law in the cost and dynamics expressions, resulting in a phase k with nu,k = 0. In literature, single shooting has been
the method of choice to handle the CLC horizon due to its superior computational efficiency in the case nu = 0. However, the
beneficial convergence properties also make multiple shooting an attractive option in acados: the partial condensing algorithm
provided by HPIPM allows to condense blocks of an arbitrary number of stages, and this can be exploited to condense away
all shooting nodes in the CLC horizon, while possibly retaining them in the control horizon. This makes the computational
efficiency of multiple shooting similar to the one of single shooting, as the underlying QP solver does not see the shooting
intervals corresponding to the CLC horizon. For the experiments in Section 5.1, it was necessary to use CLC with multiple
shooting to achieve convergence. To the best of our knowledge, the approximate infinite horizon corresponding to the closed-loop
costing phase was only implemented with a single shooting interval in previous works50,51,52,11,55.

3.4.1 Practical treatment of constraints with closed-loop costing

In practical OCP formulations state constraints are often replaced by penalties in the cost function to avoid infeasible OCPs56.
Especially, when using longer shooting intervals, it is very important to accuaretely integrate the cost term, including penalties9.

Accurate cost integration together with a propagation of the cost gradient and a Gauss-Newton Hessian can be performed
efficiently. This is realized by the Gauss-Newton Runge-Kutta (GNRK) integrators and implemented in acados9. They can
effectively handle L2 constraint penalties. This implementation has been extended to treat more general convex-over-nonlinear
cost terms of the form

ℓ(x(t), v(t)) = ϕ(r(x(t), v(t))) (9)

with a smooth convex function ϕ and a nonlinear function r. The new implementation is able to integrate such cost terms together
with their generalized Gauss-Newton (GGN) Hessian57,58. This is required to handle more general smooth penalties effectively,
such as the squashed barrier closed-loop costing formulation described in Section 3.4.2.

Despite the reformulation of state constraints as penalties, even simple control bounds can render OCP (8) infeasible if the
policy κ(·) would choose controls that violate those bounds on the CLC horizon. This would implicitly define a terminal region
constraint. If one wants to avoid that, a blunt, but practical approach would be to not impose the control bounds on the CLC
horizon, when using a linear control law κ. Another option is to replace control bounds on the CLC horizon with additional
penalties. A third option is to combine the penalty approach with "squashing", as detailed next.
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3.4.2 Squashed closed-loop costing

The idea of squashed CLC is to create a CLC OCP which is aware of the control bounds on the CLC horizon. This can be
achieved by defining the CLC control law as a squashed version of the linear control law, ensuring that control bounds are always
satisfied. A function σ : R → (–1, 1) is called squashing function, if it is twice continuously differentiable, strictly monotonically
increasing, odd, and satisfies limz→±∞ σ(z) = ±1. Additionally, it is important, that ∂σ∂z (0) = 1, such that a linear control law is
locally not changed. One example is σ(z) = tanh(z), which was also used in previous works59.

In particular, a control variable ui with symmetric bounds [–ūi, ūi], can be reformulated using a new variable v and replacing
ui by the expression ūi · tanh( v

ūi
) in the OCP.

It is recommended to use squashing together with barrier penalties such that an iterative solver does not go arbitrarily close
to the squashed boundaries and gets stuck there59. A function β : R → R≥0 ∪ {∞} is called barrier function if it is twice
continuously differentiable, strictly convex and limz→±1 β(z) = ∞. In particular, β(z) = – log(1 + z) – log(–z + 1) is such a
function and is used in this paper. The squashed LQR CLC variant with a progressively increasing barrier, can be interpreted
in the framework of progressive tightening60, which offers both, numerical benefits and closed loop stability guarantees for
constrained nonlinear MPC. It is also possible to extend this concept to one-sided constraints by using a smooth-max function
instead of the sigmoid as a squashing function and a one sided barrier.

3.5 Partial tightening

The partial tightening concept was introduced by Zanelli et al.61 as a strategy to reduce the computational cost of solving NMPC
problems. To this end, an approximate formulation is introduced which divides the horizon into two phases. On the second
phase, the tightened horizon, the constraints are tightened, i.e. replaced by barrier formulations. More precisely, a constraint
0 ≥ gj(x(t), v(t)) as in (3) is replaced by a logarithmic barrier term

–τ log(gj(x(t), v(t))), (10)

which is added to the cost function with a barrier parameter τ .
The partial tightening formulation allows to derive closed-loop stability guarentees, based on the property that the stage cost

are monotonically increasing with the stage index,61. This concept has been further extended to progressive tightening, which
extends the concept to e.g. formulations with stage-wise increasing barrier parameters τ .

Partial and progressive tightening formulations have been analyzed in the literature regarding closed-loop stability prop-
erties62,60 and successfully applied in practical applications such as collision avoidance for motion planning63, control of a
human-sized quadrotor64, as well as voltage control in active distribution networks65.

The barrier formulation in (10) can be combined with a series of monotonically increasing values for τ for subsequent stage
costs on the tightened horizon to a progressive tightening formulation.

In context of the Real-Time Iteration (RTI), the variables corresponding to this second phase can be fully eliminated in
the preparation phase using a Riccati recursion. In an SQP setting this can be achieved by performing partial condensing and
summarizing all stages of the tightened horizon into a single block of the reduced QP.

4 EFFICIENT IMPLEMENTATION IN acados

This section presents how MOCPs can be posed for an efficient solution in acados. Starting from problem (2), we discuss in
Sections 4.1 and 4.2 the treatment of transition stages and how the problem fits into the internal formulation treated by acados.
Section 4.3 presents a tutorial MOCP example and how it can be formulated for an efficient solution in acados.

4.1 Treating transition stages

In order to incorporate transitions between two phases into an existing SQP software for OCP structured problems, we first
consider the simple case where (2c) boils down to xk+1,0 = xk,Nk , nη,k = 0 and Ek(·) ≡ 0. These trivial phase transitions can be
eliminated by enforcing ϕk,Nk–1(xk,Nk–1, uk,Nk–1) = xk+1,0 and removing xk,Nk , ηk from the problem.
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In the nontrivial case, we observe that the transition equation (2c) has the same form as the equation for a shooting gap (2d).
We thus call these discrete transition stages. On the discrete transition stage, the discrete decision variable ηk takes the role of a
control input and Ek takes the role of the stage cost.

As opposed to formulating the transition as a concatenation of a dynamics step and a transition, the implementation of a
transition with a separate discrete transition stage has the following advantages: Both the terminal state of the phase before the
transition and the initial state of the phase after the transition are readily available in the solver and the transition cost Ek fits
seamlessly into an MOCP formulation.

4.2 Multi-phase multiple shooting formulation in acados

The discrete-time MOCP in (2) can be framed as a regular OCP-structured problem with stage-varying costs and constraints and
where – in contrast to the standard setting – the control and state dimension might vary stage-wise,

minimize
x0,...,xN ,

u0,...,uN–1

N∑
j=0

Lj(xj, uj,∆tj) + E(xN) (11a)

subject to x̄0 = x(0), (11b)

xj+1 = ϕj(xj, uj), j = 0, . . . , N – 1, (11c)

0 ≥ hj(xj, uj), j = 0, . . . , N – 1. (11d)

This OCP consists of N stages, which capture both the shooting intervals and the transition stages. In acados, nontrivial
transitions are modeled by adding an extra phase comprised of a single interval. The transition function Γk is specified using the
acados discrete dynamics module and the discrete decision variable ηk corresponds to the control variable for this phase. The
number of stages N for the OCP (11) would thus be N = M – 1 +

∑M
k=1 Nk if all transitions are nontrivial and N =

∑M
k=1 Nk if all

transitions are trivial. Note that the stage cost Lj does not depend on the shooting interval length if j is a transition stage.
A major challenge in tackling OCP (11) with efficient structure-exploiting solvers is that the dimensions of states, controls and

constraints are varying arbitrarily between stages. In acados, this can be easily achieved by the different modules of the SQP
type algorithm. Each stage has its own module to compute and linearize cost and constraint functions. Each gap constraint (11c)
is associated with a module to evaluate and linearize it. The acados internal OCP-structured QP subproblem is based on
the HPIPM software package30. In addition to interior-point solvers for dense and OCP-structured QP formulations, HPIPM
offers efficient routines for transforming OCP-structured QPs into dense QPs via full condensing or smaller OCP-structured
QPs via partial condensing66. The HPIPM core algorithms, full and partial condensing, and the Riccati-based QP solver, all
support stage-varying dimensions. These full and partial condensing algorithms allow any dense QP solver, such as DAQP32 and
qpOASES31 or HPIPM itself, as well as the OCP-structure exploiting solver in HPIPM, to be used seamlessly for multi-phase
problem formulations in acados.

4.3 Tutorial example of a multi-phase OCP

In this section, we discuss a tutorial example of an MOCP which uses models on distinct parts of the horizon and detail how to
formulate the problem in acados. The code to reproduce the figures in this section is publicly available†. We regard a double
integrator system which consists of the state ξ1 = (p, s), with position p and speed s. The control input v1 is the acceleration a
and the continuous-time dynamics are simply given by

0 = f1(ξ1, ξ̇1, v1) =
[

ṗ – s
ṡ – a

]
.

Let us formulate an MOCP with two phases where an approximate model is employed in the second phase. The approximate
model does not consider acceleration and regards the velocity as the control input instead yielding a one dimensional system, i.e.,

† https://github.com/acados/acados/blob/master/examples/acados_python/mocp_transition_example/main.py

https://github.com/acados/acados/blob/master/examples/acados_python/mocp_transition_example/main.py
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F I G U R E 1 Tutorial example: We consider a double integrator, which is in the second phase approximated by a single
integrator model. The left plot shows the state and control trajectories for the tutorial MOCP. The right plot shows the cost-to-go
function as a function of the initial position p0 for different approximations of the OCP which only uses the double integrator
model.

ξ2 = p, v2 = s. The system dynamics are then f2(ξ2, ξ̇2, v2) = ṗ – s. The transition function is Γk(ξ1) = p. We define an MOCP
with a time horizon of T = 1 and the cost functions

ℓ1(ξ1, v1) = p2 + 0.1s2 + 10–3a2, E1(ξ1) = p2 + 0.01s2,

ℓ2(ξ1, v2) = p2 + 0.1s2, E2(ξ2) = 10p2.

We impose control bounds as constraints on both phases: In the first phase, we have –50 ≤ a ≤ 50, in the second phase, we
use –5 ≤ s ≤ 5. We associate the first phase with the interval [0, 0.4] and the second phase with [0.4, 1.0] and divide the both
intervals uniformly into 10 and 15 shooting intervals, respectively. The resulting problem is a QP and solved with a single SQP
iteration in acados. The optimal trajectory for x̄0 = [2, 0]⊤ is visualized in the left plot in Figure 1.

The right plot in Figure 1 shows how MOCPs can approximate the cost-to-go function. All OCPs use N = 25 shooting intervals
and a time horizon of T = 1. The MOCPs use the single integrator approximate OCP phase as described above on the interval
[T1, T]. The shooting intervals are equidistant on both phases with N1 intervals in the first phase and N – N1 in the second phase.

We want to use the tutorial example to demonstrate the formulation of an MOCP with a nontrivial transition using the new
acados interface. Firstly, we need to define the models for all phases, the double and the single integrator model as well as the
transition model. The single integrator model is defined as an explicit ODE using CasADi as follows
import casadi as ca
def get_single_integrator_model() -> AcadosModel:
model = AcadosModel()
model.name = ’single_integrator’
model.x = ca.SX.sym(’p’)
model.u = ca.SX.sym(’v’)
model.f_expl_expr = model.u
return model

The transition model is defined as
def get_transition_model() -> AcadosModel:
model = AcadosModel()
model.name = ’transition_model’
p = ca.SX.sym(’p’)
v = ca.SX.sym(’v’)
model.x = ca.vertcat(p, v)
model.disc_dyn_expr = p
return model

Let’s assume that we already formulated the OCPs for the individual phases, the one with the single and double integrator model,
which use the established Python interface of acados, more precisely the AcadosOcp class.
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def formulate_double_integrator_ocp() -> AcadosOcp:
...

def formulate_single_integrator_ocp() -> AcadosOcp:
...

A multi-phase OCP can be formulated in acados using the AcadosMultiPhaseOcp class, which is created by specifying
the number of stages per phase.
N_list = [10, 1, 15] # 10 stages for double integrator, 1 stage for transition, 15 stages for single integrator
ocp = AcadosMultiphaseOcp(N_list=N_list)

The novel interface allows to define the dynamics, cost and constraints of one phase utilizing the single-phase OCP formulations,
i.e. the AcadosOcp class.
# define phases for single and double integrator
phase_0 = formulate_double_integrator_ocp()
ocp.set_phase(phase_0, 0)
phase_2 = formulate_single_integrator_ocp()
ocp.set_phase(phase_2, 2)
# define the transition phase and cost
phase_1 = AcadosOcp()
phase_1.model = get_transition_model()
phase_1.cost.cost_type = ’NONLINEAR_LS’
phase_1.model.cost_y_expr = phase_1.model.x
phase_1.cost.W = np.diag([L2_COST_P, 1e-1 * L2_COST_V])
phase_1.cost.yref = np.array([0., 0.])
ocp.set_phase(phase_1, 1)

Most solver options can be set in the same way as for the single-phase OCP:
ocp.solver_options.nlp_solver_type = ’SQP’
ocp.solver_options.time_steps = np.array(N_list[0] * [0.4/N_list[0]]
+ [1.0] # transition stage
+ N_list[2] * [0.6 / N_list[2]])

Some additional solver options that can not vary for single-phase OCP problems can be set additionally.
ocp.mocp_opts.integrator_type = [’ERK’, ’DISCRETE’, ’ERK’]

Finally, an AcadosOcpSolver can be created from the AcadosMultiphaseOcp, just as from a AcadosOcp object.
acados_ocp_solver = AcadosOcpSolver(ocp)

The interactions with the solver are independent of whether it was created from a single or multi-phase OCP formulation.

5 NUMERICAL EXPERIMENTS

This section presents three numerical case studies. First, Section 5.1 compares MPC controllers with different control parameteri-
zations and closed-loop costing variants on an inverted pendulum test problem. Second, Section 5.2 regards the task of controlling
a differential drive robot directly through the voltages of actuators and compares the performance of controllers based on single-
and multi-phase problem formulations. Third, Section 5.3 shows the efficiency of partial tightening with real-time iterations
qualitatively replicating the benchmark results from the first partial tightening paper61. All experiments have been carried out
using acados v0.3.2 via its Python interface on a Laptop with an Intel i5-8365U CPU, 16 GB of RAM running Ubuntu 22.04.

Note that these experiments only compare acados controllers based on single- and multi-phase OCP formulations. Compar-
isons with solvers based on other software packages are out of the scope of this paper. However, since the computation times of
single- and multi-phase OCP formulations within acados are consistent, results from existing software comparisons can be
transferred to multi-phase problems if all competing solvers support MOCPs.

5.1 Inverted pendulum on cart test problem

We investigate the inverted pendulum on cart problem in the setting from the benchmark presented by Frey et al.9 and compare
different controllers with different closed-loop costing variants and control parametrizations. The code of the orignal benchmark
has been adapted to incorporate the new controllers‡.

‡ https://github.com/FreyJo/GNRK_benchmark

https://github.com/acados/acados/releases/tag/v0.3.2
https://github.com/FreyJo/GNRK_benchmark
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F I G U R E 2 Two time grids considered in the benchmark. Both grids start with an interval of length ∆t = 0.02. The grids are
visualized for N = 10 shooting intervals. For Grid A, the interval [∆t, T1] is divided into N1 = 4 equidistant intervals, and [T1, T]
into N2 = N – N1 – 1 = 5 equidistant intervals. For Grid B, the interval [∆t, T] is divided into N – 1 intervals.
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F I G U R E 3 Multiple-shooting with closed-loop costing. The solver iterates after performing 3 iterations on the first problem
in the closed-loop scenario in Figure 4 are visualized.

The differential state of the model is x = [p, θ, s,ω]⊤ with cart position p, cart velocity s, angle of the pendulum θ and angular
velocity ω. The control input v is a force acting on the cart in the horizontal plane. The system dynamics can be found e.g. in12.
In our OCP formulation, v is constrained to be in [–40, 40]. The simulation starts with an initial state x̄0 = [0, π5 , 0, 0]⊤. The goal
is to drive all states to zero, i.e. the unstable upright position. We formulate the following nonlinear least-squares cost consisting
of quadratic costs on states and controls and a term penalizing a position p outside of [–1, 1] =: [pmin, pmax], namely

l(x, u) = x⊤Qx + v⊤Rv + γ · (max(pmin – p, 0))2 + γ · (max(p – pmax, 0)2

where the cost weights are chosen as γ = 5 · 104, Q = diag(100, 103, 0.01, 0.01), R = 0.2. The terminal cost term is set to
Mpend(x) = x⊤Px, where P is obtained as solution of the discrete algebraic Riccati equation with cost and dynamics linearized at
the steady state.

The controllers use two different discretization grids, visualized in Figure 2. The plant is simulated with a time step of
∆t = 0.02s. All controllers use the GNRK cost discretization described in our recent paper9 and Section 3.4.1 with a Gauss-
Radau IIA method of order 7 on each shooting interval. Additionally, we compare various control parameterizations, namely
piecewise polynomials of different degree on all but the first shooting interval [0,∆t], see Section 3.3, and closed-loop costing
formulation, see Section 3.4. In order to conveniently formulate the models with piecewise polynomial controls, we added the
functionality AcadosModel.reformulate_with_polynomial_control().

An overview of all controller variants considered is presented in Table 1, some of the closed-loop trajectories are plotted in
Figure 4 and some of the open-loop control trajectories corresponding to the first problem are shown in Figure 5.
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T A B L E 1 Closed-loop comparison of different controller variants on the pendulum test problem with different discretization
grids and the control parametrizations, including closed-loop-costing and piecewise polynomial controls.

variant ID N Grid control parametrization comp. time / iter [ms] relative suboptimality [%]

IDEAL 200 B pw. constant 3.69 0.00
REF 20 B pw. constant 0.43 3.72
REF-N10 10 B pw. constant 0.21 267.57
PW-LIN-B 10 B pw. polynomials with ndeg = 1, npc = 2 0.23 13.54
PW-CUBIC-B 10 B pw. polynomials with ndeg = 3, npc = 10 0.24 13.59

LQR-CLC 10 A unconstrained LQR CLC 0.22 3.41
CLC-SQB 10 A Squashed + prog. barrier CLC 0.23 5.13
PW-CONST-A 10 A pw. constant 0.22 0.49

PW-LIN-A 10 A pw. polynomials with ndeg = 1, npc = 2 0.23 0.40
PW-QUAD-1 10 A pw. polynomials with ndeg = 2, npc = 4 0.24 0.06
PW-QUAD-2 10 A pw. polynomials with ndeg = 2, npc = 10 0.26 0.15

PW-CUBIC-1 10 A pw. polynomials with ndeg = 3, npc = 4 0.23 0.07
PW-CUBIC-2 10 A pw. polynomials with ndeg = 3, npc = 6 0.24 0.03
PW-CUBIC-3 10 A pw. polynomials with ndeg = 3, npc = 10 0.26 0.02
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F I G U R E 4 Closed-loop trajectories corresponding to the benchmark results in Table 1. Values for the postion p outside of
[–1, 1] are heavily penalized and result in high suboptimality, which is reported in Figure 6 and Table 1.

5.1.1 Controller variants

The controller labeled IDEAL uses a uniform time discretization corresponding to time steps ∆t with piecewise constant
controls, i.e. no mismatch between the plant and the OCP model. This controller gives the best closed-loop performance, but
has the highest computational complexity. The controller REF corresponds to the variant which gave the best tradeoff between
computation time and closed-loop performance in the original benchmark9. The goal is to derive a discrete-time OCP variant
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F I G U R E 5 Open-loop control trajectories corresponding to the first problem solved in the closed-loop simulation visualized
in Figure 4. Details on the controller variants are in Table 1.
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F I G U R E 6 Pareto plot comparing the controllers in Table 1 in terms of average computation time per NLP solver iteration
and relative suboptimality with respect to the controller IDEAL which is not included in this Figure.

which uses less shooting intervals than this controller in order to reduce the associated computational complexity, while attaining
similar closed-loop performance.

The variant REF-N10 uses the same kind of grid, but divides the interval [∆t, T] into 9 instead of 19 shooting intervals. Thus,
the computational complexity associated with one iteration is roughly halved. However, the closed-loop performance is highly
degraded. The controller variant PW-LIN-B has only one difference, which is to use a piecewise linear control parametrization
on all but the first shooting interval. This results in a much better performance compared to REF-N10, with marginally higher
computational burden, indicating that the cost-to-go approximation on this coarse grid is limited by the control parameterization.

We evaluate two closed-loop costing (CLC) variants. Both CLC controllers use Grid A, where the second part of the time
horizon, [T1, T] is implemented with a second phase, see Section 3.4. For the LQR-CLC controller, the control law is the
stabilizing LQR control law κLQR(x) = Kx. The control input constraints are not enforced on the CLC horizon. This controller
results in a closed-loop performance that is similar to the one of controller REF proposed in the original benchmark9 at half the
compuation time.

The other CLC controller is labeled CLC-SQB and uses the same linear feedback law with additional squashing to impose
the given control limits, κsquash(x) = σ(Kx). Additionally, a barrier term β(σ(Kx)) is added on the CLC horizon. The resulting
controller can therefore not plan with violations of the control bounds in the CLC horizon. This controller yields slightly worse
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closed-loop performance compared to the standard LQR-CLC controller. We attribute this observation to the fact that the CLC
controller with squashing naturally has a more conservative plan, which results in some additional suboptimality. Figure 3
visualizes intermediate iterates of the controllers LQR-CLC and CLC-SQB and gives some insights into CLC. It can be seen that
the controls on the CLC horizon are continuous, since κ and the state trajectory are continuous. However, for the intermediate
iterates of the multiple-shooting formulation, the shooting gaps, which are visible in Fig. 3 result in gaps in the controls within
the CLC horizon which are closed at convergence. Lastly, we observe that the LQR-CLC controller violates the control bounds
in its plan, while the squashed variant CLC-SQB inherently respects them.

As an alternative to the CLC controllers, some variants are included, which use discretization Grid A, but a standard control
horizon on the second part of the grid [T1, T] and piecewise polynomial controls on [∆t, T] with the control bounds enforced on
npc equidistant points on every shooting interval, see Section 3.3.

The controllers PW-CONST-A and PW-LIN-A exactly enforce the control bounds, are among the controllers with the lowest
computational complexities and result in a relative suboptimality below 0.5 %. In particular, they are able to roughly halve the
computational complexity of REF, the best controller in the original benchmark9, while reducing the suboptimality by a factor
greater than 7.

5.1.2 Discussion

The fact that controller PW-CONST-A has a lower computational burden compared to the CLC variant is attributed to the fact
that the control law κ(·) and its derivatives have to be evaluated often within every step and Newton iteration of the implicit
integrator. The additional computational burden of a larger input dimension, which is 0 or 1 on the latter part of the horizon, is
rather small for efficient state-of-the-art QP solvers.

There are certainly other examples in which a CLC controller is computationally more attractive. In addition to the test setting,
this of course depends on the underlying software framework for linearization and solution of the subproblems. In particular, for
modern OCP-structure exploiting software frameworks, the computational burden associated with an extra control variable is
less significant compared to when CLC was introduced in the early 1990s28.

A similar comparison of CLC controllers with respect to obvious alternatives is not to be found in the existing literature on
CLC50,51,52,11,55. In addition to the LQR-CLC controller described above, we compare a related variant, which uses N2 = 1, i.e.
single shooting on the CLC horizon, and instead performs five steps of IRK on this interval. This controller variant does not
converge in the first simulation step of the scenario and has a computational complexity similar to LQR-CLC. This indicates that
the multiple shooting CLC implementation proposed in this paper has desirable properties compared to the single-shooting CLC
variants used in previous works.

Overall, the comparison of CLC with respect to nonuniform OCP discretizations shows that the latter are very competitive. On
this test example, the nonuniform grid variant outperforms the LQR closed-loop costing based controller in terms of closed-loop
performance by a factor of 7 while requiring an equal amount of computational resources.

Finally, we regard controllers with piecewise polynomial control parameterizations of degree ndeg > 1 which enforce the
control bounds on npc intermediate points. The open-loop solutions corresponding to the first problems within the closed-loop
simulation are visualized for a few controllers in Figure 5. We observe small violations of the open-loop control trajectories with
respect to the control bounds, e.g. at t ≈ 0.2 for PW-CUBIC-2 and t ≈ 0.35 for PW-CUBIC-B.

All variants in Figure 5 use 10 shooting intervals. Comparing REF-N10 in Figure 5 with the optimal closed-loop control
trajectory in Figure 4, we observe that this planned controls are qualitatively very different from the optimal ones, resulting in a
bad cost-to-go approximation and thus closed-loop performance. In contrast, PW-CUBIC-2 can capture the qualitative behavior
of the optimal closed-loop control trajectory well. In particular, the relatively short intervals in the first part of the horizon enable
the cubic polynomials to approximate the optimal bang-bang solution in this phase well. In contrast, the variant PW-CUBIC-B,
which uses the same control parametrization as PW-CUBIC-2, but on grid A, approximates this optimal bang-bang behavior
with a slower transition, see Figure 4, resulting in significantly higher closed-loop cost, see Table 1. A visual comparison of
the open-loop trajectories of PW-CUBIC-2 and PW-LIN-A shows that the optimal bang-bang behavior in the first part of the
horizon is approximated similarly, while on the first long interval, starting at t = 0.3, the cubic polynomials capture the optimal
behavior qualitatively better, as piecewise linear functions do not have an inflection point.

When comparing controllers with the same parametrization, but different grids on which the control bounds are enforced,
i.e. varying npc, we can observe two effects. Firstly, comparing PW-QUAD-1 and PW-QUAD-2, we see that enforcing control
bounds on a finer grid can result in worse closed loop performance. This can be attributed to the fact that enforcing the control
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bounds everywhere using polynomials results in a more conservative approximation of the cost-to-go, since the planned controls
are approximated within the bounds. On the other hand, regarding PW-CUBIC-1, PW-CUBIC-2, PW-CUBIC-3, we observe that
enforcing constraints on a tighter grid can improve the approximation quality.

Overall, the general trend in our experiments shows that additional degrees of freedom in piecewise polynomial control
parametrizations can result in a strongly improved closed-loop performance, if the control bounds are enforced on a sufficiently
fine grid, which we attribute to a better approximation of the closed-loop cost. In particular, PW-CUBIC-3 results in better
performance than PW-QUAD-2, which in turn improves on PW-LIN-A.

Of course one needs to be careful, when it comes to drawing general conclusions from the presented results on piecewise
polynomial control parameterizations. The additional computational cost of polynomial control parameterizations of higher
degrees and handling the corresponding bounds, will be much more significant, with growing nv. In addition to the dimensions,
the optimal choice of control parameterization and where to enforce control bounds depends on the qualitative behavior of the
continuous-time optimal solution (bang-bang or continuous), the time discretization grid, the available solvers and computational
resources. However, the possibility of formulating such problems within an efficient software package can significantly improve
the closed-loop performance of MPC controllers.

5.2 Differential drive robot with actuator model and economic cost

We consider a differential drive robot and develop an NMPC controller which takes the underlying actuators into account
allowing it to consider their power consumption in the cost function. The code to reproduce the results presented in this section
is publicly available§

5.2.1 Modelling

This subsection describes the differential drive model with and without actuators67. For simplicity, the dynamic model which
disregards the actuators is presented first. This model consists of the state vector xsimple = [px, py, v, θ,ω], where px, py denotes
the robots position in x- and y-coordinates, v the velocity of the robot, θ the heading angle, and ω the angular velocity. The input
of this model are usimple = [τ r, τ l], the torques applied to the right and left driving wheel, respectively, in Nm. The evolution of
the system is described by the ODE

ẋsimple =


v cos θ
v sin θ

a1+mcdω2

m+a2
La3–mcdωv

I+L2a2

 , (12)

where the shorthands a1 = τ r+τ l
2 , a2 = 2Iw

R2 , a3 = τr–τl
R are introduced. The model contains the following parameters, which we

assume to be constant: The total mass of the robot m = 220kg, the mass of the robot without the wheels and the rotating parts of
the actuators mc = 200kg, the robot’s moment of inertia around the center of mass I = 9.6 kg · m2, the combined moment of
inertia about the wheel’s axis of a driving wheel and the rotating part of the actuator Iw = 0.1kg · m2.

In addition, we consider a more accurate model of the robot which takes the two actuators, namely a motor on each driving
wheel into account. The actuator model consists of the state xact = [px, py, v, θ,ω, Ir, Il], where Ir, Il are the currents in the motor
driving the right and left wheel, respectively, and the control input uact = [V r, V l], where V r, V l denote the voltages applied to the
motors. The evolution of the states common for both models is given by (12), where the motor torques τ r, τ l are substituted by
τ r = K1Ir and τ l = K2Il. In addition, the dynamics of the accurate model are given by[

İr

İl

]
=

[
– K1ψ1–RactIr+V r

Lact

– K2ψ2–RactIl+V l
Lact

]
(13)

§ https://github.com/FreyJo/ocp_solver_benchmark/blob/main/experiments/actuator_diff_drive.py

https://github.com/FreyJo/ocp_solver_benchmark/blob/main/experiments/actuator_diff_drive.py
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with

ψ1 =
ṗx cos θ + ṗy sin θ + Lω

R
, (14)

ψ2 =
ṗx cos θ + ṗy sin θ – Lω

R
. (15)

This accurate model additionally contains the motor constants K1 = 1.0, K2 = 1.0, the coil inductance Lact = 10–4H, the coil
resistance Ract = 0.05Ω as parameters which we assume to be constant.

5.2.2 Optimal control problem formulation

We want to minimize the following cost term

lact(xact, uact) = xact
⊤Qxact + |V rIr| + |V lIl| (16)

with Q = diag(103, 103, 10–4, 1, 10–3, 0.5, 0.5). Note that the second summand |V rIr| + |V lIl| is an economic cost term corre-
sponding to the power consumption. It is implemented in acados by introducing slack variables slow, sup and constraints
slow ≤ [V rIr, V lIl]⊤ ≤ sup and replacing the term |V rIr| + |V lIl| in the cost with slow,1 + slow,2 + sup,1 + sup,2. When using the
actuator model, for the full horizon, we use the terminal cost term:

Eact(xact) = xact
⊤Qxact (17)

We want to investigate approximate MOCP formulations which use the simple differential drive model on the latter part of the
horizon. The cost term in (16) can be approximated using the simple model by disregarding the economic cost term, i.e. using

lsimple(xsimple, usimple) = xsimple
⊤Q̃xsimple + usimple

⊤R̃usimple (18)

with Q̃ = diag(103, 103, 10–4, 1, 10–3), R̃ = diag(0.5, 0.5). As a terminal cost of the first phase with the actuator model, cf. (2), we
define

Etrans(xact) = 0.5∆ttrans · (Ir
2 + Il

2), (19)

where ∆ttrans denotes the length of the last shooting interval on which the actuator model is used. This cost term corresponds to
the tracking part of the cost in (16) and is needed since Ir, Il are not included in the simple model. When using the simple model
at the end of the horizon, we use the terminal cost term:

Esimple(xsimple) = xsimple
⊤Q̃xsimple. (20)

For both models, we impose the following path constraints on the state

0 ≤ v ≤ 1, (21)

–0.5 ≤ ω ≤ 0.5. (22)

Additionally, we impose the following constraints on the control inputs when using the actuator model

–10 ≤ V l ≤ 10, (23)

–10 ≤ V r ≤ 10. (24)

Respectively, for the simple model, we impose

–60 ≤ τ r ≤ 60, (25)

–60 ≤ τ l ≤ 60. (26)
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F I G U R E 7 Pareto plot comparing different controller variants for directly controlling the actuators of a differential drive
robot with an economic cost. All MOCP variants use N = 50 shooting intervals and N – Nact of an approximate model which
disregards the actuator dynamics.

5.2.3 Comparing controller variants

We compare different controller variants. All variants use discretization steps of ∆t = 0.1s, the model dynamics are integrated
using an implicit Runge-Kutta method with a Legendre Butcher tableau of order 6 on each shooting interval. The controllers are
based on an acados full-step SQP solver using a Gauss-Newton Hessian approximation and solving the QPs with HPIPM
without condensing.

We consider MOCP variants with N = 40 and N = 50 shooting intervals and vary Nact, the number of shooting intervals on
which the actuator model is used, afterwards, we use a transition stage and N – Nact shooting intervals with the simple model. For
the single-phase OCP variants, we vary the number of shooting intervals N, as this formulation does not allow for a transition.

We compare several controllers in a closed-loop simulation of 20s using the actuator model starting at the initial state
x0 = (1, 1, 0,π, 0, 0, 0), exactly integrating the cost in (16) using 10 integrator steps for a sampling time of 0.1s. In order to
evaluate relative suboptimality, a reference controller with N = 60 shooting intervals of the actuator model is used. Controllers
with fully converged SQP and RTI variants, which only solve a single QP subproblem are evaluated in the same plot.

The Pareto plot in Figure 7 visualizes the suboptimality and computation time of the various variants. We observe that
the Pareto front is dominated by the MOCP variants. Note that the variant OCP N = 50 correspond to the controller MOCP
N = 50, Nact = 50. The solver variants OCP N = 30 and MOCP N = 50, Nact = 10 with SQP require a similar computation time,
however the MOCP variant results in a three fold lower relative suboptimality. On the other hand, MOCP with N = 50, Nact = 10
delivers a similar suboptimality compared to the variant OCP N = 50, while only requiring roughly half of the computation
time. Overall, the MOCP variants dominate the Pareto front in large parts and it is of course possible to generate many more
combinations using MOCP formulations or by varying the number of SQP iterations. These results show that deriving an
approximate OCP formulation and using it within an MOCP can result in an NMPC controller which is able to outperform
NMPC controllers that only use a single-phase OCP formulation.

5.3 Partial tightening

This section briefly demonstrates how partial tightening can be efficiently implemented within acados, qualitatively reproducing
the results from the benchmark in the paper that introduced partial tightening61. To this end, we regard the inverted pendulum on
cart model as in Section 5.1. The cost function is of linear least-squares form

l(x, v) = x⊤Qx + v⊤Rv, (27)
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T A B L E 2 Performance overview of different controllers with RTI and partial tightening. Maximum timings are over the
closed-loop simulation in Figure 9 and are given in [ms] and relative suboptimality is evaluated by comparing with the controller
variant N = 100, Nexact = 100.

computation times
Variant preparation feedback total rel. subopt. %

N = 100, Nexact = 5 0.23 0.32 0.54 21.25
N = 100, Nexact = 10 0.25 0.36 0.59 16.61
N = 100, Nexact = 20 0.24 0.44 0.65 12.25
N = 100, Nexact = 50 0.25 1.15 1.36 5.15
N = 100, Nexact = 100 0.23 2.87 3.05 0.00
N = 50, Nexact = 50 0.10 2.17 2.27 990.43
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F I G U R E 8 Maximum timings for the preparation and feedback phase over the closed-loop simulation shown in Figure 9.
The timings are also given in Table 2.
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F I G U R E 9 Closed-loop trajectories corresponding to different controller variants with partial tightening. The total number
of shooting intervals N and the ones handled exactly Nexact are varied. The shooting intervals are part of the tightened horizon.

with Q = diag
(
0.1, 1, 0.1, 2 · 10–3

)
, R = 5 · 10–4. For the terminal cost, we use x⊤Px, where P is the solution of the continuous-

time algebraic Riccati equation with cost and dynamics linearized at the steady-state. The only constraint is that the control
input is –12 ≤ v ≤ 12. When using partial tightening, the constraint is replaced with an additional log-barrier term as in (10)
corresponding to this constraint with τ = 5 and a GGN Hessian approximation is used. While previous works only used custom
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implementations of partial tightening, the MOCP interface allows a convenient formulation in established software and the
source code to reproduce the results presented in this Section is publicly available¶.

This benchmark compares controllers in a closed-loop simulation with initial state x0 = (0,π, 0, 0) for a duration of 5s with a
time step of 0.01s. The controllers use different underlying OCP formulations, where the length of the overall horizon and the
tightened horizon are varied. The tightened horizon is implemented as a second phase of an MOCP formulation. The length
of a shooting interval is fixed to 0.01s and the dynamics are discretized using an RK4 integrator. We vary the total number of
shooting intervals N and the number of shooting intervals on which the constraints are formulated exactly Nexact. The second
phase contains N – Nexact shooting intervals, on which the control bounds are replaced with logarithmic barriers.

All controllers use the real-time iteration algorithm. The QPs are solved using partial condensing, such that the blocks
corresponding to the tightened horizon are condensed into one block and the remaining blocks remain uncondensed. In order to
perform as many operations as possible in the preparation phase, acados internally implements functions that assume that
only matrices of the QP are known and a second one that completes the computations once the vector quantities are known. For
the acados module that performs the condensing and QP solution has a split functionality, namely condense_lhs() and
condense_rhs_and_solve().

Table 2 gives an overview on the controllers closed-loop performance and the computation times split into preparation and
feedback phase. Figure 9 visualizes the closed-loop trajectories for different controller variants. Figure 8 and Table 2 show that
the preparation time is consistent between all solver variants with N = 100 and roughly halved for the variant with N = 50. While
the controller with N = 50, Nexact = 50 fails at swinging up the pendulum, the other controllers succeed at this task. Comparing
the variants with N = 100, one can see that decreasing Nexact results in an increase in relative suboptimality and a decrease in
associated computational complexity, more specifically a decrease int he computation time of the feedback phase. Overall, the
results are very similar to the ones reported in the original benchmark61. Note that in our implementation, the barrier parameter
τ could be easily increased over the shooting intervals, resulting in a progressive tightening formulation that is not just partial
tightening. In summary, partial and progressive tightening formulations allow one to trade-off computational complexity and
closed-loop performance and can be formulated conveniently as MOCPs.

6 CONCLUSION

This paper gives an overview on multi-phase OCP (MOCP) formulations and their efficient treatment using multiple shooting.
Several approaches are presented which allow to formulate a continuous-time OCP in a successively approximate way which
require an MOCP formulation. The work provides an overview on different control parametrizations for use within multiple
shooting, such as piecewise polynomial controls of different degrees and closed-loop costing variants, and motivated their use.
These control parametrizations have been compared on a benchmark example from previous work. Moreover, we demonstrate
the efficiency of NMPC controllers based on an MOCP formulation with an approximate model in a second phase. Lastly, we
show how partial and progressive tightening OCPs can be phrased as MOCPs. These examples show that the added degrees of
freedom allow one to develop NMPC controllers, which outperform ones limited to single-phase OCP formulations. While other
state-of-the-art software packages are limited to single-phase OCP formulations or use general purpose NLP solvers instead of
structure-exploiting algorithms tailored to OCPs, the new acados feature allows for both a convenient formulation and the
generation of efficient solver for MOCPs. We believe that this new feature will make efficient solvers for MOCP formulations
more available to NMPC practitioners and spread their use in real-world applications.
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