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1 Introduction

The Boussinesq equations simulate buoyancy-driven fluids such as atmospheric fronts and
oceanic circulation, and have played pivotal roles in the study of Rayleigh-Bénard’s convec-

tion (see, e.g., [1-5]). This paper focuses on the stability and the optimal decay estimates of
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solutions to the following 3D incompressible anisotropic Boussinesq equations
U +U -VU =-VP +vAU +0Oes, R t>0
0,0+4+U-VO+1n0 =0, (1.1)
V.U =0,
where U(xz,t) = (Uy(x,t), Us(z,t), Us(x,t)) denotes the velocity field, P = P(x,t) the pres-
sure and © = O(z,t) the temperature, e3 = (0,0, 1)(the unit vector in the vertical direction),
v > 0 and n > 0 are the viscosity and damping coefficients, respectively. Here we written
Ay = 82 + 92 stands for the horizontal Laplacian.

Let’s emphasize that the anisotropic dissipation assumption is natural in the study of
buoyancy-driven fluids. It arises naturally in the modeling of anisotropic fluids such as the
rotating fluids in Ekman layers [5]. It appears that, under suitable scaling and in certain
physical regimes, some components of the dissipation can become trivial and be ignored,
such as the vertical dissipation is negligible as compared to the horizontal dissipation(see,
e.g., [13, 20]). More physical backgrounds of anisotropic fluids can be available in [5, 26].
The motivation for studying (1.1) comes from twofold. The first is to reveal the phenomenon
that the coupling and interaction of the velocity and the temperature actually stabilizes the
fluid. The second is to develop an efficient approach to obtain the optimal decay rates for
the anisotropic Boussinesq system concerned here.

For the 3D Boussinesq equations with full dissipation or partial dissipation, the global
well-posedness problem has attracted considerable attention from the community of math-
ematical fluids and significant progress has been made (see, e.g., [6, 10, 12, 17, 18, 21]).
When the velocity equation involves full dissipation and the temperature equation is a pure
transport equation, Geng and Fan [16] obtained a regularity criterion to get a global (in
time) solution. Otherwise, in the particular case of axisymmetric initial data, Abidi, Hmidi
and Keraani [33] showed the global well-posedness for the Boussinesq system in R3. For the
velocity fluid and the temperature equation both are full dissipation, Qiu, Du and Yao [15]
obtained a blow-up criterion by means of the Littlewood-Paley theory and Bony’s paradiffer-
ential calculus in Besov spaces. Jiu, Wang and Wu [6] established partial regularity for the
appropriate weak solution at dimension n > 2 by the De Giorgi iterative approach. Under
the assumption that the initial data is axisymmetric without swirl, Miao and Zheng [11]
proved the global well-posedness for the 3D Boussinesq equation with horizontal dissipation.

In contrast to the magnitude of research conducted on the well-posedness problem for

the 3D Boussinesq equations, the stability and the large-time behavior have been studied
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relatively little. Dong [25] studied asymptotic stability to the 3D Boussinesq equation in
the whole space with a velocity damping term. In addition, the decay rates of the velocity
and large-time behavior of the temperature also were given. Wu and Zhang [32] solved the
stability and large-time behavior problem with mixed partial dissipation in spatial domain
Q =R*xT with T = [—1,1]. Shang and Xu [14] examined the stability and the decay of the
corresponding linearized systems of 3D Boussinesq equations with horizontal viscosity and
horizontal thermal diffusion. Recently, Ji, Yan and Wu [22] further expanded their results
and obtained the optimal decay for the the nonlinear Boussinesq system.

The hydrostatic equilibrium given by

1
U©® =(0,0,0), 0O = z;, PO = §x§. (1.2)

is a very special steady-state solution of (1.1) with great geophysical and astrophysical im-
portance (see, e.g., [5, 29-31]). To understand the stability and optimal decay rates of

perturbations near the hydrostatic equilibrium in (1.2), we consider the equations governing
the perturbation (u,,p) withu=U —U®, §=0-00 p=p - PO,

Ou+u-Vu=—-Vp+vAyu+fes, x € R3t >0
00 +u-VO+uz+nd =0,

V-u=0,

u(z,0) = up(x),0(x,0) = Oy(z).

(1.3)

In this paper, we employ the classic energy method and bootstrapping argument (see
[19]) to establish the global stability of solution to system (1.3) in H*(R?®)(k > 3). In the
process of the decay estimates, classical tools such as Fourier-splitting method for large-time
behavior no longer directly apply to the system concerned here. We develop an effective
approach to obtain the optimal decay rates for this partially dissipated system. The specific

results as stated in the following theorems.

Theorem 1.1. Consider the system in (1.3) with v > 0 and n > 0. Assume (ug,8y) €
HY(R3) with k > 3 satisfies V - ug = 0, Then there exists € = £(v,n) > 0 such that, if

[o] [ + 1|60l e < €,
then (1.3) has a unique global solution (u,8) € L>(0,00; H*) satisfying, for any t > 0,

t t
1Cut, ) (1) 17 +V/ IIVhU(T)IIfdeﬂLn/ 0| Fpedr < Ce?,
0 0

where C' > 0 is a positive constant independent of € and t.
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To prove Theorem 1.1, the key is to use the delicate energy estimate to display the
following global energy inequality, for any ¢ > 0,

3
E(t) < E(0) + CoE2(t), (1.4)
where () is a positive constant, and

t t
Bt) = sup L) + 10} +20 [ Vsl iy +20 | 1067

Once (1.4) is at our disposal, then a direct application of the bootstrapping argument could
imply the global stability. In fact, by local well-posedness and our assumptions on the
initial data, these estimates are satisfied at least on some (small) time interval (0,T). In our
bootstrap approach we assume that the maximal time T with this property is finite. We
then show that on that same time interval all estimates hold with improved bounds instead,
which implies that the estimates could be extended for a small additional time, contradicting
with the maximality of T. More details are given in Section 2.

Next, we explore the optimal decay estimates on the solutions obtained in Theorem 1.1.

The exact functional setting for our initial data (ug, 6y) is

(ug,0p) € HYR*) N L2 L (R®), (O3ug, D36p), (Oaug, 0360) € L2 L. . (R?).

3T T1T2 T3 T1T2

Our main aim is to achieve the optimal decay rates. To gain insight on our problem, we

briefly examine the 3D anisotropic heat equation with horizontal dissipation

(1.5)

ou = vAyu, reR3t>0
u(z,0) = ug(x).

In order to obtain an explicit decay rate of the solution to (1.5), the energy method is no

longer sufficient and explicit representation of the solution is necessary, namely
u(t) = e"Arly,

We can easily check that the solution u and its first-order derivatives obeys the following

optimal decay rates, for any ¢ > 0,

1
a2 = M uollzz,,, lzz, < Cwt) 2 uollzz ., (1.6
IVat)llz < COt uollzz, ... (17)
1
|0su(t) 12 < Ct)2 sz, (1)

z3 ey’
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We are able to show that the solution of the anisotropic Boussinesq equation (1.3) obeys
the same decay rates as those for the heat equation (1.5). More precisely, we obtain the

following theorem.

Theorem 1.2. Assume (ug,6) € H*(R?) with V - ug = 0 satisfies

(Uo, 90), (83u0, 8390), (8§U0, 83?6’0) € L2 Ll (Rs)

T3 T1T2

Then there exists a sufficiently small constant € > 0 such that, if

[(o, B0) || s g3y + | (wo, 00) || 2, 2

1112

+ ”(aguoa3390)HL33L;112(R3) <e. (1.9)

®2) + [[(F3u0, O360) || 2. JLL 0y (R3)

Then the corresponding solution of system (1.3) (u,0) obeys the following time decay esti-

mates,
I (u(t), B(6) 1+ < Ce, (). 6(8) 2 < Ce(1+1)°3
T340 Tl < Ce0 4 D7 @ult), B8(8) 1 < C=(1+)77,
|(V2u(t), V20(t) 1 < Ce(1+ 673, [[(Tadyu(t), Vidsd(t))llzz < C=(1+ )",
(BBu(t), D26() 12 < Ce(1+1)2

The decay rates in ||ul|z2, ||[Vhu| 2 and ||Osul| 2 are exact the same as those for the heat
equation in (1.6),(1.7) and (1.8), and thus are optimal. In addition, we remark that direct
energy estimates are not adequate for the proof of Theorem 1.2. Thus we would like to
resort the integral representation of (1.3). First, we take the Fourier transform of (1.3), then
represent the nonlinear system into an integral form via Duhamel’s principle. This form
relies on six kernel functions which are degenerate and anisotropic in the frequency space.
We perform a detailed spectral analysis in suitably divided subdomains of the frequency
space to acquire optimal and precise upper bounds for the kernel functions. Once these
bounds are established, we then estimate the optimal decay rates of (u, §) and its derivatives
via the integral form. The detailed estimates are provided in Section 3.

The rest of this paper is divided into two sections. Section 2 applies the energy estimate
and bootstrapping argument to prove Theorem 1.1. Our main results about the optimal
decay rates are established in Section 3. For more details are displayed, Section 3 is further
divided into six subsections. To simply the notation, we shall write || f||z» for ||fl|zrms),

|fllzz, for the LP-norm in x;-variable, 9; for 9y, (i = 1,2,3), and V), = (01, 0s).
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2 Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. We first introduce several significant
tools to be used in the proof. The first lemma provides anisotropic upper bounds for the
integral of the triple product. In the aspect of dealing with anisotropic equations, it is a

powerful tool. The proof of this lemma can be found in [34].

Lemma 2.1. Assume that f,0\f,0of, 0105, g, 02g, 059, h,0sh € L. Then
/|fgh|d$ < ClfIZ 01 f117 gl 221029117 12112 |05 R] 75,

/!fgh\dx < ClAN 100 f 172102 W1 22 [10102£ 1172191172 1039 £ M el -

The following Lemma can be shown by making use of the following basic one-dimensional
inequality

1 1
lgllzcz) < V2lglz2l9ll -

Lemma 2.2. The following estimates hold when the right—hand sides are all bounded.

1 1 1 1 1 1 1 1
[ £l Lo msy < CUFNZNO N 102 f 521105 £ 117 21| Or2f 11 52 1023 f Nl F2 10w £ 112 [|Or23 £ 2

Consequently,
1 1
[fl[zoe@s) < ClFIF VSl -

Now we start to prove Theorem 1.1.
Proof of Theorem 1.1. The framework of the proof is the bootstrapping argument. Define
the energy functional E(t) by

t t
E(t) = Oiugt{IIU(T)Ilqu + 100|170} + QV/ IV ()| Fpedr + 277/ 10(7) |7
<7< 0 0
Our main efforts are devoted to showing that, for a constant Cy > 0 and for ¢ > 0,
3
E(t) < E(0) 4+ CoE2(t). (2.1)

Once (2.1) is shown, then a direct application of the bootstrapping argument implies that,
if

1
or |[(ug,)||gr <e:=— (2.2)

B(0) = l(u0,05) 3 < el

1
— 16C?
then,

E(t) for all t > 0. (2.3)

<
— 8(C?
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In fact, if we make the ansatz that

1
< —
B®) =< 4C?

Inserting (2.4) in (2.1) and invoking (2.2) yields

(2.4)

1 1
which is only half of the bound in the ansatz in (2.4). Then the bootstrapping argument
implies (2.3). Next, we prove the energy inequality (2.1). Due to the equivalence of the

norms

3
1 W ~ W12 + D N0F FIIZ
i=1

3

It suffices to bound || (u, 0)||r2 and >~ ||(8Fu, 0F0)||,2. Firstly, we obtain the global L*-bound.
i=1

Dotting the equations in (1.3) by (u, 6) , integrating by parts and using V - u = 0, we obtain

1d
5 771w OIzz + VI Vaulz2 + nll6llz. = 0. (2:5)

Then applying the differential operator 9%(i = 1,2, 3) to the equations in (1.3), dotting the
resulting equations by (9Fu, %0) and integrating by parts, yields

143 3 3
S= > 1@Fu, 00) 172 + v Y 105 Vaullz2 +n ) 10760]]72
2dt — p p (2:6)
=11 + I,
where [; and I, are given by
3 3
L =- Z/@f(u V) - Ofudr, I, =— Z/@f(u -V0)0r0dz.
i=1 =1
Here we have used the fact that
/85(963) - OFudr — /8fu3(9§9d3: = 0.
Collecting (2.5) and (2.6), we have
1d
5 71w Ol + VIV aullige + 00l = I+ L. (2.7)

To estimate I;, we decompose it as

2 2
L =— Z/@Zk(u -Vu) - OFudr — Z/@g(uﬁju) - O¥udx — /@g(U383u) - O¥udz
i=1 j=1

=11 + Ly + L1s.
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I, is easy to bound. By the Leibniz Formula and Lemma 2.1,we have

2k
Iy =— Z ZCi/@fu - OF 'Y - OFuda

=1 =1

2 & 1 1 1 1 1 1
<O Y 10k 21010kl 21108V ul 22| 0208 V| 2, || 0Ful| 2. || 0s0F ul 22

=1 [=1

<Cllull e IV s

where C}, denotes the combinatorial number,

Using the same decomposition method,
2k
Lp=-)Y_Y Ci / ;081 0u - Obuda
j=1 i=1
2k 1 1 1 1 1 1
<O S 0k, | a0, 21105~ 0 2104 0y |l Bl a0
j=1 =1

<Cllull e IVl i

By V-u =0 and Lemma 2.1,
k
Ly =— ZCIZC / Obuz05 " Ogu - Oudx
=1
k
<C> ¢ / (V- up) 08y - Obud
1=1

k 1 1 1 1 1 1
SCZ ||a:l),_1vh : Uh||£2||a38:la_lvh : Uhlliz||3§_Z+IUI|§2||310§_’+IUI|32II3§UIIEQII023§UII§2
=1
<Cllull g V| Fe-

Therefore,

I < Cllull e | Vaul - (2.8)

Now we turn to estimate I,. We further decompose it as

2
L=-) / O (u - V0)Orodx — / % (u - V0)okodx
=1

=1o1 + Iy.
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To deal with I5;, we apply to Young’s inequality, Sobolev’s inequality, Lemma 2.1 and 2.2,

2 k
Li=-> ) ¢ / (0l - OF'V0)0 0dx

=1 [=1
2 k-1 2
=->> ¢ / (Ohu- 0F'V0)0F0dr — kY / (Ou - OF 'V 0)0Fhdx
i=1 [=2 i=1
2
B / (0Fu - V0)90dx
i=1
2 k! 1 1 1 1 1 1
<O > 10l f:110:05ull f2110:0;ull f2110:0:0ull 2 10~ V0| 2211050V O 221950 1
=1 [=2

2 2
+C Y N0l 105 VO 21086 2+ C Y (10Full 1V 1o 10761
i=1 =1

<C(llull e + 101 ) UV el 7 + 101 75).

Similarly,

k
Ip=-) C / (O - 057V 0)0kOdx
=1

k—1

-y / (O - AB1V0)kOd — / (Dyu - AB-1V0)Ok 0 — / (O - VO)OE0da
=2
k—1 1 1 1 1 1 1

<O | 0hull L |0105ull L. || 0:05ull L. [|010:05ul| L. || 05 V6] 2,050 2, || 056 2

=2

+ ClOsul < 95190 12956 .2
T CIIVO) 10,0 24 95V 01 24110105 V01|, | 05 2, 90wl 2, 95611
<Oull e + 160 6) (17l 2 + 16120):
Collecting the bound for I, we obtain

L < C(llull e + 11011 0) UV el e + [161170)- (2.9)

Inserting (2.8) and (2.9) in (2.7), integrating in time over [0, ¢], we deduce

t
E(t) < E(0) + C/O (el e IVl + (el + 100 ) IVl e + 1101170))dr
< B(0) 4+ CoE2 ().

which is the desired inequality (2.1). This accomplishes the proof of the global stability. It’s
easy to prove the uniqueness result of Theorem 1.1. Let (u(V,pM M) and (u®,p®?,6?)
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be two solutions of equation (1.3) with one of them in the regularity class, say (u",01)) €

L>(0, 00; H¥(R?)) must coincide. In fact, their difference (u,p, #) with

T=u® — D, p=p®_p0 =g _ g0

Y

satisfies
o+ u? - Vu+u-Vul) = —Vp+ vA,T + fes,
00 +u? - Vo+u- VOV + 13 +nd =0,
V-u=0,
u(x,0) = 0,0(z,0) = 0.

(2.10)

Taking the L2-inner product of (2.10) with (%, ), by Lemma 2.1, Young’s inequality and the

uniformly global bounds for ||(u™), 8M)|| &, we deduce

:—/(E-Vu(l)) .ﬂd;c—/(u.ve“)) - Odx
> 3 W)z W2 |12 3
<Clullzl|0vul| 72 [ Vur || 72 |0Vt | 2 ||l 22 || 02
1 1 1 1 1 1
+ O VOV L1900V | 1,105V 0W || 1 [|0:05V0W || £ [l 2. (10221 2. 16 2
1 1

<Cl|ull 2|Vl 2 + Cllal 7. [ Vazl 2. 10]] 22

v _ o
SEHVWIliz + Ol (@, 0)]l72.

where we have used the fact that
/563 -udr — /Eg@dx =0.
Then we apply the Gronwall’s inequality to get the desired global uniqueness,
[allz. = 9] = 0.

Thus the proof of Theorem 1.1 is completed.

3 Proof of Theorem 1.2

This section proves Theorem 1.2. We recall several lemmas before proving Theorem 1.2.
The first lemma states Minkowski’s inequality. It is an elementary tool for exchanging two

Lebesgue norms (see, e.g., [23, 35]).
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Lemma 3.1. For a nonnegative measurable function f over R™ x R™. Let 1 < g < p < o0.

Then

1010

For convenience, we introduce the notation

<

Lp(R™ La(Rn)

L8, (R?) i= L2, (RY), S lges, = |IF12,,

Y

e,
The second Lemma specifies an exact LP-L9 decay estimate for the general heat operator
associated with a fractional Laplacian. Here the fractional Laplacian operator can be defined

through the Fourier transform
A f(€) = 1€ F(€)-
The decay rate is stated as following, whose proof can be found in many references (see [24]).

Lemma 3.2. Let a > 0 and 8 > 0 are real numbers, 1 < p < g < oo. Then, for anyt > 0,

The following two lemmas offer upper bounds with optimal decay rates for two special

integrals (see, e.g., [36, 37]).

Lemma 3.3. Assume 0 < s; < sy. Then, for some constant C > 0,

CL 4, ifsr > 1,
t
/ (I4t—r) (147 2dr <4 CO+6) M n(l+1),  ifss =1,
0
C(1+t)ts1s2, ifsy < 1.

Lemma 3.4. For any ¢ > 0 and s > 0,
t
/ e (14 7) S dr < C(141)7%
0

Now we derive an integral representation of (1.3). First, we would like to eliminate the
bad effects of the pressure term and reveal the hidden structure in (1.3). We apply the
Helmholtz-Leray projection P = I — VA™!V- to the velocity equation in (1.3) to obtain

O = vApu + P(fes) — P(u - Vu). (3.1)
By the definition of P,
—8183A_19
]P)(Qeg) = fes — VA_lv . (963) = —8283A_10 . (32)

0 — 2A10
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Alternatively we can write § — 92A10 = A, A710. Inserting (3.2) in (3.1) yields

—010sA710
O = vApu+ | —003A70 | —P(u- Vu),
AhA_lig
00 = —uz —nb — (u - VO),

(3.3)

which separates the linear parts and the nonlinear parts. Then taking the Fourier transform

of (3.3), we have

i U M,
at[g\]:A{g]Jr i | (3.4)
where
el 00 8
U T R U
0 0 Gl
0 0 —1 —n
—(P(u - Vu))y
u = (ur,ug,u3)’, My =—Pu-Vu)=| —(Plu-Vu))y |, My=—(u-V0).
The characteristic polynomial of A is given by
2
O+ G PPO? + 4 G PA+ ol + ) =0,
where |&,]? = €2 + &2, and thus the eigenvalues of A are
—(n+v|&,?) = VT —(n+v|&?) + VT
M= o= vl 2= —OFASDZVE v VT
with
22 2 16
I'=m+v|&l")” — 4(vnlél” + W)'

By Duhamel’s principle

(50 e[ 0] ffenen ] Bt

By computing the corresponding eigenvectors and diagonalizing A, e4* can be obtained.

Then we have the following integral representation,
t

un(t) =eMag, + K (t)igs + Ko (t)0y — / M (P(u - Vu))p(7)dr
0

- /0 Ki(t — 7)(Plu - Vau))s(r)dr — /O Kot — 7)(u - VO)(r)dr, (3.5)
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@3(t) =K ()03 + Ka(t)y

_ /0 Byt — 7) (P~ V) )3(r)dr — /0 Ri(t— ) -VO)(r)dr,  (3.6)

0(t) =K (t)iigs + Ks(t)fo

_ /0 "Rt — 7)(P(a Fu))a(r)dr — /0 Rt SO, (37)
where
Ril) = (50 + 85610 +v6aGrl0), Ralt) =~ Gat)
Ralt) = ~Galt) — vl G (1), R -,
Ka(t) = —Ga(b), Ko(t) = Gs(t) + v|&Ga (1),
with
Gi(t) = %‘2‘?”5 Galt) = A?’GA;:__A;;M — MGa(t) — &,
Gs(t) = A4€A;1__Z€A3t = MG (t) + e,

We remark that when A3 = )4, the representation in (3.5), (3.6) and (3.7) remains valid if
we replace GGy by its limiting form
6)\4t _ e)\
Gi(t) = lim —— = te™t
l( ) )\41_13\3 Ay — A3 ¢

Next we analyze the behaviors of the kernels l/(\l(é ,t) through [/(\6(5 ,t), which play an
important role in the proof of Theorem 1.2. The kernels depend on the Fourier frequencies
&. We divide the frequency space into subdomains, and the following proposition provides

precise and sharp upper bounds in each subdomain.

Proposition 3.1. We split the domain R? into two subdomains, R® = A, J Ay with
2

A1::{§€R3: ﬁg%m’

2

AQ::{§€R3: \/f>%

3
e+ 2 > 24 vig P}

2 3
or vl + 15 < S+ vl

Then we have

13
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(I) There exist two constants C > 0 and co = co(v,n) > 0 such that, for any & € Ay,

1 1
Re)s < —5(77 +v[&]?), Rely < —1(77+ v|&nl?),

Y

|GL ()] < tem 1P E (1)) < c|’53|‘( —colénl*t . o=co+lenl)t)

|
1K ()] < CemeoHenl j =23 6.

(1) There are two constants C > 0 and ¢y = co(v,n) > 0 such that, for any & € As,

‘{h
3 U‘ghP +

Ag < —(n+ vIEn?), M\ < _T’“E?

h
IGL(1)] < 2(n + v[&[2) 1 (e + M),

l&n |2
5] e—colén®t | p—co(l+|enl*)t _%t

|K1()|<C|§h|( Te +e il ),

vnl&p | +%IT

|f(\z(t)| < C’(l + ‘€h|2)—1(6—00(1+|fh‘2)t + e ntvienl? t)’ i=2,4,5,

\Eh\
vnlep |2+ 2

K] < Ceo Moty o= mai ), j = 3,6,

If we further split Ay into two subdomains as follows
Ay = {€ € Ay, vIG|* <},
Agpy = {€ € Ay, VIG|* > 1},
Then, we have the following more explicit upper bounds
(a)For & € Agy,

(b)) < O"§3|’( —l6nlt y gmeol116n Pty
h

Ki()] < C(1+ [guf?) (e olenPt 4 emeoCHIy - = 9 4.5,
K1) < Celolt 4 emeotHaln 5= 3.6,
(b)For § € Az,

9

‘Kl( )’ <C |£3’|( —colén|?t + @_CO(1+|§h|2)t n e_qﬁ))

|
K ()] < C(1+ |&,2) " (emeolHaPE 4 emaoty =9 4 5,

(1)) < Clem ool ety j=3.6.

Proof of Proposition 3.1. (I) For £ € Ay, VT < ’”VTW Through the direct estimates, we

have

1 1
ReAs < —§(TI+ v|&l?), Rels < —1(77 + v|&)?).
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In order to further prove, we divide our consideration into two cases,

(i) For I' > 0, A3 and A4 are real numbers. Thus we have

ol Pl < 20+ ).
By the definition of A;, there exists a constant C' such that, for any £ € Ay, [£,] < C. Then
As], [Aa] < C.
In addition, by the mean-value theorem,
G ()] < te~alrtvIan)t,
Then we have
Ga(t)] = [AsGy(t) — et| < Cem 0t

and

|Gs(1)] = [AsGa(t) + eMt| < Cem o0&

By the definitions of I/(\l(t) through l/(\(;(t),

R < c'f—?*'l<ecolﬁh2t | ool

133
1K ()] < Ce00+a) i —923 6.

where we have used the simple fact that ze=“1* < C, for any > 0, C; > 0 and suitable
CQ > 0.

(ii) For I' < 0, A3 and A4 are a pair of complex conjugates. More precisely, we have

5 2
Dl el = \/vn|§h|2 T % < Voo + L.

As we mentioned before, || < C for any £ € A;. Therefore

|As], [Aa] < C.

Furthermore, since A3 and \4 are a pair of complex conjugates,

eMt — e

At 2sin(¥=Lt)
At — A3 '

_ o rvlaPye 2

Gi(t) =

5

Using the simple fact that |sinp| < p for any p € R, we have

G4 (t) < te_%(n+y|fh|2)t.
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The upper bounds for I/(\l(t) through [/(\6(15) then follow as before.

(IT) For £ € Ay, A3 and A4 are real numbers, and we have

2
% < VT <+ v|é|*
Clearly,
—(n+v|&)?) — VT 3
yy = D ZVE S e,
|€n |€n
A = —(n+v|&?) + VT _ 2(vnl€nl? + |g\2 ) _V7I|€h|2 + |5h\2
2 —+vlGP+ VD) T Gl
Then o o
et — e o\ 1/ Ast | Aat
G1(t)] = < 2(n+v[&l") (e 4 )

VT

2
vale 2+

< 2 + v|Ea|?) " (e UHE 4 T .
By the bound of T', there is
sl <+ v|én]*.

Consequently, we have

2
l”]|§h‘2+%

Ga(t)] < C(em@0HEME 4 o™ iy

and

2
an&h\2+‘f£h|‘2

|G3<t>| S O(e_co(l+|§h|2)t + €_Wt)'

Invoking the uniform bound for |G4], |G| and |G3|, we get

1€,12
7 |§3| 2 2 —Mt
|K;(t)] < m(e—colﬁhl L emeQHaDE L o i )
h
u’fl‘fh‘2+‘|€§h‘|22t
|K;(t)] < C(1+ |§h|2)—1(6—co(1+|£hl2)t +e il ) =245
un|eh|2+'f£h|‘22

K()] < CeoHalt g o™ mmi ) j =36

Finally, according to the upper bounds for l/(\l(t) through }/(\6(15), we can establish more
precise upper bounds by further division of Ay into Ay and Ag. For £ € Aqy, v|&]? < 1,

we obtain

2, el
vilénl” + T vnl&n vl

> > > col&nl?.
N+ v|&ul? n+ v|éul? 2n olé
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For £ € Ag, v|&,]? > 1, we derive

2, el
vile T vl wnlal
1+ v[&nl? n+vlénl® T 2v[)* T
This completes the proof of Proposition 3.1. Now we turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We prove Theorem 1.2 by the bootstrapping argument. We assume
the initial datum (ug,6y) satisfies (1.9) for sufficiently small € > 0. The bootstrapping

argument starts with the ansatz that

1(u(t), 601+ < Coe, (), 0() 22 < Cos(1 +1)72,
MVW<>vwa»m2scmu+w>s 1(@su(t), 8:6(t))|| 2 < Cos(1 +1)72, .
1(V3u(t), V2O(0) |12 < Cos(1+1)71,  [[(Vadsu(t), VadsO(t)) | z2 < Coe(1 +1)7,
1(03u(t), B20(t)) || 2 < Coc(1 + )72,

where Cj is a constant to be specified in the following proof. We show by using the ansatz

and the integral representation of (u,#) in (3.5), (3.6) and (3.7) that

1

I(e), 06 s < L. I((r), 00 e < Re1+0)7L,

(Fu(t), a0z < L4077, @), 001> < o1 +)E,

m

l\.’)\»—A

5 (3.9)

(V3. T30 < Lo 078, [(Tadhult), Vads(o) s < Lo(1+ 1)

g>

l\.’)\»—A

I(@u(r), 300> < Se1 1),

The bootstrapping argument then implies that (3.9) hold for all ¢ > 0.
It then suffices to prove (3.9). The first inequality follows directly from Theorem 1.1 with
k = 4. By Theorem 1.1, we have

u(@)|| s + [10() || gs < Che.

Then |[(u(t),0(t))||gs < e holds when we take Cy > 2C;. The rest of the implementation
relies on the upper bounds in Proposition 3.1. As a special consequence of Proposition 3.1,

we have For £ € A U Ay,
K| < O%e—%iﬁh'%, K| < Ce@l&l’t j =23 6. (3.10)
h

For f € A22,

[

K| < C| ’( el 4 gmeot) G| < Cemolnlt gm0ty i =23 6. (3.11)
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Since the proof is long and complicated, for the sake of clarity, the rest of this section is
divided into six subsections with each subsection devoted to one of the inequalities in (3.9)

except the first which has been proved.

3.1 Estimates of ||(u(t),0(t))|| >

This subsection proves the second inequality in (3.9). To estimate ||(u(t),0(t))||z2, we should
deal with it in three subdomains Ay, Ay and Asy defined in Proposition 3.1. By (3.5), (3.6)

and Plancherel’s theorem, we have
[w() | 2rsy =) || 2@s) < ([ (@)l 2@s) + 3 ()] 22s)
<[l tonl| L2 gs) + 1151 () tho3 ]| 2 sy + 12 (t) 80| L2 ms) + 1153 (8) oz | 22 ey

t
ROl + / 1M B V), (7) ] oy dr
0
t t
+ / HKl(t — T)]P)(U : VU)3(T)”L2(R3)CZT + / ”KQ(t — T)U : VQ(T)HL2(R3)CZ’T
0 0

t t
T / 1Rt = 7)P(u - V) (7) | aqaeydr + / IRt = 7 VO | s dr
0 0
=Jy+ Jo+ ...+ Jio. (3.12)

We first bound J;. By Lemma 3.2, we derive

Ji=|le colénl?t 0Apt <O(1+t) 2||U0h||L2 1.

2 T3 T Th,
Lzs

o zaqen) = |le > uonllzz,

By V- uy =0, (3.10), (3.11)and Lemma 3.2, we have

[
[€nl

(—1€n| - won) |22

Jo =K1 ()03 | 22 0a,0a00) + 1K (@)03]| 24y < Ol (7 4 o7 ag |2

<C|||§ | e 0t (] - dgn) || + Ce |l |§ |

<Ol ugp |2 + Ce™ ugn|| 2 < C(1+1)~ 2(||U0h||Lg3L;% + [[uonl|z2)-
where we have used e~ < C(1 +¢)~2 for any ¢ > 0. Similarly,
J3 =[| K2 (t)0ol L2(a,04:) + [[K2(t)00]] 22 (4,0)
SCHe—co\ﬁhI?té;)HLg + Ce_cotHQo“Lz < C(l + t)_%(HQOHL?%L}Uh + ||90||L2).

Due to the same bound of f{\i(t), 1 =2,...,6, Jy and J5 can be estimated analogously, we

have

_1
Jo SCA+16)72 (luosllLz, 21, + lluosllz2),
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and

Js < CL+)72([60llzz, 1, + 160]]22)-

By the definition of the projection operator P = I — VA~V we distinguish the horizontal

derivatives from the vertical ones, thus we obtain

P(u - Vu), = u-Vu, — VATV - (u- Vu)
= uy, - Vaup + uzOsuyp, — AN VAR v/ Vh(u X u) (313)

Using the boundedness of the Riesz transform on L?, simultaneously,
IATV -V fllze < Ol fllze, (3.14)
then correspondingly the upper bound of Jg consists of three parts,

t t
Jﬁ < / HecoAh(t—T)uh . thh(T) HdeT 4 / ||ecoAh(t—7)u383uh(7-) HdeT
0 0

t
0 [ e u)()]
0

=Jo1 + Jo2 + Jes.

Applying Sobolev’s inequality, the ansatz in (3.8), Lemma 3.1, 3.2 and 3.3, we obtain

dr
L%s

t
Je1 S/ H|’€coAh(t4)uh,thh(T)HL%h
0

dr

2
LI3

t
gc/ (1+t—71)"2
0

[ - Viun(7)l L1

dr

2
Lz3

t
gc/ (1+t—7)"2
0

a2, 19wz,
<0 [ 0t =) s, IV 1,

< ¢ [ 0t t= ) M)z o Vo ndr

< ¢ [ 1= H ) 1) Tan )

(1 +T)_%d7'

N

t
< 000252/ (1+t—7)"
0

N[

<CCZ*(1+1t) 2.

19
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Jg3 contains the good derivative V; and admits the same upper bound as Jg;. We now turn

to Jeo2,

t
Jo2 S/ €2 Oy (1) 12 dr
0 g,
t 1
<C / (14t —7)7 ||Jusdsun(mlly || | dr
0 Th || 1,2

3

t L )
< C/ (L+t —7) 2 |lus(7)] 72 105us(7)]| 72 |05un(T) || L2dT
0

t L )
< C/ (L+t = 71)7 2 lus(7)|7211Va - un(7)] 72 105un(T) || L2dT
0

lo»—A

t
< 000252/ (1+t—7)2(1+7) idr < CC2*(1+1) 2
0
Combining the upper bounds of Jg1, Jg2 and Jg3, we have
Jo < CC22(1+1)72.

We now bound J;, By observing the constraint form of f(\l(t) in (3.10) and (3.11), we need
to generate the factor &, from P(ﬁ u);. By the definition of IP, we have

P(u - Vu)z =u- Vug — BAT'V - (u- Vu)
:81 <U1U3) + aQ(UQU;g) — 83A_1(61V . (uul) + 82V . (UUQ))
— 83A_18381 (U1U3) — 63A_18382(U2u3) + A_lAhag(U;g’LLg). (315)

It is clear that each term contains 0; or Js, then Fourier transform gets the desired factor

&r. Thus we have

t t
J7 :/ ||K1(t_7_>]P)<u'VU)3||L2(A1UA21)dT+/ ”Kl(t—T)P(U, VU)3||L2(A22)dT
0 0

—

<C / (&=l =) 4 om0t (& (wrag) + € (un)
+ & PIET2V - (uun) + V- (wuz)) + [E[21€] (D5 (urus) + 3(ugus) + Vi(ugus))) || p2dr

t
SC/ ”ecoAh(t_T)asth:S)HLZdT+/ e DN, - (upun) || 2dT
0 0
¢ ¢
+/ ||€(30Ah(t—7')vh.(uhu2)||L2dT+/ ||€COAh(t—T)Vh(u3u3)||L2d7-
0 0
t t
+/ eCU(tT)]\ﬁg(uhug)]\deT+/ e’cO(t*T)HVh.(uhu1)||de7'
0 0

¢ t
# [ T sy + [V s
0 0

:J71+J71 ++J78
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The progress of constraining J;; through J74 is much similar to Jg. Thus we obtain
Jr + Jro + Jrg + Jr < CC22(1 + 1) 2.
By V - u = 0, Holder’s inequality, Lemma 3.4 and the ansatz (3.8), we have
t t
Jrs SC’/ e_CO(t_T)\|u383uh\|deT+/ e~ up (V) - up)|| 2dT
0 0
t t
SC/ e g | s || O o + / e~ fup | 6|V - wn o7
0 0
t (1) 1 3 1 3
SC/ e O D us| 2 | Vus]| 22 | Osun | 22 |1V Osun || 12 dT
0
 alt-n) 2 2
+ C/ e V|2 [V - unll 72 IV (Vi - un)lF2dr
0

t ¢ )
<CCge? / e’CO(t’T)(l + 7)Y + CCge? / e’CO(t’T)(l + T)’%dT
0 0

[SIES

<CC3*(1+1t) .
The handling of J.4, J;7 and J7g are same as the second term of J75, thus we yield the same

constraint result
Jre + Jrr + Jrg < CCRe?(1 + t)_%-

Combining the upper bound of J;; through J;5, we derive
Jr < CC2(1+ 1) 2.
By (3.10) and (3.11), Jg can be separated two parts,
t - b —
J8 :/ HKQ(t — T)u . VHHLQ(AluAgl)dT + / HKQ(t — T)u . VQHLQ(AQQ)dT
0 0

t t
SC/ |e=0ler* =), T78|| padr + C/ e~y - V|| 2dT
0 0
=Jg1 + Jsa.
Using u - VO = uy, - V0 4+ u3036, yields

t t
ng < C/ HecoAh(tiT)Uh . Vh@”[ﬁdT + C/ HeCOA’L(t*T)u;gageHdeT.
0 0

The two terms on the right-hand side can be bounded as Jg; and Jgo above. The progress

of dealing with Jgs is similar as the first term of J;5. Thus, we obtain

Js < CC22(1+1)72.
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By V-4 =0 and (3.10), (3.11), we yield

P(u-Vu)s =u - Vuz — 3A'V - (u - Vu)
=(up - Vp)us — ug(Vy, - up) — O5AV - (up, - Viu) — O3ATV - (ugdsu).  (3.16)

Then
t —_~ —_— t —_~ —_—
Jo =/ | K5(t — 7)P(u - V)| r2(a,0a,,)d7 +/ [ K5(t — T)P(u - V) 12(a5)dT
0 0
t t
SC/ Hefco\ﬁh|2(t77')1[l>(u . Vu)3HL2dT + / He*CO(t*T)IP’(u . VU)3HL2dT
0 0
t t
SC'/ ||€C°Ah(t_7) (up - Vi)ug||p2dr + C/ ||€C°Ah(t_7)u3(vh ~up) || p2dT
0 0
t t
+ O/ ||€c0Ah(t—T)<uh . vh)UHHdT + C/ HecoAh(t—T)u383u||L2d7-
0 0
t t
+ C/ e’CO(t’T)H(uh - Vp)ugl||p2dr + C/ e*CO(t’T)Hug(Vh - up)|| p2dT
0 0

t t
+ C'/ e (uy, - Vip)ul|p2dr + C/ e~ | ugdqu| p2dT
0 0
=Jo1 + Jo2 + ... + Jos,

where we have used the boundedness of Riesz transform,
10sA7IV - fllze < O fllz2- (3.17)

Observing the form of Jy; through Jog, they are easy to be estimated like beforementioned

terms, thus we have

Jo < CC2*(1+1)72.

I/(\4 obeys the same bound as [/(\2, then

N

Jio < CCZ*(1 +1) 5.
Inserting the uppers bounds of J; through Jio in (3.12) leads to
lu(®)lz2 < ColL+ 1) 5o, B0)lz2 + |t B0)z, 21, ) + CC3(M+0) 2 (3.18)
Therefore, if we choose Cy and ¢ satisfying

Oy < %, C3Che <

ol —
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Using the initial data condition in (1.9), then (3.18) implies

D=
N

11
()|l < %5(1 + )7+ Cos(1+1)7F = %au F)h

By the integral representation formula of (3.7), we have

10| 2@y <|| K5 () @03 r2@s) + |1 K6(t)0ol| 2 e
t t
+/ﬁW%@—fWW-VwAﬂMmWﬂT+/QW%U—TW-VWﬂmeﬂT
0 0

:L1 +L2 +L3 +L4

Due to the same bounds of f(\l-, 1 =2,3,...,6, Ly through L, have the same upper bound
with Jy, Js5, Jo and Jyg, respectively. Thus we have

C 1
[6(t) ]2 < “Pe(1 + 1),

Therefore,

N

J(w(e). 60 < Let +0)7%.

This completes the proof of the second inequality in (3.9).

3.2 Estimates of ||(V,u(t), V,0(1))| 2

The goal of this subsection is to prove the third inequality in (3.9). We again make use of
the integral representation (3.5), (3.6) and (3.7). Applying V;, to (3.5), (3.6) and (3.7), then

taking the L?-norm, we obtain, after using Plancherel’s theorem

IVhu(®)l22s) = Vnu(l s < [Vnun(t)]2s) + Vs (@)]|zzes)
<[V huonl| 2 + 1K1 (8)Viruos| 2 + | Ka(t)Vabol 2 + || K3(t) Viatios| 2
t —
+ || K4 (t) V00| 12 +/ ||€/\1(t_T)Vh]P’(u . Vu)h(T)HdeT
0
t t
+ / | K1 (t — 7)ViP(u - Vu)3(7')||L2dT + / | Ko(t — 7)Vi(u-VO)(T)|| r2dT
0 0

¢ ¢
+ / | Ks(t — 7)ViaP(u - V), (7)|| 2d7 + / | K4t — 7)Vp(u-VO)(T)|| r2dT
0 0
=M, + My + ...+ M. (3.19)
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and

IV A0(8) || 2wy =[IVRO()]| 2as)

t
<[|K5(t)Viuos|| 2 + | K6(t)Vibo|| 2 +/ | K5(t — 7)ViP(u - Vu)o(7)|L2dT
0

+ / | Ko(t — 7)V(u - V0)(7) | odlr. (3.20)

By combining the experience gained from J; through J;¢ above, we would simplify some of
the cumbersome processes in dealing with M; through Mjy. Using Lemma 3.2 and noticing

that

M, < ||6_CO‘§h|2tV/h—/u\0h||L2 _ HHGCOAhtvhUOhHLgh

-1
s, < GO0 sz,

The handling method is the same as in Jy, applying V - uo = 0, (3.10), (3.11) and Lemma

3.2, we have

MQ §C||eC°Ahch . u0h||L2 + Ceicot”Vh . U0h||L2

<C(L+1) " (luonllzz, 2y, + lwonlla),

where we have used the simple fact that e=®' < C(1 + ¢)~'. Then Mj through M; are

obtained easily, we have
My + Ms < C(L+6)7 (100|221, + 100]lan),

and

My < O+ ) (luosllzz, 21, + lluosln).

As in (3.13), we write

P(u - V), = usOsuy + up - Vaup, — AV -V - Vi (u @ ).
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Thus Mg is further decomposed into three parts,

t t
Ms g/ HecoAh(tT)Vh(ugﬁguh)deT—i-/ HecoAh(t’T)Vh(uh - Vyup)||L2dr
0 0
t
+/ e DN,V (1 @ u) | r2dr
0
t
-
t
+
0
t
S/ (1 +t— 7')_1 Hl|u383uh”Lﬂlch
0

+/Ot(1+t—7)1

where we have used the boundedness of Riesz transform in (3.14). The three terms on the

||€c0Ah(t_T)Vh (U383uh) || Lz,

t
. d7+/ e &IV (uy - )z || | dr
z3 0 T

2
L,.3

dr

2
L,

t
‘ d7'+/(1+t—7')_1
Lz, 0

dr

2
Lz,

[ - Viunlrs

dr,

IVh(u®u)llsy,

L2

3

right-hand side are parallel to Jg, whereupon we get
Mg < CCR*(1+t)t

Due to the specificity of K in (3.10) and (3.11), we should give M7 more attentions. During

the estimation process 0sP(u - Vu)s is needed to handle. As in (3.15), we can further write

](%,]P’(u . VU)3| S\alé?g(ulug)\ + ’6283(UQU3)’ + ’(93(93A71<81V : (uul) + 82V : (UUQ))‘
+ |8383A_1<83(91 (U1U3) + 3382(u2u;5))| + |(93A_1Ah83(U3U3)|
<C(|Vi0s(upus)| + | ViV - (uup)| + [Ap(ugus))|). (3.21)

Thus

My = /Ot 1K (¢ = 7)VaP(u - Vs z2(a0andT + /Ot K1 (t = 7) Vi (- V)3 2 gy dT
<C / t le= 0l "7 P (u - V)| podr + / t =) 95 P (u - Vu)s| 2 dr
0 0
<C /t e, Dy (upus) || 2dr + C’/t e, V), - (upuy) || p2dr
0 0
+ C’/t |e«0A =7, V), - (upus)|| 2dT + C /t e DAY (ugusg) || 2dr
0 0
+ /0 t e~V 05 (upuz) || 2 dT + O /O t e NV - (upuy)|| p2dr

t t
+ C’/ e~ ||V, - (upuy)|| 2dT + / e~ Ay (ugus) || 2dr
0 0

:M71 + ... +M78.

25
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M7, through M7z are similar to those terms in Mg and admit the same bound. By Holder’s

inequality, Sobolev’s inequality, Lemma 3.2 and 3.3, the ansatz (3.8), we have

dr

2
LI3

t
Moy SC/ H!|€C°Ah(t4)Ah(U3u3)HLih
0

dr
L?ES

lugus||ry,

t -
gc/<1+t—7>-%
0
t 3 3 1
<c / (Ut — 1) Husl LIV - unl Fadr
0

t
SCC’S&Q/ (1—|—t—7')_%(1—|—7')_%d7'
0

<CCFe*(1+t),
The process of dealing with Mz is somewhat cumbersome, and we need divide it into four

parts. Using V - u = 0, we have

¢ ¢
M5 SC'/ e_CO(t_T)Hu3Vh(93uh||L2dT + C’/ e_co(t_T)Hthth “up|| p2dT
0 0

t t
+ C/ 6700@77_) H83U}ZV}LU3HL2d7' + C/ 6760(1&77’) Huhvhvh . uhHLZdT
0 0

= Mzs1 + Mqsy + Mysz + Mzsa.

Applying Holder’s inequality, Sobolev’s inequality and Lemma 3.4, we derive
t

t
Miosy + Mosy SC/ e_CO(t_T)||u3||L6||Vh83uh||L3dT+C/ e_co(t_T)HuhHLeHVth-uh||L3dT
0 0
' altn) 2 2
SC’/ e~ T\ Vug|| 2 ||V aOsun || 12 |V VaOsup || ;2 dT
0
t 1 1
+ c/ V2 VeV - wnl| B[V VoV - | Eodr
0

t t
<CCge? / e (14 1) dr + CCe? / == (1 4 ¢)~3dr
0 0

<CCFE*(1+1)7H,

and

. t
Mzso + M5 SC/ e_co(t_T)ylvhuh’|%4dT + C/ e_CO(t_T)“aﬁiuhHL‘lehu?’H“dT

0 0

t 1 3
<c / e[V un 21V V run 22
0
L —eolt-m) i i i :
+0 [ e oyl VO Vsl 9 s
0

t t
<CCge* / e~ D1+ ) dr + CCRe? / =0t (1 4 1) 3dr
0 0

<CC3*(1+t)h
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Combining the bound of M5, through M7s4, we have
M5 < 00352(1 + )7t

The terms in M7¢ through Mzg can also be bounded like as those in M5, the details are

omitted. As a consequence, we have
M; < CC3*(1+t)t
By (3.10), (3.11) and u - VO = uy, - V1,0 + u3056, we obtain
M SC/Ot e =D, (wy, - V30)|| 2dr + C/Ot eI, (usDs0)|| L2dr
+ C/Ot 0= |V - VO padr + C/Ot =207 |y - V, V0| o

The four terms on the right-hand side are similar to some terms in Mg and M; and admit

the same bound. By the definition of P and V - u = 0, we have

ViP(u - Vu)s =V (u - Vug) — Vi,dsA™'V - (u - Vu)
:Vh(uh . VhU3) — Vh(ugvh . uh) — 63A_1V . Vh(uh . th)
— 83A71V : Vh(u383u). (322)

By (3.10), (3.11) and the boundedness of the Riesz transform in (3.17), we have
My SC/Ot |02 =N (ug V), - up,)|| 2dr + C’/Ot |e02n =N, (uy, - Vi) || 2 dr
+ C’/Ot |02 =N, (ugDsu) || L2dT + C /Ot e~ (us Vi, - up) || p2dr
+ O/Ot e UV (up - Vi) p2dr + C /Ot e~ ||V (usdsu) || 2 dr

The estimation of these items using the same method as before are relatively easy. We can

obtain the same constraint results, namely
My < CCRe*(1+1t)t

By (3.10) and (3.11), we can see Mg is same to Mg. Collecting the bounds from M; to Mg

and inserting them in (3.19), we obtain, after using the initial data condition in (1.9),

| Vaulle < Ce(148)" + COZ2(1 + 1)~
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The estimate for ||V,,0||z2 using (3.20) is very similar and we omit the details. Therefore,
I(Vhu(t), Vab(®)ll2 < Cae(1+1)7" + C5C5e*(1+ 1)

If we choose Cy and ¢ satisfying

then
C,
1(Vhu(t), Vad ()| 2 < 705(1 +4)7

This completes the proof of the third inequality in (3.9).

3.3 Estimates of |[(0su(t), 050(1))|| 2

We now verify the upper bound for ||(ds3u, 936)||r2 in (3.9). Applying 95 to (3.5), (3.6) and

(3.7), then taking L*-norm, after using Plancherel’s theorem. We have

[05u(t)[| L2mey =[105u(t)]| 2(re) < [|O5un(t)||L2(re) + [|O5us(t) || L2re)
<[l Dsuon|| 12 + | K1 (£)Fsuos | 2 + | Ko (1)l 12 + || K3(t)Dstugs| 2

¢
+ [| K4 (t) 0500 | 2 +/ 1M D05 P(u - V), (7)|| p2dT
0
¢ ¢ -
+ / | K (t — 7)0sP(u - Vu)y (1) || p2dr + / | Ko(t — 7)05(w - VO)(T)|| 2dT
0 0

n / 1Rt — 7)05B (- V) (7) | 2l + / IRt — 7)0s(a - V0)(r)||podr

=N; + Ny + ...+ Nyp. (3.23)

and

1050(t) | L2m3) =|030(t) || L2 (ms)

t
§]|K5(t)33u03HL2 + HK@(t)ageo”LQ —|—/ HK{,(t — T)ag]P)(U : VU>3(T)’|L2dT
0
t —_—
n / 1EKs(t — 7)05(u - VO)(7)|| 2dr. (3.24)
0

In fact, N; to N5 can be shown by repeating the process for J; to Js with dsu and 050

replacing u and 6, respectively. Thus, we have

Nit ...+ N5 < C(1+ 1) (|| (Osu0, s60) 122, 2, + | (o, 00) 1)
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As in (3.13), we can write

03P (u - Vu), =0su - Vuy, +u - 5Vuy, — BV,ATV - (u- Vu)

=u3033up, + ((%,uh -Vyuy, — Vy, - uhﬁguh) + uyp, - V,03up, — 83A_1V . Vh(u . VU)
(3.25)

Combining the boundedness of Riesz transform in (3.17), corresponding Ng is then divided

into four terms,

t t
N6 S/ ||660Ah(t_T)U3(933UhHdeT + / ||€CoAh(t_T) (Gguh : thh - Vh : uhﬁguh) ”L2d7'
0 0

t t
+ / HecoAh(tiT)uh . VhﬁguhHdeT + / HecoAh(tiT)vh (u : VU)HLQdT
0 0
=Ng1 + N2 + Neg + Nea.
By Sobolev’s inequality, Lemma 3.1, 3.2, 3.3, and the ansatz (3.8), we have

dr

2
LI3

t
N61 :/ H||€COAh(t_T)U3833uhHL%h
0

dr

t
SC/(1+t—7)—%
0

||U3833Uh||L}Ch I,

¢ a1 1 1
< / (4t — 1) Hlusl IV - unll s | Bssun| e
0

t
gcogé?/ (1+t—7)2(1+7) idr
0

<CCFe*(1+t)"2

Ngz can be dealt with similarly,

t
Ney <C /

<C/ (1+t—7)2

m

dr

HeCOAh (=7 83uh thhHLz )
Ll.3

||(93uh thhHLl dr
L%S

1 1
SC/ (1+t—T)ié||83uthgH833uh||[2/2thuhHL2dT
0

t -
§00352/ (1+t—7)2(1+ T)_%d’i'
0

<CC2(1+1) 2.
We apply the same processing method and yield the uniform upper bound about Ng3 and

Ngy4. By estimating J7, we can obtain

KL (8)P(u - Vu)y| < Clem 4 et (105 (wyug)| + [V - (upwr)]
+ Vi - (unus)| + |Va(usus)]), (3.26)
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then
t t
N7 SC/ HeCOAh(t*T)(?gg(uhug)HdeT + O/ HecOAh(t*T)agvh . (uhul)HdeT
0 0
t t
+C / €229,V - (upun)|| L2dT 4 C / €21 95N 1 (ugus)|| L2dT
0 0
t t
+ C / €_Co(t_T) H833 (UhU3) ||L2d7' -+ C/ G_Co(t_T) ||63Vh . (uhul) ||L2d7'
0 0

t t
+ C/ €7co(t7T)H83Vh . (UhUQ)HLQdT + / €7CO(t7T)H83Vh<U3U3)HL2dT
0 0
:N71 4+ ...+ N78.

N7 through N74 can be estimated easily. In order to estimate N75 more accurately, after

using V - u = 0, we divide it into three parts for better clarity,
t t
N75 SC/ Bico(tiﬁr) Hu3(933uhHdeT + C/ 6760(1&77’) Haguh(vh . uh) HdeT
0 0

t
+ C’/ e_CO(t_T)Huhag(Vh “up) || p2dT
0
=Nz51 + Nrsz + Niss.
By Hélder’s inequality, Sobolev’s inequality, Lemma 3.4 and the ansatz (3.8), we have
t t
N751 + N753 SC/ €7co(t7T)‘|U3HL6”agguhHL3dT + C/ e*CO(t*T)HuhHLaﬂagvh . 'LLh”LBdT
0 0
o (t—7) 1 1
<C [ e T2 O | VO
0
t (t—r) 1 1
+O/ e N up || 22 |05Va - un |2 VO3V - up |} dT
0
t t
<CC2e? / e~ (1 4+ ¢)"idr + CC2e? / e~ (1 )7 Ldr
0 0

<CC2((1+1) 2.

N759 is same as Mqyz. N7g to N7g can be estimated by similar progress. In general, we have
2_2 -1
N; < CCye“((1+t) 2.

The terms in Ng thorough Ny can also be bounded similarly and the details are omitted.
Collecting the bounds from N; to Njp and inserting them in (3.23), we obtain, after using

the initial data condition in (1.9),

105u(t)||r2 < Ce(1+t)"2 + CC22(1 + ) 2.
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The estimate for ||050(t)]|z2 using (3.24) is very similar and we omit the details. Therefore
1(Dsu(t), Dsu(t))|lz2 < Coe(1+1)72 + CrC32(1 + 1) 7=, (3.27)

If we choose C and ¢ stisfying

then (3.27) implies

M\»—A

Co
1(Osu(t), Du(t))|| L2 < 78(1 +1)”
This completes the proof of the fourth inequality in (3.9).

3.4 Estimates of ||[(Viu(t), V20(t))]| 12

This subsection establishes the fifth inequality in (3.9). Applying V2 to (3.5), (3.6) and
(3.7), then taking L?-norm, after using Plancherel’s theorem. We have

IVu®)|| r2e) =||V;21 Ol z2@s) < ||thh( M2 msy + ||th3( M z2ws)
§||€A1tV;21U0hHL2 + ||K1(75)V;21U03||L2 + ||K2(t)V;2L90HL2 + | K3(t) V2ugs | 2

—— t ——
+|\K4(t)v,%90HL2+/ |eMEIVIP(u - V), (1) || p2dT
0
t o t - o
T / 1B (= 7)V2P(a - Vau)y (7) | edr + / IRt — 7)V2 (- V0)(7) | edr
0 0

t —_— t —~ —_—
+ [Nt = 1) V3Bl Valy(Dladr + [ 1R = 79300 VO
0 0

and

IVRO@) 2y = VAl L2

— e~ — t e~ —
<|| K5 (1) Viuos| 2 + [ K6(t) V700 12 +/ | K5 (t — 7)ViP(u - V), (1) || p2dT
0
t —_—
+ / | K(t — T)V%(u -VO)(7)| L2dT. (3.29)
0
We start with ||V3u(t)| 12, by Lemma 3.2, we have

SC(l—i—t) 2||u0h||L2 Ll .

T3 Th

013’

coAptyr2
le* ™ NVhuonllzz, ||,




32 W. YANG and M. PENG

By the upper bounds of f(\i, i=1,...,6in (3.10), (3.11) and Lemma 3.2, we obtain
Oy <Cle= 1 |5|Vyugs | L2 + Ce™ | |&3| Vtos | L
<C|e“B N, V), - ugn| 2 + Ce™ |V V), - uonl| 22
<O+ )75 ([Juon|zz, 23, + luonll).

3Ty

where we have used e~“! < C'(1 + t)’%. Analogously, we yield
_3
O3+ 05 < C(L+ )72 ([|00]l 22,21, + (100l z2),

and

_3
04 S O(l -+ t) 2 (Hu03HL%3L,~1¢h + |”LL03HH2).

Next, we estimate the nonlinear terms. By the expression of P(u - Vu), in (3.13) and using

the fact that the boundedness of Riesz transform in (3.14), we have
t t
06 S/ ”ecDAh(t_T)Vi(Uh : thh)“LQdT +/ HecoAh(t_T)Vi(u;;@;:,uh)HdeT
0 0

¢
+/ HecOAh(t_T)V%Vh(u ® u)||p2dT
0

By Holder’s inequality, Sobolev’s inequality, Lemma 3.1, 3.2 and 3.3, we have

t
061—/
0

t
§0/<1+t—7)%
0

dr

coAp(t—7) 72 .
[|ecoRn Vi (up, thh)HL}QL 2,

dr

lun - Viually |

3

t 3 1 1
<c / (U4t =) a2 Osunl| 2 |V san ol
0

e

t
§C’C§€2/ (1+t—71)" (1+7’)_%d7
0
<CC22(1+ 1) 2,
and .
1 1
062 SO/ (1+t—T)_%||U3||ZQ||Vh'Uh‘|ig|‘83uh||L2dT
0
t
gccgEQ/ (1+t—7)"2(1+7) dr
0

<CC2(1+ 1) 1.

Ogs is same as Ogp, combining Og; to Ogz, we have

Op < CC2*(1+1)71.
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By the upper bound of K; in (3.10) and (3.11), there is

O, < /t ||eC°Ah(t_T)Vh83]P’(u -Vu)s||L2dr + /t e_CO(t_T)||Vh83IP(u - Vu)sl|p2dT.
0 0
Using the beforementioned estimate with |03P(u - Vu)s| in (3.21), we have
O~ SC’/t ||ecoAh(t_T)V,2183(uhu3)||L2d7' + C/t ||e°°Ah(t_T)V,2th (upuq)||p2dr
0 0
+ C'/Ot €22, - (upuy) || L2dT + C’/Ot e DALV, (usus) || 2dT
+ C’/Ot e_CO(t_T)HV,zlag(uhug)HdeT + C/Ot e_CO(t_T)HV,QZVh - (upuy)|| 2dT

: t
+ O/ e DVEV - (upuy)|| p2dT + C/ e~ AV (ugus) | z2dT
0 0
2071 + PP + 078.

The estimates for O7; through O74 can be obtained similarly. We now deal with O75 to Ozs.
By the ansatz in (3.8) and Lemma 2.2,

1 1 1 1 1 1 25
lullzoe < Cllull 2l Vil £ l10sull 2 [ Vaull 52 [ Vadsull 12 9123l ;2 < CCos(1 +1) 75 (3.30)

Using V - u = 0, Holder’s inequality, Sobolev inequality, we consider the norm
V3 0s(unusg) ||z <|lusVidsunl| L2 + | Viundsus| 2 + || Vidsun Vius|| 2
+ | Vhun ViaOsus|| 2 + ||0sun Vius|| 22 + ||unVidsus|| 2
<lus|| o= | V3 05unl| 2 + Cl|Viun|l 3| Vi - unl| s
+ [ Vadsun s | Viusll o + [ Vius|l 2 |0sunl oo + lunllzos [V, - unl| 22
<Cllus e | V3unll 7292Vl £ + ClI V3w a1V V2] IV V2
+ OV 1Bsun | 22 V'V nDst | 2|V V s | 2
+ O VEus 22 | Osun | 920stnll o + C L | V| 22| V2 30n | o
Therefore, O5 can be divided into five parts. By the ansatz in (3.8), upper (3.30) and

Lemma 3.4, we have

t

1 1
O751 + O7s5 ZC/ e_CO(t_T)”U:i”Lw||viuh||z2||v2viuh”[2,2d7'
0
! t 2 5 292 3
e / e |y | oo | V3|2, | V2V 2t | 2,
0

t
SC’C%&Q/ e~lt=7)(1 —|—T)_%d7'
0

<OC*(1+1) 1,

ot
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Similarly,
Ozsa + Ors3 + Orsq < CCZ*(1 + t)fg-

Consequently,

EN[e

075 S 00362(1 +t)_ .

The terms in O¢ throuogh O7g can also be bounded similarly and the details are omitted.

Whether £ € A; U Ay or £ € Ags, Og through Oy are easily estimated like O;. Namely
Os + Og 4 O19 < CC22(1 4+ 1) 1.

In general, collecting the bounds from O; to Oy and inserting them in (3.28), after using

the initial data condition in (1.9), we obtain
IViul2 < Ce(1+ t)‘% + 00221 + t)_%'

The estimate for ||[V26(t)||2 using (3.29) is very similar and we omit the details. Therefore

ot

|(Viu(t), Va0 () |2 < Cse(1 + t)’% + CoCae*(1 + 1)1,

If we choose Cj and ¢ satisfying

then

ot

C
|(Viu(t), VR)O®z2 < Zre(l+ 1)~
This completes the proof of the fifth inequality in (3.9).
3.5 Estimates of ||[(V,05u(t), Vi050(t))]| 12

This subsection establishes the sixth inequality in (3.9). Applying V,0; to (3.5), (3.6) and

(3.7), then taking L?-norm, after using Plancherel’s theorem. We have

IV dsu(t)|| 2 =[|Vadsu(t) |2 < | Vadsun(t)||r> + || Vadsus(t)]] 12
<MV Bstonl 2 + | K1 (6)Vidsuos| 2 + | K2(t)V0500]| 2

t ——
+ || K3(t) ViOsuos || 2 + || Ka(t) V10500 12 +/ 1MV, 05 P (u - V), || L2dr
0
t t
+/ 1R (t = 7)VdsPla - Vi), | pedr +/ 1Tt — 7)Vads (- VO) | ol
0 0

t t
—i—/ HKg(t—T)VhaglP’(u-Vu)3|]L2dT+/ | K4(t — 7)V30Os(u - VO)| p2dr
0 0

=P+ P+ ...+ P. (3.31)
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and
IV4850(t)]| 2 =[|VrB50(1) | 2

t
S"K{,(t)vhagUOgHL2 —+ HKG(t)VhGg,GOHLz + / HK5(t — T)Vhagp(u . VU)3HL2d7'
0

t —_—
+ / IKs(t — 7)Vads(u - VO)|| 2dr. (3.32)
0

This terms contain the good derivative Vy, it can be used to improve the decay rates. But
we can’t apply the bad derivative d3. Next, let’s look at the specific handling process. Using

Lemma 3.2, we have

P = H”eCoAhcha:s’LLOh”L%h 12 < O(l + t)_1||83UQh||L3263L915h,

z3

By the upper bounds of K in (3.10), (3.11) and V - uy=0, we have
P, <C )

||660Aht83vh . uOhHL%h

’L2 + C’e‘cotHath . UOh||L2
z3

SC(1+t)_1(||a3UOhHL2 Ll +||uOh||H2)a

r3 ),

where we have used (1 + t)e~“" < C. By the same technique, we obtain
Py+ P < C(1+1) (10500l 22, 1, + 100l 2),
Py < C(1+ )" (105u0sll ez, ry, + lluosll2).

Applying the estimate of O;P(u - Vu)y, in (3.25) and the boundedness of the Riesz transform
in (3.14), thus

t t
P6 S/ ||ec°Ahch(u3833uh)HdeT + / HeCOAhch(@guh . thh — Vh . uhaguh)HdeT
0 0

t t
+/ |02, (uy, - Vha3uh)\|L2dT+/ [N (u - V)| padr
0 0

=Ps1 + Pea + Poz + Fea.
By Holder’s inequality, Lemma 3.1, 3.2, 3.3 and the ansatz in (3.8), we derive

t
P61 :/ H660Ah(t_7—)vh(U3833uh)||L%h dT
0 L3,
t
SC/ (1+t—T)_1 H|’u3833uh||l/%h 12 dT
0 z3

t 1 1
SC/(1+t—T)1|!U3\|22||Vh‘Uh||22||333uhHL2dT
0

t
<CC2e? / (1+t—7)""(1+7)"1dr
0
<CC3*(1+t)h
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Using the same beforementioned conditions and technique, Py to Ps4 can be obtained the
same bound, the details are omitted. By the bound of |IA(11P>(U - Vu)s| in (3.26), P; can be
divided into eight parts,

t t
P7 SO/ ||ec°Ah(t_T)Vh833(uhu3)||L2dT + C/ ||ec°Ah(t_T)Vh83Vh . (Uhul)HdeT
0 0
t t
+ C/ ||€coAh(tf‘r)vha3vh . (UhUQ)”LQdT + C/ HeCOAh(FT)V}QlaB(U?,UB)||L2d7'
0 0
t t
+C / e~ )|V, D53 (upug) || L2dT + C / e~ ||V ,05V), - (upuy) || p2dr
0 0

+ C’/t e~V ,05V), - (upus) || p2dr + C’/t e~ 0| V2 05 (ugus) || 2dr
:P71+.0..+P78. i
P7 through P4 are easily by applying the same method with Fg;, and we will not repeat
these cumbersome details. By Holder’s inequality, we consider the norm
1 VhOs3(unus)||ze <[|usViOssun||lpz + [[ViOsun Vi - up|| 2 + || Os3un Vius|| 2
+ | Vhun0sVy - upl| 2 + ||05un V3 - unl|z2 + ||un@sV3 - upl| 12
<[lus|| o= [VaOssunl 2 + CIIViOsun|| 2|V hunl| Lo + [|Os3un | o< [ Viaus| 12
+ [10sunl| =11V - unllz2 + l[unl| 121|105V - up | 2
<usll o [ Fatanl| 2|9V tnll e + C I wsunll 2|Vl 11V T -
1 Osstunl 21120 unl| 21| Vsl 2 + 19stanl 292 0unl| 211 V3 - .
a9 - w21V VE -l

Then Pr; is divided into six parts. We need to deal them respectively. By the estimate of
|u|| Lo in (3.30), the ansatz in (3.8) and Lemma 3.4, we have

Py <C / ) g | o i |32 [ VPV | Sl

<CCj3e / —0=) (14 1) 9 )dr

0
<CC3*(1+t)7h
Apparently, the rest of Pr55 to Prsg can obtain the upper bound more easily. The terms in
Pz through Prg can also be bounded similarly and the details are omitted. Therefore, we
have

P, <CC2(1+1)7!
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Applying the upper bounds for K, K3 and K, in (3.10), (3.11), and the estimate in (3.21).
After separating each term, every part in FPg through Py can be dealt using the same

technique like P;. Here we only write the result,
Pg + Pg + P10 S 00362(1 +t)_1.

Inserting the bounds from P; through P in (3.31), and using the initial data in (1.9), then

we have

|VaOsul|2 < Ce(1+1) +CC2e*(1+t)~ .
The estimate for [|V;030||z2 in (3.32) is similar and we omit the details. Therefore,
1(VhOsu(t), Vads0(t))| 12 < Croe(1+ )" + C11Cie* (1 +t) . (3.33)
If we choose C and ¢ satisfying

C 1
Cip < Z07 C11Che < vk

then (3.33) implies
C
[(VrOsu(t), Vadsb(1))| 12 < 708(1 +1)7

This completes the proof of the sixth inequality in (3.9).

3.6 Estimates of ||(93u(t), 930(t))]| 12

This subsection establishes the seventh inequality in (3.9). Applying 92 to (3.5), (3.6) and

(3.7), then taking L?-norm, after using Plancherel’s theorem. We have

1020 (t) | ey =1103u(t) | ey < 118un () ey + 103ua (D) c2asy
<[l uonll e + 1K (6)Fuosl| 2 + 1K (£)0360) 2
+ IR0+ 1 RAOF Rl + [ 10580 ) s
[ 1R = DOV, sy + [ IRate = G 00
+ / Rt — )R () e + / V(e — )30 8 () edr

=Q1+ Q2+ ...+ Q. (3.34)

37
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and

—_— — —_ t — —
<[ K5 (8)05uosl| > + [| K6 () O500]| 2 +/ 15t = )05 (u - V) (7) | 2dr
0

+ /D |Bo(t — 7)02(w -V 0) ()| 2dr. (3.35)

This terms contain the bad derivative d3, and we can’t deal with it. Let’s look at the specific
handling process in ||03u||z2. In fact, Q; through Q5 can be shown by repeating the process
of J; through J5 with O33u and 0336 replacing u and 6, respectively, namely

Qit...+Qs<C(1+t)2 (1(85uo, agﬁo)HLigL}gh + [ (o, o) [l 112)
By the estimate of P(u - Vu), in (3.13), and V - u = 0, we have
O3P(u - V), = 02 (up, - Viup) + 02 (usOsup) — O3ATV -V - Vi, (u @ u).
Combining the boundness of Riesz transform in (3.14), Qg can be divided into three parts,

t t
Qs < / HecoAh(th)ag(uh . thh>||L2dT + / HecoAh(tf'r)ag(uga:suh)HLQdT
0 0

t
- / le* IV (u @ w)| 2dr
0

=Q¢1 + Qo2 + Qo3-
We further divide (Qg; into three parts,

t t
Q61 SC/ HeCOAh(t*T)aguh : thhHLQdT + C/ HecOAh(t*T)aguh . 83thhHdeT
0 0

¢
+ C’/ ||eC°Ah(t_T)uh . 8§thh||L2dT
0

=Qe11 + Qe12 + Co13-
By Holder’s inequality, Lemma 3.1, 3.2, 3.3 and the ansztz (3.8), we have

t
Qent =C / |
0

t
so/ 1+t—7)2
0

dr

2
L,

||660Ah(t_T)a§Uh . thh”Lih

dr

2
Lz,

105 un - Viun| 1y,

t 1 1
<C [+t =) S 10Run oS Vol e
0

SIS

t
§CC§52/ (1+t—7)"2(1+7)"1dr
0

N[

<CCE*(1+1t) .
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By the same technique, Qg12, Q613 and each term in Qg2 and (lg3 can be estimated, and

obtained same decay rate. Therefore,
Qs < CC22(1+ 1) 2,
Using the beforementioned bound in (3.26), we have
KL (003 Vu)s| < Clem o ) (10§ {unuss) | + |05V - (wnun)
103V (unus)| + 103V (uus)]). (3.36)
Then )7 can be divided into eight parts,
Q7 §C/Ot |02 93 (upug) || 2 dT + C/Ot |e02r D2, - (upun) || p2dr

t t
+C / |02 NP2, - (upuy)|| p2dr 4 C / |e202n =02, (ugus) || L2dT
0 0

t t
+C [ e IR ) |y + C [ INETn ()
0 0

t

t
+ C/ e~ 02V, - (upug)|| p2dT + C/ e~ 2V, (usus) || L2 dT
0 0

=Q7n + ...+ Qrs.
()71 through Q74 can be dealt by the same method with Q)s, and we have

Qr+ ... +Qu < CCH*(1 + t)fé.

(75 through ()75 need more attentions. By Holder’s inequality and Sobolev’s inequality, the
norm

105 (unus)|| 12 <|lusd3unl|rz + | 05un Vi - upl 12 + [|O5unds Vi - up| 2
<C'fus |51 03unl o + 13unll 2V - wnll s + 1Bstunl oo 105V - w1
<Clus |2 Vus 2V unll 2 + [03un | 2| VORIl 22|V - an| 2 IV V-
1B | 221V | 22105V - a2

Using Lemma 3.4 and the ansatz in (3.8), we have

t t
Qrs <CCge’ / e (14 7)"2dr + CCFe? / e=t=7)(1 4 7)~3dr
0 0

N[

<OCE*(1+1) 2,
Analogously, QQ7¢ through ()75 are easily to obtain the upper bounds which are same as Q75.

Thus, we have
Q: < CC22(1+1) 2,
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Due to the upper bounds of K, K3 and K in (3.10), (3.11), and the estimate of |03P(u-Vu)s]

in (3.21), we can get the same bound by using the similar technique like ()7, namely
Qg + Qg + QlO S 00362(1 + t)_%

Collecting the bounds of @); through )1y and inserting them in (3.34), after using the initial
data in (2.2), we have

102u|2 < Ce(1+1)"2 + CO2X(1 + 1) 2.
The estimate for ||036]| 2 in (3.35) is similar and we omit the details. Therefore,
1(02u(t), 820(t)) |12 < Chae(1 + )77 + Cr3C2e2(1 + ) 2. (3.37)
If we choose Cj and ¢ satisfying

Cp < %, C13C0e <

Y

A,

then (3.37) implies

N[

[(@u(t), 300> < et +1)

This completes the proof of the seventh inequality in (3.9) and thus, the proof of Theorem

1.2.
U
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