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Abstract

Pan-tilt-zoom (PTZ) cameras, which dynamically adjust their field of view (FOV), are pervasive in large-scale scenes, such as

train stations, squares, and airports. In real scenarios, PTZ cameras are required to quickly make decisions informed about

where to direct its focus through contextual cues from the surrounding environment. To achieve this goal, some researches

project camera videos into three-dimensional (3D) models or panoramas and allow operators to perceive spatial relationships.

However, these works face several challenges in terms of real-time processing, localization accuracy, and realistic reference. To

address this problem, we propose a visual expansion and real-time calibration for PTZ cameras assisted by panoramic models.

We attempt to meet the demand for real-time processing with a motion estimation model for a PTZ camera, to improve

calibration performance of PTZ images with only two feature point pairs, and to provide a realistic environmental context

through a panoramic model. We verify our methods on both public and our self-built test scene. It can be seen from the

experimental results that our method can exhibit impressive accuracy and efficiency.
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Abstract
Pan-tilt-zoom (PTZ) cameras, which dynamically adjust their field of view (FOV), are pervasive in large-scale
scenes, such as train stations, squares, and airports. In real scenarios, PTZ cameras are required to quickly
make decisions informed about where to direct its focus through contextual cues from the surrounding
environment. To achieve this goal, some researches project camera videos into three-dimensional (3D)
models or panoramas and allow operators to perceive spatial relationships. However, these works face several
challenges in terms of real-time processing, localization accuracy, and realistic reference. To address this
problem, we propose a visual expansion and real-time calibration for PTZ cameras assisted by panoramic
models. We attempt to meet the demand for real-time processing with a motion estimation model for a PTZ
camera, to improve calibration performance of PTZ images with only two feature point pairs, and to provide
a realistic environmental context through a panoramic model. We verify our methods on both public and
our self-built test scene. It can be seen from the experimental results that our method can exhibit impressive
accuracy and efficiency.

K E Y W O R D S

augmented virtual environment, PTZ camera, camera calibration, panorama, key-ray collection

1 INTRODUCTION

Pan-tilt-zoom (PTZ) cameras offer the capability for extensive surveillance of the surrounding environment through flexible
control, and have been broadly implemented in various scenes, such as schools, universities, companies, stadiums, and so on.
Due to the wide array of emergencies that occur in real-world scenarios, the response time of PTZ cameras is essential. To
achieve this goal, numerous studies about augmented virtual environment technologies1,2,3,4 have introduced background models
as environmental cues to guide the operation of PTZ cameras, such as three-dimensional (3D) models or panoramas. These
methods are real-time image projection technologies in a virtual environment for painting realistic-looking textures on reference
models. However, the majority of studies suffers from misalignments between images as well as backgrounds and lack of
realistic reference, as shown in Fig. 1.

To solve these problems, many researches use tilt photography models and improve camera calibration algorithms. The camera
calibration is the process that estimates the interior and exterior parameters of the camera and determines the orientation and
position of the camera relative to the reference model5,6,7. At present, camera calibration methods are categorized into pattern-
based calibration8,9,10, infrastructure-based calibration11,12,13, and self-calibration14,15,16,17,18,19. The pattern-based methods
leverage the regularity and symmetry of the patterns to facilitate precise measurements and accurate camera parameter estimation.
Due to the requirement of using specific calibration patterns, they are difficult to be installed in outdoor scenes. The infrastructure-
based approaches typically involve building a controlled environment with known reference points or structures that the cameras
can use to calibrate their settings. But the construction and installation of the infrastructure often demand high costs of labor. The
self-calibration methods estimate camera intrinsic and extrinsic parameters by generating a multitude of point correspondences

Journal 2024;00:1–20 wileyonlinelibrary.com/journal/ © 2024 Copyright Holder Name 1



2 CAI ET AL.

F I G U R E 1 Misalignments and lack of realistic reference suffered in camera calibrations. The areas enclosed in red indicate
that embedded images do not align properly with the background. The distortion of the panorama and the unreal textures of the
3D model cause the lack of reality of the background model.

between adjacent images. However, the accuracy of these methods can be affected by illumination conditions, moving objects,
feature density, and so on.

In this paper, we present a visual expansion and real-time calibration for PTZ cameras assisted by panoramic models,
integrating the advantages of both the infrastructure-based approach and the self-calibration method. The method also considers
the geometric property of the PTZ camera, shown in Fig. 2. We first collect scene images from the PTZ camera and remove the
moving objects to acquire pure background images. Then we stitch these images utilizing the image mosaic method, generating
the panorama of the current scene. In order to improve the quality of image mosaic, we strengthen image mosaic by optimizing
the two phases of feature matching and parameter estimation. We eventually map the panorama into a half-sphere model to
construct a panoramic model. Also, we propose a real-time PTZ camera calibration algorithm. The algorithm mainly comprises
the motion estimation model and the camera calibration algorithm based on key-ray collection. The motion estimation model of a
PTZ camera is derived from the parameter variation in the camera’s motion, and the model can rapidly estimate the camera’s pose
while the PTZ camera is in motion. The camera calibration algorithm based on key-ray collection can realize high calibration
preformance of the PTZ camera in panoramic models. In order to further promote the robustness of PTZ camera calibration, we
propose the two-ray method for PTZ camera calibration. It only takes two pairs of matched points between adjacent images to
estimate the pose of the PTZ camera, which will play a significant role in extreme weather. This is an important improvement
over previous methods.

In contrast to traditional PTZ camera calibrations and augmented virtual environment technologies, we introduce the panoramic
model to provide a realistic environmental context with low costs of labor. The panoramic model assists the operator in
determining the direction and zooming of the camera. In addition, we concentrate on the PTZ camera calibration algorithm only
using two feature pairs. Compared to other PTZ camera calibration methods, it implements fewer feature pairs and achieves the
higher calibration accuracy. Also, the motion estimation model for the PTZ camera meets the demand for real-time processing
with less resource usage. Our contribution can be summarized as:

• A two-ray method for PTZ camera calibration is developed from 2D-3D correspondences to 2D-2D correspondences. The
method can improve pose accuracy of a PTZ camera relying on two adjacent PTZ images.

• A panoramic model construction based on PTZ camera model is presented to construct a 3D scene background model. We
optimize the two stages of feature matching and parameter estimation for image stitching via the PTZ camera model. It can
calculate more accurate parameters of current camera and improve the accuracy of image stitching.

• A state-of-art and real-time PTZ camera calibration algorithm is proposed. The method is mainly composed of the motion
estimation model and the camera calibration algorithm based on key-ray collection. It can register the camera frames into the
panorama model in real time.

• A complete framework of a visual expansion and real-time calibration for PTZ cameras assisted by panoramic models is
designed to reduce the burden of understanding the spatial relation and to manipulate the PTZ camera for operators.
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F I G U R E 2 Visual expansion and real-time calibration for PTZ cameras assisted by panoramic models. In real scenes,
PTZ cameras capture background images for background image sets, which are used to stitch pamoramas. Then we construct
panorama models using panorama images generated. Finally we register PTZ camera frames into panorama models by the PTZ
camera calibration in real time.

The remainder of this paper is organized as follows. Section 2 reviews some related works and Section 3 presents the two-ray
method for PTZ camera calibration. Section 4 introduces the panoramic model construction. Section 5 presents our method for
PTZ camera caliration in detail in real time. Section 6 shows our results of methods proposed and Section 7 concludes the paper.

2 RELATED WORK

2.1 Camera calibration

The pattern-based calibration, the infrastructure-based calibration, and the self-calibration make up the fixed/portable camera
calibration categories. The pattern-based calibration estimates camera parameters making use of unique calibration patterns,
such as checkerboards. The pattern-based method is generally utilized to estimate internal parameters of cameras and depends
on specific calibration patterns that are difficult to be installed in outdoor scenes. Chen et al.7 established constraint equations
by correlating image matched points before and after preknown camera motions. The preknown camera motions are special
patterns. The infrastructure-based calibration uses point-cloud models or tilt photography models as infrastructures, establishing
a correlation between images and infrastructures to estimate camera parameters. Campbell et al.11 proposed a robust and globally-
optimal inlier set maximisation approach that jointly estimates the optimal camera pose, taking into account the identification of
cross-modality correspondences between 2D image points and a 3D point-set. The infrastructure-based method can precisely
estimate both intrinsic and extrinsic parameters of cameras, but the construction of infrastructures requires high costs of labor. In
some scenarios, such as soccer fields, basketball courts, or hockey arenas, researchers commonly supplant sport field models
simplified, decreasing labor costs, to point clouds or tilt photography models20,21,22,23,24,25. The self-calibration method generates
a large number of point correspondences between adjacent images for the purpose of estimating the internal and external
camera parameters. The theory of camera self-calibration, which requires only point matches from image sequences, was first
proposed by Faugeras26. Song De Ma14 achieved camera calibration based on a sequence of specifically designed motion by the
active vision system. Q.-T. Luong and O.D. Faugeras15 recovered the internal orientation of the uncalibrated moving camera
using point correspondences between three images and the fundamental matrices computed from these point correspondences.
Vasconcelos et al.16 proposed an automatic camera calibration to stuff an uncalibrated node into a network of calibrated cameras
using only pairwise points. Liu et al.17 present a novel homography computational algorithm that can increase the precision
of homography computation and decrease processing time. Considering the effect of radial distortion, An et al.18 proposed a
novel two-point calibration method (TPCM) to estimate the focal length and 3-DoF rotation matrix with only two control points
from one image. In such restrictive cases with limited contiguous regions between images, these self-calibration approaches
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offer substantial advantages over the other two methods. However, most of they must fulfill the requirements that there are four
feature pairs in adjacent images. Otherwise, these self-calibration methods would be unworkable. Additionally, the precision of
the self-calibration method also falls under the influence of illumination, occlusion, and lack of texture.

Different from the fixed/handheld camera calibration, the PTZ camera calibration has its own characteristics. In general,
the optical center and geometric center of a PTZ camera are supposed to be known. Thus, the location of one single view
image depends on its pan, tilt and zooming coordinates, which often can be obtained from the camera. Considering these
characteristics of PTZ cameras, a number of researchers calibrate PTZ cameras utilizing particular geometries between adjacent
PTZ images. Wu et al.27 present a dynamic calibration algorithm based on aligning the current image against a collection of
offline-stored features. This method directly estimates the intrinsics and extrinsics of the PTZ camera. However, this technique is
only appropriate for tiny angle and focal length offsets. Chen et al.28 proposed a two-point method requiring only two point
correspondences to calibrate a PTZ camera and a rapid random forest method to predict pan-tilt angles without matching image-
to-image features.Further, they presented an online SLAM system based on the two-point method and PT random forest that can
track PTZ cameras in highly dynamic sporting activities29. Chen et al.30 employ a siamese network to excavate compact deep
features and use a novel two-GAN model to detect field marking in real images. These techniques have substantial room for
development in terms of precision and robustness.

2.2 Image mosaicing

Extensive researches have been conducted on Image Mosaic techniques, which stitch multiple images into an image to gain a
broader visual perception of a large-scale scene. M. Brown and D. G. Lowe31 first proposed a comprehensive framework for
mosaicing images using invariant local features, such as SIFT (scale-invariant feature transform), to extract feature matches
between images. Meanwhile, bundle adjustment, which is a photogrammetric technique to combine multiple images of the same
scene into an accurate 3D reconstruction, has also been applied to stitch images. The idea behind multi-band blending is to
blend low-frequency bands over a large spatial range and high-frequency bands over a short range to compensate for exposure
differences and misalignments. Gao et al.32 described a method for constructing a seamless stitching image of a panoramic scene
with two predominate planes: a distant back plane and a ground plane that sweeps out from the location of the camera. Zaragoza
et al.33 seamlessly bridges image regions that were inconsistent using moving direct linear transformation (Moving DLT). The
method was intended to be globally projective while permitting local non-projective deviations to account for violations of the
presumed imaging conditions. Li et al.34 proposed a parallax-tolerant method for image stitching based on robust elastic warping
that simultaneously achieved precise alignment and efficient processing. Li et al.35 proposed a local-adaptive image alignment
method based on triangular facet approximation, which directly manipulated the corresponding data in the camera coordinates,
thereby enhancing performance of imaging models of cameras. Yong et al.36 proposed a fast multi-band blending method to
improve the efficiency in panoramic image fusion and mosaicing. The approach proposed exhibited impressive efficiency in PTZ
panorama generation as well as panoramic image mosaicing. The majority of research on image mosaic focuses primarily on
public datasets, but very few works have been reported on panoramic image generation for PTZ cameras.

2.3 The augmented virtual environment technology

The augmented virtual environment (AVE) technology is a real-time image projection technology in a virtual environment
for painting realistic-looking textures on 3D models. Sawhney et al.1 first present a video flashlight system that illuminates a
static 3D graphics model with live video textures captured by stationary and moving cameras. Chen et al.37 propose a novel
visualization framework for surveillance systems that projects the large-scale display area with a fixed low-resolution camera and
the fovea region with a second high-resolution camera. Pece et al.38 demonstrate a PanoInserts system that inserts video within
the panorama using a combination of marker- and image-based tracking. Tompkin et al.2 create a video-collections+context
interface by embedding videos into a panorama. In this work, a spatio-temporal index and instruments for rapid exploration of
the video collection’s space and time are developed. Zhou et al.39 propose a novel virtual-real video fusion system based on
video Models that exploits the single-image modelling technology. Young et al.4 introduce a system that provides immersive
telepresence and remote collaboration on mobile and wearable devices. They build a live spherical panoramic representation of a
user’s environment, and the environment can be viewed by a remote user who can independently choose the viewing direction.
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When these methods enhance the virtual environment with images, we observe that these images also express more content
through the virtual environment.

3 TWO-RAY METHOD FOR PTZ CAMERA CALIBRATION

Inspired by Chen’s work28, we extend the two-point method from 2D-3D correspondences to 2D-2D correspondences. This
modified method is called as the two-ray method. We first establish the transformation between the rays and the image pixels,
converting the pixels on the image into rays. Then, according to the rays’ connection in the overlapping region of adjacent
images, we calculate the pose of the PTZ camera.

F I G U R E 3 The geometric relationship between the PTZ image and the PTZ camera. The main view is obtained from the
direction along the negative half axis of the X-axis. And the top view is obtained from the direction along the negative half-axis
of the Z-axis.

It is common knowledge that any image from a PTZ camera satisfies the geometric property shown in the 3D view of Fig. 3.
The O is the optical center of the PTZ camera, and (θ,φ, f ) denotes the orientation and focal length of the camera. OR(xOR, yOR)
(the image coordinate system) is the center of the PTZ image. The PTZ image is tangent to a sphere of radius f . For any point
p(xp, yp) (image coordinate system) on the image, the orientation of the corresponding ray rp is (θp,φp). According to the main
view and the top view of Fig. 3, we can obtain:

θp = arctan(
xp – xOR

fcos(φ)
) + θ (1)

φp = arctan(
yp – yOR

f
) + φ (2)

We further analyze the spatial property between adjacent PTZ images, as shown in Fig. 4. Both the reference image and the
target image are from the PTZ camera, and they are adjacent and have overlapping regions. We assume that the (θr,φr, fr) of
the reference image is known, and the focal length ft of the target image is not consistent with that of the reference image. We
randomly choose two points p1 and p2 from the overlapping region. The Angle between ray rp1(θp1,φp1) and ray rp2(θp2,φp2) is
α. There exists:

cos(α) = cos(θp1)cos(φp1)cos(θp2)cos(φp2) + sin(θp1)cos(φp1)sin(θp2)cos(φp2) + sin(φp1)sin(φp2)

=
(K–1p1)T (K–1p2)√

(K–1p1)T (K–1p1)
√

(K–1p2)T (K–1p2)

(3)

where the K is the internal matrix of the PTZ camera. In the reference image, the image coordinates of p1 and p2 are represented
as (xr1, yr1, 1)T and (xr2, yr2, 1)T , respectively. We can calculate rp1 and rp2 using the formula 1 and 2. In the target image, the
image coordinates of p1 and p2 are denoted as (xt1, yt1, 1)T and (xt2, yt2, 1)T , respectively. We assume PTZ images are undistorted
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and their sizes are known. So the focal length ft is the only unknown element in Kt of the target image. We can calculate the ft by
Eq.3.

F I G U R E 4 The relationship between PTZ adjacent images.

We attempt to find the association between the (θ,φ) of rp and p. Any point p in the target image satisfies:

K–1p =

 U
V
1

 = RφRθ

 X
Y
Z

 =

 1 0 0
0 cosφ – sinφ
0 sinφ cosφ

 cos θ 0 – sin θ
0 1 0

sin θ 0 cos θ

 X
Y
Z

 (4)

where [XYZ]T is the coordinates of 3D point corresponding to p. We have:

X√
X2 + Y2 + Z2

= sin θp cosφp (5)

Y√
X2 + Y2 + Z2

= sinφp (6)

Z√
X2 + Y2 + Z2

= cos θp cosφp (7)

We separate sin θ and cos θ from the formula 4, which causes:

[
Aφ Bφ

]  cos θ
sin θ

1

 =
[

0
0

]
(8)

where

Aφ =
[

–XU cosφ – Z X – ZU cosφ
X sinφ – XV cosφ Z sinφ – ZV cosφ

]
Bφ =

[
YU sinφ

Y cosφ + YV sinφ

]
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.
From the formula 8, we have:

cos θ =
–YZU + XY(cosφ + V sinφ)

det Aφ
(9)

sin θ =
XYU + YZ(cosφ + V sinφ)

det Aφ
(10)

where det Aφ = (X2 + Z2)(V cosφ – sinφ). Because sin2 θ + cos2 θ = 1, we have a quadratic equation of tan θ by

a tan2 φ + b tan2 φ + c = 0 (11)

where

a = sin2 φp(U2 + V2) – cos2 φp

b = 2V

c = sin2 φp(1 + U2) – cos2 φpV2

From the formula 11, we can calculate φ up to 2 solutions. We can eliminate one of them by setting the valid range to (0◦, 90◦).
The θ can be calculated from the formula 9 and 10. Consequently, we can estimate the (θ,φ, f ) of a specific PTZ image using
only two rays.

4 PANORAMIC MODEL CONSTRUCTION BASED ON PTZ CAMERA MODEL

The principle of panoramic model construction is to stitch multiple images into a panorama. The primary process of image
mosaicing includes feature extraction and matching, parameter estimation, projection transformation, optimal seam, and image
fusion. Image Mosaicing frequently creates the problem of ghosts and discontinuity. Our analysis shows that inaccurate parameter
estimation is an essential cause of ghosts and discontinuity. Therefore, we first optimize the feature matching and parameter
estimation stages to improve the performance of parameter estimation. Then we stitch the images using the parameter estimation
method with modifications and generate the panoramic model.

Most of researches on feature matching rely on the distance between feature descriptors, which leads to numerous false
matches. Some studies such as the work of Ma et al.40 utilize the local neighborhood structures of those potential true matches
to heighten the accuracy of feature matching. No prior information is available for these analyses. We make an effort to enhance
the accuracy of feature matching by using preset information. The transformations between two PTZ images can be considered
as a unique homography matrix, since all PTZ images share a common optical center. The homography matrix between the
image Ii and the image Ij is

Hij = KiRiRT
j K–1

j (12)

where Ki =

 fi 0 0
0 fi 0
0 0 1

, Ri = RφiRθi. The value of Ri is equal to the formula 4. Some PTZ cameras provide the camera parameters

of the current view, such as the pan angle θ, the tilt angle φ and the focal length f , but these values are often imprecise caused by
mechanical drifts. We utilize the preset information to get the homography matrix Ĥij. We have

pjk = arg min
pjm∈N(Ĥijpik)

∥∥Dpjm – Dpik

∥∥
2 (13)

where pikdenotes the k-th feature point in the image Ii. N(Ĥijpik) is the set of feature points in the neighborhood of the
projection of pik onto the image Ij. The radius of the neighborhood is set to 60 pixels. Dp denotes the descriptor of the feature
point p. ∥ ∗ ∥2 is the euclidean distance.

4.0.0.1 Parameter estimation:
Currently, several methods of parameter estimation first roughly estimate parameters and then optimize these parameters using
the bundle adjustment(BA) method. The BA method can achieve excellent results in 2D-3D correspondence circumstances. Due
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to the lack of a stable reference, the BA method in the 2D-2D correspondence circumstance mostly results in an immense drift
between the estimation and the reality. Moreover, the BA method adjusts by the gradient and ignores the geometric property
among the PTZ images. We propose an innovative and more accurate parameter estimation method for PTZ camera images.

We select an image from the background image set S = {I1, I2, ..., In} as the reference image and assume that the preset
parameters of the reference image are authentic. Then we divide S into the calibrated set Sc and the uncalibrated set Su = S – Sc.
In the initial state, only the reference image is in the Sc. We select an image Ii from the Sc. Su(Ii) denotes the adjacent image set
of Ii in the Su. We choose an image Ij from Su(Ii), extract SIFT features41 from image Ii and Ij, and perform the feature matching
using the formula 13. We receive the matched-point pair set M = {(pik, pjk)}N

k=1. According to Sec. 3, pik can be converted to rik

by the formula 1 and 2. We get the set of rays and point Mr = {(rik, pjk)}N
k=1. We can estimate the fj of image Ij by

fj =

N∑
k1=1

N∑
k2=k1+1

f (rik1 , rik2 , pjk1 , pjk2 )

C2
N

(14)

where f (∗) is the focal length estimated by the formula 3, C2
N denotes the combination of two pairs. We can convert Mr to

ϕ = {(θjk,φjk)}N
k=1 by the formula 9 and 11. We can estimate the θj and φj of image Ij by

(θj,φj) = arg min
(θjk ,φjk)∈Φ

M∑
m=1

∥Hij(θjk,φjk, fj)pim – pjm∥2 (15)

We estimate the (θj,φj, fj) of image Ij by the formula 14 and 15. Then we add Ij into Sc, and iterate the above steps util Su is
empty.

4.0.0.2 panoramic model construction:
The initial orientation of the PTZ camera is θ = 0◦ and φ = 10◦. We set φ to 10◦, 30◦, 50◦, and 70◦ , respectively. We collect 36
images as the background image set with a horizontal interval of 40◦. We utilize the image mosaic method improved to stitch
the background images into the panorama. We project the panorama into the inner surface of the hemispherical model, which
generates the panoramic model. The panoramic model is shown in the figure 11 (b).

5 REAL-TIME PTZ CAMERA CALIBRATION ALGORITHM

We need to update PTZ camera poses frequently to achieve PTZ camera real-time calibration. On account of the image blur and
illumination change caused by the camera motion, the feature-based method may fail. We determine that the camera motion is
traceable and propose a novel real-time calibration algorithm combining a motion estimation model and a ray-based method. We
first collect motion trajectories of horizontal movement, vertical movement, and zoom movement. Then we formulate the motion
estimation model with time. The model can estimate the camera poses in real time when the PTZ camera is in motion. Then we
compute the precise camera pose using the PTZ camera calibration based on key-ray collection when the PTZ camera is at the
static. More details show as below.

5.1 A Motion Estimation Model for PTZ Camera

PTZ camera models in most researches are usually the standard pinhole camera model with rotation matrixes, representing the
static state of a PTZ camera. The models could not describe variations of PTZ camera parameters in moving. We propose a
novel motion estimation model that is continuous as a function of time. We can quickly formulate the model with a series of
simple initialization steps. This section describes the motion estimation model we proposed in detail.

In order to get the motion estimation model, we conducted a simplified experiment. We let a PTZ camera be directed to purely
pan (or tilt) for 1s and stop, wait for 1s, and then return to the original position. The results of the pan (or tilt) angle variation are
shown in fig. 5(A)(or (B)). For the zoom of a PTZ camera, we control the camera to be directed to zoom purely for 0.5s, 1s, 1.5s,
and return to the original position after waiting for the same time. The result of the focal length variation is portrayed in fig.
5(C). To get the accurate value of each frame, a series of images are collected before and after each motion. Parameters of these
images have been calibrated by the parameter estimation method mentioned in sec. 4. The average tendencies of the pan θ, the
tilt φ, and the focal length f with time are illustrated in Fig. 5.
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F I G U R E 5 The average relationships of the pan θ, the tilt φ, and the focal length f with time. (A): pan/tilt angle as a
function of time; (B): pan/tilt angle velocity as a function of time; (C) focal length as a function of time; (D) focal length velocity
as a function of time.

As evident from the graph of the first row, purely rotating the PTZ camera progress through three phases of acceleration,
linearity, and deceleration. In the second row, there is a one-to-one correspondence between focal length and time in purely
zooming of the camera. Therefore, we devise a novel PTZ motion estimation model:

{θ,φ, f } = h
(
t | vp, vt, vf , tp1, tt1

)
=


h1

(
t | vp, tp1

)
h2 (t | vt, tt1)
h3

(
t | vf

) (16)

Where

h1(t|vp, tp1) =


1
2 vpt2, (t < tp1)

vpt – 1
2 vptp1, (tp1 < t < tp2)

1
2 vp(t + tp2 – tp1)

+ 1
2 vp(1 – t)(t – tp1), (t > tp2)

(17)

h2(t|vt, tt1) =


1
2 vtt2, (t < tt1)

vtt – 1
2 vttt1, (tt1 < t < tt2)

1
2 vt(t + tt2 – tt1)

+ 1
2 vt(1 – t)(t – tt1), (t > tt2)

(18)

h3(t|vf ) =
1
2

vf tk + k
√

2vf (f1 – f0)t + f1 (19)

vp, vt, vf are constants of the motion estimation model but are different for each PTZ camera. t1 and t2 represent acceleration
time and the sum of acceleration time. t2 is the constant speed time determined by users. f0 and f1 describe focal length in
Zoom = 1 and before zooming respectively.
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5.2 PTZ Calibaration Based on Key-ray Collection

The motion estimation model can real-time predict the moving PTZ camera. However, it is unreasonable to expect results of the
model to be precise. We desire a dynamic correction method that ensures the camera calibration accurately. Our thought is to
build a key-ray collection of the current scene and calibrate online images using the two-ray method.

The image location p = (x, y) is projected by a ray r = (θp,φp), which is given by the formula 1 and 2. We extract all the
SIFT features from each background image and transform image coordinates of features into rays. Then features from different
images that highly overlap in both descriptors are merged, causing that each feature appears only once in the collection. Finally,
we store all features (including rays and descriptors) in a collection as the key-ray collection of the scene. Figure 6 shows the
pipeline of building the key-ray collection of the scene.

F I G U R E 6 Pipeline of building the key-ray collection. (A): a set of background images that are used to stitch the panorama
and provide SIFT features; (B): the panorama image that provide the (θ,φ, f ) of background images; (C) the correspondence
between key-points and key-rays. We translate the image coordinates of features to the rays.

We capture a current image from the real-time PTZ images and get the (θ̂, φ̂) of the current image by the motion estimation
model. We fetch out key rays around the pose of (θ̂, φ̂) from the key-ray collection as a sub-collection M′

r. We extract the set of
SIFT features, called as M′, acquired from the current image. And we try to match each feature in the M′ to the M′

r, resulting
in a set of putative matches Mr : {pk, rk}N

k=1, where pk is from M′ and rk is from M′
r. The feature matches are computed using

Brush-Force matching between SIFT descriptors.
We can estimate a precise guess for (θ,φ, f ) of the current image using the idea of RANSAC42. We first select two feature

pairs from Mr and use the two-ray method to calculate (θ̂, φ̂, f̂ ), which is a guess of (θ,φ, f ). The inlier set P of the guess is

Pinlier = {pk |(θ̂ + arctan
xk – u

f̂ cos θ̂
– θk)2 + (φ̂ + arctan

yk – v

f̂
– φk)2 ≤ ε}N

k=1 (20)

where (xk, yk)T is the coordinates ofpk, (θk,φk)T is the coordinates ofrk, and (u, v) is the image center of the current image. The
more accurate the guess, the greater the number of inliers the guess corresponds to. We repeat the above steps Ns times (we set
Ns = 1000) and select a guess with the largest number of inliers as the estimation of the image parameters.

6 EXPERIMENTS

We conducted experiments to evaluate the proposed model and algorithm using a public dataset and several self-built scenes. In
self-built scenes, All cameras used are Hikvision PTZ cameras. Our approach is implemented with C++ on an Intel R core TM

i7-975H CPU, NVIDIA GeForce GTX 2070M graphics card, 16GB memory Windows system.
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6.1 Experimental Setup

To the best of our knowledge, few works have been reported on datasets of PTZ camera images. Yong et al.36 built a PTZ
image dataset, which makes the in-depth investigation of PTZ panorama generation possible. Besides, we preform the data
augmentation with weather conditions on this dataset. We also built four real scenes, with PTZ cameras, for experiments.

PTZ image dataset: This dataset possesses four groups of images from different natural traffic scenes, such as intersections
or overpasses. Scene names of each group of images are 803, 878, 8425, and 8505, respectively. Each image group consists of
52 images. Please refer to the reference for the details of the dataset.

Data augmentation with weather conditions: We develop a weather augmentation algorithm inspired by the work of Kang
et al43. To simulate extreme weather, the RGB (red, green, blue) image must be converted to the HLS (hue, saturation, lightness)
format, and the lightness value would be adjusted based on different weather conditions.

Brightness and darkness: By adjusting lightness values of images, we are able to simulate sunny days and early evenings.
Rainy: We use randomly generated gray lines (corresponding to RGB values 160,166,166) to represent raindrops, and size and

quantity of lines represent size and quantity of rain. We employ the fisheye effect to distort local regions of images, indicating
that raindrops are stuck to camera lens. We simulated three types of rain: light rain, moderate rain and heavy rain.

Snowy: We use randomly generated white dots to depict snowflakes, with the size and number of dots representing snowflake
size and quantity. This method expresses snow on the floor via extracting pixels from the specified lightness value in an image.
We simulated three levels of snowfall: light snow, moderate snow and heavy snow.

Foggy: Fog can change brightness and sharpness of images and make the image blurred. We simulated fog, primarily mist and
fog, with Gaussian blur and altered the lightness to make the images appear more realistic.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

F I G U R E 7 Visualization of weather augmentation: (a) brightness; (b) darkness; (c) mist; (d) fog; (e) light rain; (f) moderate
rain; (g) heavy rain; (h) light snow; (i) moderate snow; (j) heavy snow.

We applied the above weather augmentation algorithm to the PTZ image dataset and obtained 10 datasets with different
weather, illustrated in Fig. 7.

Real test scenes: We set up for real test scenes with a PTZ camera mounted (see Table 1). The first scene Indoor1 is a
8m × 6m × 3m laboratory with a DS-2DC4223IW-D PTZ camera, which has chairs and tables. The second scene Indoor2 is
a 12m × 8m × 3m meeting room with a DS-2DE7172-A PTZ camera, which has few features. Outdoor1 and Outdoor2 are
50m× 50m× 50m outdoor scenes respectively, which have pedestrians and vehicles, mounting DS-2DC4223IW-D PTZ cameras.
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T A B L E 1 The Information of Real Test Scenes

Scene Name PTZ Camera Type Scene Size (l × w × h) Scene Characteristics

Indoor1 DS-2DC4223IW-D 8m × 6m × 3m a laboratory with chairs, tables,
and computers

Indoor2 DS-2DE7172-A 12m × 8m × 3m a meeting room with few
feature points

Outdoor1 DS-2DC5220IW-A 50m × 50m × 50m a traffic scene with a PTZ
camera at a lower height

Outdoor2 DS-2DC5220IW-A 50m × 50m × 50m a traffic scene with a PTZ
camera at a higher height

6.2 Comparison with Panoramic Model Construction

We would validate our parameters estimation algorithm on the PTZ image dataset. We use the parameter estimation from Yong’s
paper, called as the BAY method, as a benchmark. The method only optimized the three parameters of pan angle, tilt angle, and
focal length. The BAY method tries to find the smallest residual possible. The idea may produce abnormal results. So we make
a modification to the BAY method so that the first input image does not participate in optimization. We call the BAY method
modified as the BAYs method. The essence of the BAYs method is to optimize other images with the first image as the reference.
We use the BAYs method as the other benchmark. We performed qualitative and quantitative comparisons on the dataset, and
results are shown in Tab. 2 and Fig. 8.

For quantitative comparison, we first take the first input image as the reference image. Assuming that the (θ,φ) are known, we
only estimate the focal length of the reference image by the bundle adjustment method. We use the focal length estimated as
the focal length of the reference image. Then in each scene, we select three consecutive images from different tilt angles and
perform parameter estimation by our method, BAY method, and BAYs method. Due to the lack of ground truth, we calculated
parameter estimation offsets using Euclidean distance between results parameter estimation and the preset parameters. Since
there are only minor perturbations in image collection stage, correct parameters should be very close to preset values. So large
offset indicates mistakes in the estimation. Meanwhile, we utilize results of parameter estimation to construct a homography
matrix and calculate the reprojection error of each feature pair between adjacent images. The score of the reprojection error
impacts the precision of parameter estimation. The experimental results are shown in Tab. 2. Tab. 2 reveals that although the
BAY method has the smallest reprojection errors in many conditions, its offset is significantly larger than those of the other
two methods. One reason lies in the lack of reference in the optimization stage, while the other comes from the target of the
smallest reprojection error. The BAYs method overcomes this deficiency, but its accuracy is inferior to ours. Our method achieves
excellent performance on both parameter estimation offset and reprojection error, which indicates that our method outperforms
the other two methods in parameter estimation.

We project some of the parameter estimation results in Tab. 2 into a spherical surface, and results are shown in Fig. 8.
Compared with the other two methods, our method can eliminate ghosts caused by inaccurate preset parameters (areas enclosed
by red wireframes in the figure 8). Besides, the result of the BAY method in third column differs from that of the preset value
in image size. This evidences that the image size of result from the BAY method changed due to the lack of reference in the
optimization stage. The conclusion is consistent with that from in Tab. 2.

We further test the effect of extreme weather on our approach. We select two images with sequence number 18 and 19 under
different weather conditions and scenes, and use our method, BAY, BAYs to estimate their parameters respectively, and calculate
the reprojection error between them. The experimental results are listed in the Tab. 3.

As can be shown in Tab. 3, all three methods exhibit outstanding performance in weather of brightness, darkness, light rain,
and light snow. This demonstrates that the three algorithms are capable of removing interference caused by tiny weather change.
However, as the severity of weather increases, such as moderate rain and mist weather, the BAY method and the BAYs method
start yielding wrong estimation in the 878 scene. In the weather of moderate snow, heavy rain, heavy snow, and heavy fog, the
method of BAY and BAYs almost fails, either producing a completely wrong estimation (e.g. the 8505 scene in moderate snow
and the 878 scene in fog), or failing to estimate the parameters (e.g. the 878 scene in heavy rain and the 8425 scene in heavy
snow). Our method can still maintain good robustness in these weather conditions. Even if other methods fail, estimation results
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F I G U R E 8 Qualitative comparison of parameter estimations in Yong’s dataset. The image sequence of the first column is
(1,2,3) of the 803 scene, that of the second column is (27,28,29) of the 8505 scene, and that of the second column is (40,41,42)
of the 878 scene. The yellow indicates the image one, the green indicates the image three, and other colors indicate overlapping
areas between adjacent images. Areas enclosed in red indicate obvious misalignment.

of our method increase only several pixel offsets over the normal case (e.g. the 878 scene in heavy rain and the 8425 scene in
heavy snow).

6.3 Performance Analysis of PTZ Camera Real-time Calibration Algorithm

6.3.0.1 Performance of motion estimation model:
We first get background images of the camera’s scene and the parameters using the method in Sec. 4. Then we collect scene PTZ
images and formulate motion estimation models of different cameras using the method mentioned in Sec. 5. We establish no
less than two correspondences between PTZ images and background images with human annotation, transforming background
images’ position to rays position. Finally, we estimate camera parameters using the two-ray method as the ground truth. Table 4
shows errors between the motion estimation model and the ground truth of different cameras.

In Table 4, we present the means and standard errors of motion estimation models from different scenes. The mean rotational
error of the pan angle is about 0.6◦ and the mean rotational error of the tilt angle is about 0.3◦. Considering the view of the camera
is generally 50◦ and the average rotation angle in rotating is 30◦, the pan error and the tilt error are 2% and 1% respectively,
which can be ignored in rotating quickly. The focal length error of the model is about 150 and the range of the focal length
tested is [1200, 12000]. The range of error percent is [1%, 10%], and the percentage decreases with focal length. The average
velocity of focal length is 5000/s, since the focal length error can be ignored in zooming. Table 4 demonstrates the accuracy of
the motion estimation model.



14 CAI ET AL.

T A B L E 2 Quantitative comparison of parameter estimations in the PTZ image dataset. BOLD/BLUE indicates state-of-the-
art/second-best performance.

Image number parameter estimation offset
The mean reprojection error

of single matching pairScene
name Img 1 Img 2 Img 3

Method
Img 1 Img 2 Img 3 Img 1 and 2 Img 2 and 3

OurMethod 8.72 8.76 8.75 7.82 6.06

BAY 267.83 267.78 267.83 3.53 2.581 2 3

BAYs 12.24 12.25 12.26 9.63 6.10

OurMethod 10.41 10.43 10.46 10.43 5.52

BAY 293.72 293.70 293.73 7.28 6.7627 28 29

BAYs 13.01 13.01 13.05 10.64 7.66

OurMethod 7.56 7.87 7.87 9.45 7.01

BAY 1572.43 1572.41 1572.44 29.17 17.13

803

41 42 43

BAYs 0.00 1.60 2.70 35.74 14.98

OurMethod 4.65 4.71 4.72 5.65 4.85

BAY 293.15 293.09 293.13 4.74 2.071 2 3

BAYs 1.46 1.60 1.67 6.14 5.03

OurMethod 3.59 3.94 4.08 6.65 4.54

BAY 221.88 221.86 221.87 9.85 4.5427 28 29

BAYs 0.76 1.29 1.56 17.79 7.00

OurMethod 8.92 9.31 9.46 6.59 6.93

BAY 881.46 881.58 881.77 5.87 11.46

878

41 42 43

BAYs 37.58 37.58 37.58 21.86 8.12

OurMethod 8.17 8.19 8.18 4.54 4.12

BAY 242.38 242.34 242.40 1.27 1.451 2 3

BAYs 9.47 9.47 9.48 6.29 4.58

OurMethod 1.42 2.04 1.81 10.19 5.80

BAY 385.76 385.73 385.76 13.70 2.7727 28 29

BAYs 1.52 1.70 1.67 10.25 8.42

OurMethod 9.61 9.62 9.71 16.37 22.32

BAY 163.46 163.53 163.69 3.14 9.28

8425

41 42 43

BAYs 22.95 23.01 22.97 4.59 8.57

OurMethod 5.79 5.81 5.80 4.72 4.65

BAY 230.45 230.41 230.46 2.79 2.681 2 3

BAYs 1.54 1.55 1.57 4.85 5.16

OurMethod 4.16 4.21 4.24 5.74 4.71

BAY 357.70 357.66 357.69 8.23 5.9827 28 29

BAYs 1.12 1.30 1.56 11.12 6.17

OurMethod 8.91 9.21 9.22 10.82 8.63

BAY 1559.39 1559.34 1559.35 16.50 11.65

8505

41 42 43

BAYs 33.92 33.94 33.93 25.66 11.48

6.3.0.2 Performance of PTZ calibration:
We test our approach at the scene indoor1 in Table 1. In the scene indoor1, we collect 50 images from pan, tilt, and zoom values.
The reference images are from the background dataset in Sec. 4. We compare our approach against several PTZ camera calibration
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T A B L E 3 Reprojection errors of parameter estimation in extreme weather. BOLD indicates the best performance, RED
indicates the enormous error, and ’-’ indicates estimation failure.

Scene Method
Origina
tion

Bright
ness

Dark
ness

Light
Rain

Mod.
Rain

Heavy
Rain

Light
Snow

Mod.
Snow

Heavy
Snow

Mist Fog

Ours 7.29 8.25 10.90 7.19 24.46 5.63 8.01 6.52 12.17 9.52 5.53

803 BAY 4.59 7.78 4.48 6.84 5.50 36.63 5.48 132.23 76.24 6.30 8.19

BAYs 12.11 9.20 14.95 11.00 6.25 36.34 9.97 147.40 123.95 8.80 8.28

Ours 14.72 8.28 14.91 13.80 15.95 15.76 13.50 21.64 16.99 19.39 31.80

878 BAY 2.39 3.05 2.35 2.64 92.06 - 18.06 99.17 0.07 284.42 264.43

BAYs 10.14 10.69 11.04 9.95 107.59 - 28.54 97.56 0.07 284.49 231.46

Ours 4.73 4.74 5.05 4.68 6.35 5.75 4.98 3.40 12.31 4.73 4.25

8425 BAY 2.79 3.43 2.93 5.45 4.45 2.61 3.53 26.27 - 2.25 3.27

BAYs 6.33 6.24 7.78 8.64 3.81 7.03 8.19 41.53 - 6.80 2.72

Ours 6.08 6.43 5.97 5.99 6.14 3.75 6.58 12.09 17.44 6.34 21.50

8505 BAY 6.98 6.47 8.69 6.69 8.13 0.14 7.24 238.04 197.91 9.05 275.75

BAYs 11.30 10.14 11.97 10.95 7.13 0.13 10.99 242.10 189.99 9.01 272.19

methods which can directly compute the parameters of the PTZ camera by feature point pairs: the dynamic calibration27, two-
point method28, and the TPCM method18. Because these three methods depend on accurate feature correspondence, we first
remove the evidently wrong mismatched pairs with RANSAC.

Fig. 9 shows the biases between those methods and the ground truth established by manual determination. The reported bias
for each parameter is computed by ∥paramest – paramground–truth∥2. From the results, we analyze that our PTZ calibration method
outperforms for all the parameters and the estimation biases are smaller than other methods. The two-point method has a large
bias because the random forest depends on trained images. The more images trained, the better the predicted result of the random
forest. We only use the background dataset to train the random forest, so the predicted result has a conspicuous error. Because
the TPCM method is implemented via multiple additions and multiplications which enlarge the errors, resulting in amazing
fluctuations the TPCM produce.

We also collected images of the outdoor scene outdoor2 at 2:00 p.m. and 6:00 p.m. to evaluate the effects of illumination on
camera calibration. We chose three groups of images: images with few substantial change in illumination (pan = 0◦, tilt = 10◦),
images with local changes in illumination (pan = 60◦, tilt = 10◦), and images with entirely different illumination (pan = 80◦,
tilt = 10◦). Each group had the same pose. We estimate the parameters of these three groups using Dynamic calibration, Two-
point, TPCM, and our method, and then project the image onto the sphere using the estimated parameters. The experimental
results are shown in Fig. 10. Since two images have the same poses, they should be projected in the same region. We use a color

T A B L E 4 The Motion Model Errors

PTZ Camera Model Errors

Type Pan(◦) Tilt(◦) Focal length

DS-2DC42231W-D 0.00 ± 0.35 –0.14 ± 0.32 0.52 ± 167.85

DS-2DE7172-A –0.30 ± 0.47 0.08 ± 0.33 –0.05 ± 67.54

DS-2DC5220IW-A 0.28 ± 0.35 0.07 ± 0.22 0.52 ± 0.162.45
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F I G U R E 9 Results of several PTZ calibration methods. (A) The error in the pan angle θ. (B) The error in The Tilt angle φ.
(C) The error in the focal length f .

of yellow indicating images at 6:00 p.m. and a color of purple indicating images at 2:00 p.m. The overlapping region of two
images is shown in color of light red. If the estimation is correct, only the light red area will be visible. If the estimation is
inaccurate, we will see yellow or purple areas. We also provide the reprojection error of matched pairs between images under
every projection. When the illumination change is subtle (the first column in the Fig. 10), all four methods obtain acceptable
parameter estimation results with small reprojection error. When the local illumination of the image changes (second column in
the Fig. 10), the Dynamic calibration method produces a significant bias (yellow part in the third row), and the results estimated
by the Two-point method and the TPCM method are both biased (purple area in the fourth row and yellow area in the fifth row).
However, our method continues to produce accurate parameter estimations. When the difference in illumination is significant
(third column in the Fig. 10), the Dynamic calibration method, the Two-point method, and the TPCM method all fail significantly
(yellow and purple areas in the figure). Our method yet obtains acceptable results, with only a one-point increase in reprojection
error compared to that of the first column.

6.4 The Results of Visual Expansion and Real-time Calibration System

We design a visual expansion and real-time calibration system for pan-tilt-zoom cameras assisted by panoramic models. The
interface of the system is shown in the figure 11 (a). The "Main View" slider can adjust the visible area of the right view to see
more extensive parts of panoramic models. The "Reconnection" button can re-establish the link with the PTZ camera, and the
"Zero Set" button can restore the PTZ camera to its original pose. The "Set" button can set the camera to the specified pose. The
"PTZ Calibration" button can calibrate the PTZ camera using the PTZ calibration based on key-ray collection and register the
PTZ images into the specified position of the panoramic model. The "Update Image" button can refresh the latest PTZ image.
The buttons in the lower-left of the interface can control the PTZ camera rotation and zooming.

Because most of AVE systems doesn’t provide their codes, we cannot compare performance and effect with them in our test
scenes. To better comprehend the significance of our work, we still intend to conduct a comprehensive comparison of their
functionalities. We compared our system with traditional PTZ camera control systems and some typical AVE systems in terms of
functionality. The experimental results are shown in the table 5. From the table 5, we find that the interest in AVE technologies is
concentrated on smartphone cameras, and they almost rely on inbuilt sensors. However, no sensors are mounted in PTZ cameras,
and these AVE techniques cannot be applied to PTZ camera calibration. Traditional PTZ camera control focuses solely on PTZ
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F I G U R E 10 PTZ calibration results under different illumination conditions. The first column indicates that the condition
with few substantial changes in illumination; The second column indicates the condition with local changes in illumination; The
third column indicates that the condition with entirely different illumination. In the figure, the yellow area indicates the image at
6:00 p.m.; the purple part indicates images at 2:00 p.m.; the light red area indicates the overlap of the two images.

camera control and video transmission, disregarding the surroundings of the camera. This is a limitation of conventional PTZ
camera manipulation.

We test the system in different scenarios and record the results in the figure 12. In Fig. 12, we observe that our approach still
perform eminent on the less-texture region from the first row. In Outdoor, more features mean more distractors. However, our
method gain a satisfactory outcome demonstrating the applicability of our method both indoors and outdoors. In the third row,
we attempt to prove the robustness of our system for movable objects, such as chairs and tables, working as expected. In addition,
our system can effortlessly reach the target area with the support of the panoramic model, which is difficult to achieve in other
AVE systems yet.
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(a) (b)

F I G U R E 11 The visual expansion and real-time calibration system and panoramic models. Figure (a) is the system interface
of the visual expansion and real-time calibration system. Figure (b) is the top view of Panoramic models. The green box denotes
the PTZ image projection of PTZ camera.

T A B L E 5 Functional comparison of different systems.

System Environment Camera type Functions Limitations

Traditional
PTZ control

system

Outdoor
Indoor

PTZ camera
Focuses on PTZ camera

control and video
transmission

Accurate and rapid control of
multiple cameras requires
operators to memorize the

environment of each camera,
which is a burden.

Work of Pece
et al. 38 Indoor

Smartphone
camera

Uses smartphone cameras
to create a surround

representation of meeting
places

1. Relies on markers; 2. Only
achieves static camera position.

Work of
Tompkin et

al. 2
Outdoor

Smartphone
camera

Shows changes of places
on Google Street View and

demonstrates several
representations for
different displays.

1. Relies on GPS location, and
orientation data from multiple

integrated sensors; 2. Only
calibrate video frames offline.

Work of
Young et al. 4 Outdoor

Smartphone
camera

Provides telepresence and
remote collaboration on

mobile and wearable
devices

1. Relies on the device’s inbuilt
sensors; 2. Unaccurate camera

position in the panorama

Our system
Outdoor
Indoor

PTZ camera

1. Achieves accurate and
rapid control of PTZ

cameras via background
panoramic models; 2.

Realizes the alignment
between PTZ images and
panoramic models in real

time

Not consideres the lens
distortion.

7 CONCLUSION

We propose a novel visual expansion and real-time calibration for PTZ cameras assisted by panoramic models. We first develop
the two-point method into the two-ray method, which is applied to two adjacent PTZ images for parameter estimation. Second,
we strengthen the feature matching and parameter estimation of the image mosaic method by exploiting the geometric property
of PTZ adjacent images. The improved method achieve more excellent the parameter estimation during the spherical stitching
of PTZ images. We construct the panoramic model based the improved method. Then we present a real-time PTZ camera
calibration algorithm primarily composed of the PTZ motion estimation model and the camera calibration algorithm based on
key-ray collection. We verify our method on both public and self-built data sets. As known from the experimental results that our
method can indicate outstanding performance. We also design a visual expansion and real-time calibration system using our
method, which realizes effective control of the PTZ camera through the panoramic model.
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F I G U R E 12 The results of our system. The green box indicates the projection of real-time PTZ images in panoramic models.
Regions outside green boxes are panoramic models.

However, there are several limitations to this work. We have yet to consider the lens distortion carrying some biases during
PTZ camera calibration. Also, we assume that the principal point coincides with the projection center and zooming center.
However, this may not uniformly be the truth for cameras in zooming. Finally, while we presume that the optical center of the
PTZ camera is fixed, it would have variations when the camera rotates in reality. Those factors require to be taken into account if
we expect a more accurate result.
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