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Abstract

In this paper, the prescribed-time fault-tolerant control for multiple input multiple output (MIMO) linear time-varying (LTV)

systems is investigated. Both uncertain lexicographically fixed and non-lexicographically fixed LTV systems with precisely

known models have been considered. By leveraging the special structure of controllable canonical form and employing the

properties of the parametric Lyapunov equation, a global prescribed-time fault-tolerant controller is designed. By choosing

a suitable Lyapunov-like function, it will be demonstrated that the state converges to zero within the designated time. In

addition, the designed controller is bounded and maintains a linear, concise and smooth form. Ultimately, the effectiveness of

the controller is verified through the simulation of the elliptical orbital rendezvous system.
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Abstract

In this paper, the prescribed-time fault-tolerant control for multiple input multiple output (MIMO)
linear time-varying (LTV) systems is investigated. Both uncertain lexicographically fixed and non-
lexicographically fixed LTV systems with precisely known models have been considered. By leveraging
the special structure of controllable canonical form and employing the properties of the parametric
Lyapunov equation, a global prescribed-time fault-tolerant controller is designed. By choosing a suitable
Lyapunov-like function, it will be demonstrated that the state converges to zero within the designated
time. In addition, the designed controller is bounded and maintains a linear, concise and smooth form.
Ultimately, the effectiveness of the controller is verified through the simulation of the elliptical orbital
rendezvous system.
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1 Introduction

Linear time-varying (LTV) systems have always received widespread attention in the past few decades
[1, 2, 3, 4]. It has many practical engineering applications, such as the nonholonomic car [5] and the
magnetic torque spacecraft [6]. Compared to the control of time-invariant systems, the control of time-
varying systems is a rather arduous and challenging task. We lack effective mathematical tools to handle
LTV systems, and even so, there is still a significant amount of literature on the control of LTV systems
[2, 3, 7, 8]. In the previous studies, researchers have primarily concentrated on the asymptotic stability of
LTV systems, wherein the system state converges to zero after a substantial duration. However, practical
applications often require faster convergence speeds.

Prescribed-time control has garnered considerable attention in recent years for its capability to set the
convergence time arbitrarily and its robustness against unknown disturbances [9, 10, 11, 12, 13]. Firstly,
concepts including finite-time, fixed-time, and prescribed-time convergence have been proposed. In the
finite-time scheme, the state converges to zero within a defined time interval, rather than indefinitely. The
convergence time, however, is related to the initial value [14, 15]. In cases where the upper bound of
convergence time remains constant regardless of the initial value, the finite-time scheme transitions into the
fixed-time scheme [16, 17]. In the prescribed-time scheme, the upper bound of the system’s settling time
is presumed, meaning that the convergence time is not only known but can also be arbitrarily specified
as a parameter. In recent years, criteria and stabilization methods for prescribed-time control have been
developed for a large number of systems, such as nonlinear systems [11, 18, 19] , linear time-invariant systems
[20, 21], stochastic systems [10, 22], time-delay systems [9, 23] and multi-agent systems [24].

On the one hand, controlling LTV systems is quite difficult, and on the other hand, prescribed-time control
can significantly improve system performance. Accordingly, achieving prescribed-time control for LTV sys-
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tems represents a significant challenge. However, to the author’s knowledge, there is currently no literature
to address this problem.

In this paper, the problem of prescribed-time control for LTV systems has been investigated. Firstly,
uniformly controllable LTV systems are transformed into their controllable canonical forms. When the
uniformly controllable system is lexicographically fixed, we will directly convert it. However, when the
uniformly controllable system is non-lexicographically fixed, it should first be expanded into an augmented
lexicographically fixed LTV system with the assistance of an auxiliary LTV. Subsequently, the augmented
lexicographically fixed LTV system will be converted into the controllable canonical form. Secondly, on the
basis of the obtained controllable canonical form, by employing the inherent properties of a certain type of
parametric Lyapunov equations (PLEs) [25, 26, 27], a smooth linear time-varying high-gain state feedback
controller is designed. Then, by choosing a suitable Lyapunov-like function, it will be demonstrated that
the state approaches zero within a prescribed time. Additionally, the uncertainties and the faults in the
actuator [28, 29] are also taken into account. Ultimately, our contribution to the design of prescribed-time
fault-tolerant controller for uncertain LTV systems is manifold.

1. There is no need to impose slow changing constraints on the coefficient matrix or adopt approximate
methods for LTV systems. In addition, the system’s state transition matrix is not needed to be known.
This paper only requires that the LTV system is uniformly controllable.

2. The global prescribed-time control for LTV systems is achieved. The uniformly prescribed-time input-
to-state stability in sense of Definition 2 and the globally uniformly prescribed-time stability in sense
of Definition 3 are considered. Moreover, the convergence time is independent of the initial condition.
In addition, our controller maintains a linear, concise, smooth form, and it is bounded.

3. The designed controller is capable of fault tolerance and robustness. The prescribed-time stability of
the LTV system can be maintained when the upper bound of the model uncertainties satisfies a specific
condition.

Notation: Consider Rk×l as sets of k × l matrices. 0p×q denotes the all-zero p × q matrices. R≥ta refers
to the interval [ta,∞) and ∥·∥ denotes the Euclidean norm. M ⊕ N represents the matrix with diagonal
elements being matrix M and matrix N . Let AT, rank(A), σmax(A), σmin(A) denote, respectively, the
transpose, rank, maximal and minimal eigenvalue of matrix A. J k(Z,O), J∞(Z,O) and S∞(Z,O) refer to
the set of k-times differentiable functions, smooth functions and bounded functions f : Z → O, respectively.

N+ represents the set of positive integers. ρ
[n]
i represents a row vector with dimensions 1 × n , where only

the i-th element is 1, and the rest are 0. The phrase “unique positive definite solution” is abbreviated as
“UPDS”.

2 Preliminaries

Consider the following MIMO LTV system with actuator faults and uncertainties{
ẋ = (1 +ϖ(t))A(t)x+B(t)((1− η(t))u+ δ(t)),
y = C(t)x, t, t0 ∈ R≥0, t ≥ t0,

(1)

where x ∈ Rn represents the state, u ∈ Rm denotes the input, y ∈ Rp signifies the output, A(t) ∈
(J∞,S∞)(R≥0,R

n×n) and B(t) ∈ J∞(R≥0,R
n×m). ϖ(t), η(t) and δ(t) ∈ Rm denote the model uncer-

tainty, the fault gain and float fault, respectively.

In this paper, we make following assumptions on the LTV systems (1).

Assumption 1 The model uncertainty ϖ(t) is unknown but bounded, satisfying, ∥ϖ(t)∥ ≤ wmax < ∞,∀t ∈
R≥0, where wmax is a known finite positive constant.

Assumption 2 The fault gain η(t) ∈ [0, 1) is unknown but bounded, satisfying ∥η(t)∥ ≤ ηmax < ∞,∀t ∈
R≥0, where ηmax is a known finite positive constant. The float fault δ(t) is unknown and its norm has an
unknown finite upper bound on the interval R≥0.
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Remark 1 In Assumption 2, η(t) ∈ [0, 1) guarantees that the input of the LTV system (1) is not infinitely
close to zero. Otherwise, if η(t) = 1, the control function could be completely lost, causing the system to
become unforced. Similar constraints on fault are also found in [28, 29].

For simplicity, we define the following two operations. One operator J (·) is defined as
J 0 (M(t)) ≜ M(t),

J (M(t)) ≜ M(t)A(t) + d
dtM(t),

J i (M(t)) ≜ J (J i−1(M(t))), i = 1, 2, . . . ,

(2)

and other operator R(·) is defined as
R0 (M(t)) ≜ M(t),

R(M(t)) ≜ A(t)M(t)− d
dtM(t),

Ri (M(t)) ≜ R(Ri−1(M(t))), i = 1, 2, . . . ,

(3)

where A(t) is defined in LTV system (1). Specifically, JA1
(·) and RA1

(·) denote the similar operations in
(2) and (3) with the only difference being that A(t) is replaced by A1(t).

Definition 1 [30] The LTV system (1) is said to be uniformly controllable on the interval R≥0, if its
controllability matrix

Q(t) =


BT(t)

(R(B(t)))T

...
(Rn−1(B(t)))T


T

∈ Rn×(nm), (4)

satisfies rank(Qi(t)) = n, ∀t ∈ R≥0.

Consider the following partitions

B(t) =
[
b1(t) b2(t) · · · bm(t)

]
.

The controllability matrix Q(t) is screened for independent columns in the order from left to right. First,
at step 1, the columns of the matrix B(t), bi(t), i = 1, 2, . . . ,m, are investigated. At step j, j ∈ {1, 2, ..., n},
Rj−1(bi(t)), i = 1, 2, . . . ,m are investigated for their dependence on all previous ones. If Rj(bi(t)), i =
1, 2, ...,m, j = 1, 2, ..., n−1 can be represented by its previous vectors in a linear combination, we will discard
this vector. Otherwise, we will keep this vector. Finally, a new nonsingular matrix Qc(t) is constructed as
follows

Qc(t) =
[
Q1

c(t) Q2
c(t) · · · Qn−1

c (t)
]
∈ Rn×n, (5)

Qi
c(t) =

[
bi(t) R(bi(t)) · · · Rµi−1(bi(t))

]
∈ Rn×µi ,

where i = 1, 2, . . . ,m. Then, the ordered set {µ1, µ2, . . . , µm} is called the controllability indices. The
controllability indices may change over time. Then, we give following two assumptions.

Assumption 3 There exists controllability indices {µ1, µ2, . . . , µm} that does not change over time such that
the LTV system (1) is uniformly controllable. In this case, the LTV system (1) is said to be lexicographically
fixed.

Assumption 4 There exists controllability indices {µ1(t), µ2(t), . . . , µm(t)} that change over time such
that the LTV system (1) is uniformly controllable. In this case, the LTV system (1) is said to be non-
lexicographically fixed.

Remark 2 Assumption 3 was widely presented, such as [31, 32, 33]. However, Assumption 3 is restrictive,
and Assumption 4 is more weak but has received less attention. (See [34] and the references therein.) If the
LTV system (1) is uniformly controllable, it must be non-lexicographically fixed with controllability indices
being {µ1(t), µ2(t), . . . , µm(t)}. (Here we consider the lexicographically fixed LTV system as a special type of
non-lexicographically fixed LTV system.)

3



If the LTV system is lexicographically fixed, the controllability indices {µ1, µ2, . . . , µm} are some constants.

Denote
m∑
i=1

µi = n.

If the LTV system is non-lexicographically fixed, the controllability indices {µ1(t), µ2(t), . . . , µm(t)} are

time-varying numbers. For arbitrary given t ∈ R≥0, we have
m∑
i=1

µi(t) = n. Define

vi = max
t∈R≥0

{µi(t)}, i = 1, 2, . . . ,m. (6)

Set

ng ≜
m∑
i=1

vi =

m∑
i=1

max
t∈R≥0

{µi(t)} >

m∑
i=1

µi(t) = n. (7)

Finally, we will introduce the relevant knowledge on prescribed-time stability.

Definition 2 [19, 35] (UPT-ISS+C) The time-varying system ẋ = f(x, δ, t, t0), t, t0 ∈ R≥0, t ≥ t0, is
referred to as uniformly prescribed-time input-to-state stable and converges to zero at the prescribed time T
(represented by UPT-ISS+C), if there exists two K functions τ and ϱ and a KL function βc such that for
any initial moment t0, all t ∈ [t0, t0 + T ] and the bounded function δ(t),

∥x(t)∥ ≤ βc

(
τ(∥x(t0)∥) + ϱ

(
sup

s∈[t0,t0+T )

∥δ(s)∥
)
, γ1(t)

)
, (8)

where γ1(t) is a T -finite-time escaping function ( lim
t→t0+T

γ1(t) = ∞).

Definition 3 [36] The time-varying system ẋ = f(x, t, t0), t ≥ t0, t, t0 ∈ R≥0 is referred to as globally
uniformly prescribed-time stable (GUPTS) with the predetermined time T , if it is uniformly stable and, for
any given initial state value and initial moment, lim

t→t0+T
∥x(t)∥ = 0.

3 Controllable Canonical Forms for LTV Systems

In this section, employing a nonsingular time-varying transformation, the uniformly controllable LTV sys-
tem is converted into its controllable canonical form, regardless of whether it is lexicographically fixed or
non-lexicographically fixed. For lexicographically fixed LTV systems, we directly transform them into their
controllable canonical forms. Regarding non-lexicographically fixed LTV systems, we first introduce an
auxiliary system based on the original system to ensure that the extended LTV system becomes lexicograph-
ically fixed. Subsequently, the augmented lexicographically fixed LTV system can be transformed into its
controllable canonical form.

3.1 Controllable Canonical Forms of Lexicographically Fixed LTV Systems

Theorem 1 Suppose that the LTV system (1) satisfies Assumption 3, then there exists a nonsingular trans-
formation

x̄ = Tc(t)x, (9)

such that the LTV system (1) is converted into the following controllable canonical form{
˙̄x = (1 +ϖ(t))Ā(t)x̄+ B̄(t)((1− η(t))u+ δ(t)),
y = C̄(t)x, t, t0 ∈ R≥0, t ≥ t0,

(10)

where (Ā(t), B̄(t))= ((Tc(t)A(t)+Ṫc(t))T
−1
c (t), Tc(t)B(t)). Moreover, Ā(t) and B̄(t) take the following form:

Ā(t) =


A11(t) A12(t) · · · A1m(t)
A21(t) A22(t) · · · A2m(t)

...
...

...
Am1(t) Am2(t) · · · Amm(t)

 ∈ Rn×n, (11)
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B̄(t) =

 b1
. . .

bm

Γ (t) ∈ Rn×m, (12)

where Γ (t) ∈ Rm×m is an upper triangular matrix with diagonal elements all being ones and, for i, j =
1, 2, . . . ,m,

Aii(t) =


0 1
...

. . .

0 1
αii,1 αii,2 · · · αii,µi

 ∈ Rµi×µi ,

Aij(t) =


0 · · · · · · 0
...

...
0 · · · · · · 0

αij,1 αij,2 · · · αij,µj

 ∈ Rµi×µj , i ̸= j, (13)

bi =
[
0 · · · 0 1

]T ∈ Rµi×1, (14)

in which αij,k , k = 1, 2, . . . , µj are time-varying known parameters.

Proof. The conversion process to controllable canonical form has been given in many previous literatures
[37]. We next mainly provide the construction method of the transformation matrix Tc(t). First, the inverse
of matrix Qc(t) in (5) is divided into

Q̂(t) = Q−1
c (t) =

[
Q̂T

1 (t) Q̂T
2 (t) · · · Q̂T

m(t)
]T

,

where, for i = 1, 2, . . . ,m,

Q̂i(t) =
[
κT
i,0(t) κT

i,1(t) · · · κT
i,µi−1(t)

]T
.

Denote
κk(t) ≜ κk,µk−1(t), k = 1, 2, . . . ,m. (15)

Next, the transformation matrix Tc(t) is constructed as follows

Tc(t) ≜


Tc1(t)
Tc2(t)

...
Tcm(t)

 ∈ Rn×n, (16)

Tck(t) ≜


κk(t)

J (κk(t))
...

J (µk−1)(κk(t))

 ∈ Rµk×n, k = 1, 2, . . . ,m. (17)

Then, by using the transformation x̄ = Tc(t)x,, Ā(t) and B̄(t) yield the expressions as shown in (11) and
(12). Moreover, Γ (t) in (12) takes the following form

Γ (t) =


J (µ1−1)(κ1(t))
J (µ2−1)(κ2(t))

...
J (µm−1)(κm(t))

B(t) =


1 ∗ · · · ∗

1
. . .

...
. . . ∗

1

 , (18)

where Γ (t) ∈ Rm×m and ∗ represents known time-varying elements.

Remark 3 The theorem mentioned above shares similarities with the result in [33]. However, in Theorem
1, The constraint

|µi − µj | ≤ 1, i, j ∈ {1, 2, . . . ,m}, (19)
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imposed on the controllability indices {µ1, µ2, . . . , µm} has been relaxed during the conversion to the control-
lable canonical form. Traditionally, many works including [31, 32, 33, 38] consider the condition (19) as a
requirement for the conversion to controllable canonical form. However, it has been noted by [39, 40] that
this condition is not essential. They highlighted that even without such condition, the LTV system can still
be converted to its controllable canonical form in form of (11) and (12), albeit without providing a detailed
proof. In our forthcoming research, we will provide a detailed proof that the condition (19) is redundant for
the conversion to controllable canonical form.

3.2 Controllable Canonical Forms of Non-lexicographically Fixed LTV Systems

In the previous subsection, employing the transformation characterized by the system data, the lexicograph-
ically fixed LTV system with actuator faults and uncertainties is transformed into its controllable canonical
form. Next we will introduce the method of transforming the non-lexicographically fixed LTV system with
precisely known model into its controllable canonical form. The non-lexicographically fixed LTV system can
be expanded into an augmented lexicographically fixed LTV system with the assistance of an auxiliary LTV
system. This idea was initially proposed in [34]. We will provide a direct method for obtaining the augmented
lexicographically fixed LTV system in this subsection and apply it into the analysis of global prescribed-time
fault-tolerant control in the next section. Initially, we introduce the time-varying base extension theorem,
inspired by the Doležar’s theorem [41], with its proof relocated to Appendix A1 for clarity.

Lemma 1 Let l, n ∈ N+, r ∈ {1, 2, . . . , n} and M(t) ∈ J k(R≥0,R
r×n). Suppose that rank(M(t)) = r, for

all t ∈ R≥0, then there exists S(t) ∈ (J k,S∞)(R≥0,R
(n−r)×n) such that

rank

[
M(t)
S(t)

]
= n, ∀t ∈ R≥0.

Then, assume that the LTV system model depicted in (1) is precisely known, that is ϖ(t) = 0,∀t ∈ R≥0.
Denote ne ≜ ng − n, where ng is defined in (7). The following result regarding the augmented lexicography
fixed LTV system is given, whose proof has been moved to Appendix A2 for clarity.

Lemma 2 Let Assumption 4 be fulfilled. Then, there exists suitable matrices A1(t) ∈ Rne×n, A2(t) ∈
Rne×(ng−n) and Be(t) ∈ Rne×m such that the LTV system (1) with ϖ(t) = 0,∀t ∈ R≥0 can be expanded into
the following augmented lexicographically fixed LTV system{

ẋg = Ag(t)xg +Bg(t)((1− η(t))u+ δ(t)),
yg = Cg(t)xg, t, t0 ∈ R≥0, t ≥ t0,

(20)

where

xg =

[
x
xe

]
∈ Rng ,

Ag(t) =

[
A(t) 0
A2(t) A1(t)

]
∈ Rng×ng ,

Bg(t) =

[
B(t)
Be(t)

]
∈ Rng×m,Cg(t) =

[
C(t) 0

]
∈ Rp×ng .

Additionally, the augmented lexicographically fixed LTV system(20) has controllability indices {v1, v2, . . . , vm}.

Such widespread non-lexicographically fixed LTV systems are only considered in the problem of pole place-
ment [34, 42, 43, 44, 45] and lack attention on other interesting issues. Utilizing the augmented system, the
conversion to the controllable canonical form can be generalized to non-lexicographically fixed LTV systems.

Theorem 2 Let Assumption 4 be fulfilled. Suppose that ϖ(t) = 0,∀t ≥ t0 ∈ R≥0 in the LTV system
(1), then there exists a nonsingular transformation x̄g = Tg(t)xg, such that the augmented system (20) is

6



transformed into the following augmented controllable canonical form{
˙̄xg(t) = Āg(t)xg + B̄g(t)((1− η(t))u+ δ(t)),
yg = C̄g(t)xg, t, t0 ∈ R≥0, t ≥ t0,

(21)

where (Āg(t), B̄g(t))=((Tg(t)Ag(t)+Ṫg(t))T
−1
g (t),Tg(t)B(t)). Moreover, Āg(t) takes the similar form to (11)

and

B̄g(t) =

 bg1
. . .

bgm

Γg(t) ∈ Rng×m, (22)

where, for each i ∈ {1, 2, · · · ,m},

bgi =
[
0 · · · 0 1

]T ∈ Rvi×1, (23)

and Γg(t) takes the similar form to (18).

4 Global Prescribed-Time Fault-Tolerant Control by Linear Time-
Varying Feedback

In this section, employing the clear structure of the controllable canonical form and the characteristic of the
PLE, a linear time-varying feedback is designed to achieve global prescribed-time fault-tolerant control for
uniformly controllable LTV systems. Both uncertain lexicographically fixed and non-lexicographically fixed
LTV systems with precisely known models have been taken into account. We first consider the prescribed-
time fault-tolerant control for the lexicographically fixed LTV system.

4.1 Lexicographically Fixed LTV Systems

In this subsection, the prescribed-time fault-tolerant controller is designed for uncertain lexicographically
fixed LTV systems. We first design a preliminary controller. Then, based on the preliminary controller, we
redesign the overall controller.

Assume that Tc(t) constructed in (16) and (17) is a Lyapunov transformation matrix. Therefore, the stability
of the original system can be preserved after the transformation x̄ = Tc(t)x. Accordingly, the controller design
can be continued based on the controllable canonical form derived in the previous subsection.

For i ∈ {1, 2, . . . ,m}, denote

Ki(t) ≜
[
Ki,1(t) Ki,2(t) · · · Ki,m(t)

]
∈ R1×n, (24)

where, for each j ∈ {1, 2, . . . ,m},

Ki,j(t) ≜
[
αij,1 αij,2 · · · αij,µj

]
∈ R1×µj , (25)

in which αij,k , i, j = 1, 2, . . . ,m, k = 1, 2, . . . , µj are defined in (13). Set

δΓ (t) ≜


δΓ1(t)
δΓ2(t)

...
δΓm(t)

 = Γ (t)δ(t) ∈ Rm. (26)

where Γ (t) is defined in (12). Since Tc(t) is a Lyapunov transformation matrix and A(t) as well as B(t) are
bounded for all t ∈ R≥0, then both Ā(t) and B̄(t), respectively, depicted in (11) and (12) are bounded for
all t ∈ R≥0. Therefore, based on the special structure of matrices Ā(t) and B̄(t) outlined in (11), (12) and
the definition of Ki(t), i = 1, 2, . . . ,m depicted in (24) and (25), along with the depiction of δΓ (t) in (26),
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we can conclude that, for every i, j ∈ {1, 2, . . . ,m}, Γ (t), δΓ i(t) and Ki,j(t) are all bounded for all t ∈ R≥0.
Set

δmax ≜ sup
t≥t0

{
m∑
i=1

δ2Γi
(t)

}
. (27)

In addition, since Γ (t) depicted in (18) is bounded and det(Γ (t)) = 1,∀t ∈ R≥0, according to Lemma 5, we
can infer that Γ−1(t) is also bounded for all t ∈ R≥0.

Partition the state of the controllable canonical form (10) into

x̄ =
[
x̄T
1 x̄T

2 · · · x̄T
m

]T
, (28)

where x̄i ∈ Rµi , i = 1, 2, . . . ,m. Define the following preliminary controller

u = Γ−1(t)v, v =
[
vT1 vT2 · · · vTm

]T
, (29)

where Γ (t) is defined in (18) and vi, i = 1, 2, . . . ,m are the remaining part of the controller to be designed
subsequently. Inserting the preliminary controller (29) into the controllable canonical form (10) yields

˙̄xi =(1 +ϖ(t))Āix̄i + (1 +ϖ(t))bi

m∑
j=1

Ki,j(t)x̄j + biδΓ i(t)

+ (1− η(t))bivi, i = 1, 2, . . . ,m, (30)

where, for each i ∈ {1, 2, . . . ,m},

Āi =


0 1
...

. . .

0 1
0 0 · · · 0

 ∈ Rµi×µi ,

and bi, Ki,j(t), j = 1, 2, . . . ,m, and δΓ i(t) are defined in (14), (25) and (26), respectively. Next, we give the
following properties on the parametric Lyapunov equation (PLE).

Lemma 3 [25, 26] Let

A =


0 1
...

. . .

0 1
0 0 · · · 0

 , b =


0
...
0
1

 , (31)

where A ∈ Rn×n and b ∈ Rn×1. The PLE

ATP + PA− PbbTP = −γP, γ > 0, (32)

possesses a UPDS P (γ) to (31), exhibiting the following properties:

1. The UPDS P (γ) is provided by
P (γ) = γLnPnLn, (33)

where Pn = P (1) and Ln = Ln(γ) = γn−1 ⊕ γn−2 ⊕ · · · ⊕ 1.

2. There exists a constant θ(n) ≥ 1 independent of γ such that

P (γ)

nγ
≤ dP (γ)

dγ
≤ θ(n)P (γ)

nγ
, (34)

where θ(n) = n(1 + σmax(Mn + PnMnP
−1
n )), with Mn = n− 1⊕ n− 2⊕ · · · ⊕ 1⊕ 0.
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3. There holds

ATP (γ)A ≤ 3n2γ2P (γ). (35)

bTP (γ)b = nγ. (36)

σmax(Pn) = σ−1
min(Pn) ≜ Λn. (37)

We then give the assumption on the upper bound of the model uncertainty ϖ(t).

Assumption 5 For every i ∈ {1, 2, . . . ,m}, the known finite upper bound of the model uncertainty wmax

satisfies
2
√
3µiwmax < 1.

By utilizing the properties of the PLE, we redesign the preliminary controller. Then, we present the following
main result.

Theorem 3 Let Assumption 3 and Assumption 5 be fulfilled. Assume that Tc(t) constructed in (16) and
(17) is a Lyapunov transformation. Let T > 0 be a prescribed time. Then, there exist positive constants α
and β, such that the closed-loop system composed of the LTV system (1) and the linear time-varying state
feedback (29) with

vi = −fbTi Pi(γ)


ρ
[n]
µ̄i,1

ρ
[n]
µ̄i,2

...

ρ
[n]
µ̄i,µi

Tc(t)x, i = 1, 2, . . . ,m, (38)

where f is a constant satisfying f > 1
2(1−ηmax)

, bi is defined in (14), µ̄i,j =
i−1∑
k=1

µk + j, j = 1, 2, . . . , µi, and

γ =
eαβ(t0+T ) − eαβt0

eαβ(t0+T ) − eαβt
γ0, γ0 = max

{
kβeαβ(t0+T )

eαβ(t0+T ) − eαβt0
, 1

}
, (39)

in which k ≥ 1 is a constant, and Pi(γ) is the UPDS to the PLE (32) with dimensions µi, satisfies

∥x(t)∥2 ≤ χ(1− e−αβ(t0+T−t))(∥x(t0)∥2 + δmax),

for all t ∈ [t0, t0 + T ) and any x(t0) ∈ Rn, in which χ is a finite positive constant. Moreover, the overall
controller u(t) composed of (29) and (38) satisfies, for all t ∈ [t0, t0 + T ),

∥u(t)∥2 ≤ ϑu((e
αβ(t0+T−t) − 1)ς ∥x(t0)∥2 + δmax),

where ϑu and ς are finite positive constants. In addition, when the float fault δ(t) exists in the LTV system
(1), namely, δ(t) ̸= 0, the closed-loop system is UPT-ISS+C in sense of Definition 2 and the overall controller
u(t) is bounded. When the float fault δ(t) does not exist in the LTV system (1), namely, δ(t) = 0, the closed-
loop system is GUPTS in sense of Definition 3 and the overall controller u(t) satisfies lim

t→t0+T
u(t) = 0.

Proof. Let k1 and ϵi, i = 1, 2, . . . ,m represent positive constants such that, for i = 1, 2, . . . ,m,

αi ≜
µi

µi + θ(µi)
(1− k1µi − 2

√
3µiwmax − ϵi) > 0. (40)

Choose
0 < α ≤ min

i=1,2,...,m
{αi}. (41)

For i = 1, 2, . . . ,m, define

βi ≜
µi

µi + θ(µi)

m(1 + wmax)µi + (1 + wmax)

m∑
j=1

k2ji
pi

 , (42)
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where

kji = sup
t≥0

{∥Kj,i(t)∥}, j = 1, 2, . . . ,m, (43)

and pi ≜ σmin(Pµi
). Choose

β ≥
max

i=1,2,...,m
{βi}

α
(44)

According to (9) and (28), (38) can be rewritten as

vi = −fbTi Pi(γ)x̄i, i = 1, 2, . . . ,m. (45)

Consider the Lyapunov-like function

Vi(t, x̄i) = γx̄T
i Pi(γ)x̄i, i = 1, 2, . . . ,m.

For arbitrary given i ∈ {1, 2, . . . ,m}, taking the time-derivative of Vi(t, x̄i) along system (30) with controller
(45) yields

V̇i(t, x̄i) =γ̇x̄T
i Pi(γ)x̄i + γ̇γx̄T

i

dPi(γ)

dγ
x̄i + γ

(
(1 +ϖ(t))x̄T

i Ā
T
i + (1 +ϖ(t))

m∑
j=1

x̄T
j K

T
i,j(t)b

T
i + δΓ i(t)b

T
i

− (1− η(t))fx̄T
i Pi(γ)bib

T
i

)
Pi(γ)x̄i + γx̄T

i Pi(γ)

(
(1 +ϖ(t))Āix̄i+(1 +ϖ(t))bi

m∑
j=1

Ki,j(t)x̄j

+ biδΓi(t)− (1− η(t))fbib
T
i Pi(γ)x̄i

)

=γ̇x̄T
i Pi(γ)x̄i + γ̇γx̄T

i

dPi(γ)

dγ
x̄i + γx̄T

i (Ā
T
i Pi(γ) + Pi(γ)Āi − 2(1− η(t))fPi(γ)bib

T
i Pi(γ))x̄i

+ 2(1 +ϖ(t))γ

m∑
j=1

x̄T
j K

T
i,j(t)b

T
i Pi(γ)x̄i + 2δΓ i(t)γb

T
i Pi(γ)x̄i + 2ϖ(t)γx̄T

i Pi(γ)Āix̄i. (46)

According to (34), we have

γ̇γx̄T
i

dPi(γ)

dγ
x̄i ≤ γ̇

θ(µi)

µi
x̄T
i Pi(γ)x̄i. (47)

Referring to (32) and f > 1
2(1−ηmax)

, we can get

γx̄T
i (Ā

T
i Pi(γ)+Pi(γ)Āi−2(1− η(t))fPi(γ)bib

T
i Pi(γ))x̄i

=− γ2x̄T
i Pi(γ)x̄i+(1−2(1− η(t))f)γx̄T

i Pi(γ)bib
T
i Pi(γ)x̄i

≤−γ2x̄T
i Pi(γ)x̄i+(1−2(1−ηmax)f)γx̄

T
i Pi(γ)bib

T
i Pi(γ)x̄i

≤− γ2x̄T
i Pi(γ)x̄i. (48)

It follows from (36) that

γx̄T
i Pi(γ)bib

T
i Pi(γ)x̄i ≤γbTi Pi(γ)bix̄

T
i Pi(γ)x̄i = µiγ

2x̄T
i Pi(γ)x̄i. (49)

By using Young’s inequality and (49), we can derive

2δΓi
(t)γbTi Pi(γ)x̄i≤ k1γx̄

T
i Pi(γ)bib

T
i Pi(γ)x̄i+

1

k1
γδ2Γi

(t) ≤ k1µiγ
2x̄T

i Pi(γ)x̄i +
1

k1
γδ2Γi

(t), (50)

where k1 > 0 is a constant. Using Young’s inequality and (35) yields

2ϖ(t)γx̄T
i Pi(γ)Āix̄i ≤k2wmaxγ

2x̄T
i Pi(γ)x̄i +

1

k2
wmaxx̄

T
i Ā

T
i Pi(γ)Āix̄i

≤k2wmaxγ
2x̄T

i Pi(γ)x̄i +
3µ2

iwmax

k2
γ2x̄T

i P (γ)x̄i
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=

(
k2 +

3µ2
i

k2

)
wmaxγ

2x̄T
i Pi(γ)x̄i. (51)

Notice that, for i ∈ {1, 2, . . . ,m}, there exists positive scalar pi such that

piIµi
≜ σmin(Pµi

)Iµi
= σmin(Pµi

)L2
µi
(1) ≤ σmin(Pµi

)L2
µi
(γ0) ≤ σmin(Pµi

)L2
µi

≤ Lµi
Pµi

Lµi
, (52)

where (33) and (39) are used. Using Young’s inequality, (33), (49) and (52) gives

2(1 +ϖ(t))γx̄T
i Pi(γ)bi

m∑
j=1

Ki,j(t)x̄j

=

m∑
j=1

2(1 +ϖ(t))γx̄T
i Pi(γ)biKi,j(t)x̄j

≤
m∑
j=1

k3(1 + wmax)x̄
T
i Pi(γ)bib

T
i Pi(γ)x̄i +

m∑
j=1

1

k3
(1 + wmax)γ

2x̄T
j K

T
i,j(t)Ki,j(t)x̄j

≤mk3g(ϖ)µiγx̄
T
i Pi(γ)x̄i +

g(ϖ)γ2

k3

m∑
j=1

k2ij x̄
T
j x̄j

≤mk3g(ϖ)µiγx̄
T
i Pi(γ)x̄i+

g(ϖ)γ

k3

m∑
j=1

k2ij x̄
T
j

γLµj
Pµj

Lµj

pj
x̄j

≤mk3g(ϖ)µiγx̄
T
i Pi(γ)x̄i +

g(ϖ)γ

k3

m∑
j=1

k2ij
pj

x̄T
j Pj(γ)x̄j , (53)

where k3 is a positive constant, g(ϖ) = 1 + wmax and kij , j = 1, 2, . . . ,m are defined in (43). Combining
(47), (48), (50), (51) and (53), (46) can be further written as

V̇i(t, x̄i) ≤γ̇x̄T
i Pi(γ)x̄i+γ̇

θ(µi)

µi
x̄T
i Pi(γ)x̄i−γ2x̄T

i Pi(γ)x̄i+mk3g(ϖ)µiγx̄
T
i Pi(γ)x̄i +

g(ϖ)γ

k3

m∑
j=1

k2ij
pj

x̄T
j Pj(γ)x̄j

+ k1µiγ
2x̄T

i Pi(γ)x̄i +
1

k1
γδ2Γi

(t) +

(
k2 +

3µ2
i

k2

)
wmaxγ

2x̄T
i Pi(γ)x̄i

=

((
1 +

θ(µi)

µi

)
γ̇ +

(
− 1 + k1µi+

(
k2 +

3µ2
i

k2

)
wmax + ϵi

)
γ2

)
x̄T
i Pi(γ)x̄i − ϵiγ

2x̄T
i Pi(γ)x̄i

+mk3g(ϖ)µiγx̄
T
i Pi(γ)x̄i +

g(ϖ)γ

k3

m∑
j=1

k2ij
pj

x̄T
j Pj(γ)x̄j +

1

k1
γδ2Γi

(t)

=φi(γ)x̄
T
i Pi(γ)x̄i−ϵiγ

2x̄T
i Pi(γ)x̄i +mk3g(ϖ)µiγx̄

T
i Pi(γ)x̄i+

g(ϖ)γ

k3

m∑
j=1

k2ij
pj

x̄T
j Pj(γ)x̄j+

1

k1
γδ2Γi

(t),

(54)

where

φi(γ) ≜

(
1 +

θ(µi)

µi

)
γ̇ +

(
− 1 + k1µi +

(
k2 +

3µ2
i

k2

)
wmax + ϵi

)
γ2 (55)

and ϵi is a positive constant to be designed.

Notice that
m∑
i=1

m∑
j=1

k2ij
pj

x̄T
j Pj(γ)x̄j =

m∑
i=1

m∑
j=1

k2ji
pi

x̄T
i Pi(γ)x̄i. (56)

Let

V (t, x̄) =

m∑
i=1

Vi(t, x̄i) =

m∑
i=1

γx̄T
i Pi(γ)x̄i. (57)
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By using (27), (54) and (56), V (t, x̄) can be further written as

V̇ (t, x̄) ≤
m∑
i=1

(
φi(γ)x̄

T
i Pi(γ)x̄i − ϵiγ

2x̄T
i Pi(γ)x̄i +mk3g(ϖ)µiγx̄

T
i Pi(γ)x̄i

+
g(ϖ)γ

k3

m∑
j=1

k2ij
pj

x̄T
j Pj(γ)x̄j+

1

k1
γδ2Γi

(t)

)

=

m∑
i=1

(φi(γ)x̄
T
i Pi(γ)x̄i − ϵiγ

2x̄T
i Pi(γ)x̄i +mk3g(ϖ)µiγx̄

T
i Pi(γ)x̄i)

+
g(ϖ)γ

k3

m∑
i=1

m∑
j=1

k2ij
pj

x̄T
j Pj(γ)x̄j+

1

k1
γ

m∑
i=1

δ2Γi
(t)

=

m∑
i=1

(φi(γ)x̄
T
i Pi(γ)x̄i − ϵiγ

2x̄T
i Pi(γ)x̄i +mk3g(ϖ)µiγx̄

T
i Pi(γ)x̄i)

+
g(ϖ)γ

k3

m∑
i=1

m∑
j=1

k2ji
pi

x̄T
i Pi(γ)x̄i +

1

k1
γδmax

=

m∑
i=1

φi(γ)− ϵiγ
2 +mk3g(ϖ)µiγ +

g(ϖ)γ

k3

m∑
j=1

k2ji
pi

 x̄T
i Pi(γ)x̄i +

1

k1
γδmax

=

m∑
i=1

(ϕi(γ)− ϵiγ
2)x̄T

i Pi(γ)x̄i +
1

k1
γδmax,

where

ϕi(γ) ≜ φi(γ) +

mk3g(ϖ)µi +
g(ϖ)

k3

m∑
j=1

k2ji
pi

 γ,

and δmax is defined in (27). By choosing

k2 =
√
3µi, k3 = 1,

ϕi(γ) can be written as

ϕi(γ) =

(
1 +

θ(µi)

µi

)
γ̇+

(
− 1+ k1µi+

(
k2 +

3µ2
i

k2

)
wmax + ϵi

)
γ2 +

mk3g(ϖ)µi+
g(ϖ)

k3

m∑
j=1

k2ji
pi

 γ

=

(
1+

θ(µi)

µi

)(
γ̇− µi

µi+θ(µi)
(1−k1µi−2

√
3µiwmax−ϵi)γ

2+
µi

µi+θ(µi)

(
mg(ϖ)µi+g(ϖ)

m∑
j=1

k2ji
pi

)
γ

)

=

(
1 +

θ(µi)

µi

)
(γ̇ − αiγ

2 + βiγ),

where αi, βi, i = 1, 2, . . . ,m are defined in (40) and (42).

According to (39), (41) and (44), for every i ∈ {1, 2, , . . . ,m} and all t ∈ [t0, t0 + T ), we have

γ̇ − αiγ
2 + βiγ ≤γ̇ − αγ2 + αβγ

=
(eαβ(t0+T ) − eαβt0)γ0
(eαβ(t0+T ) − eαβt)2

(−α(eαβ(t0+T ) − eαβt0)γ0 + αβeαβ(t0+T ))

=
α(eαβ(t0+T ) − eαβt0)2γ0
(eαβ(t0+T ) − eαβt)2

(
−γ0 +

βeαβ(t0+T )

eαβ(t0+T ) − eαβt0

)
≤0.
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Therefore, V̇ (t, x̄) can be further written as

V̇ (t, x̄) ≤ −
m∑
i=1

ϵiγ
2x̄i

TPi(γ)x̄i +
1

k1
γδmax ≤ −ϵγ

(
V (t, x̄)− 1

ϵk1
δmax

)
, (58)

where ϵ = min
i=1,2,...,m

{ϵi}. By using the comparison lemma [46], V (t, x̄), for all t ∈ [t0, t0 + T ), satisfies

V (t, x̄) ≤ λς(t, t0)V (t0, x̄(t0)) +
1

ϵk1
δmax(1− λς(t, t0)), (59)

where ς = ϵ(eαβT − 1)γ0/αβe
αβT is a positive constant and the scalar function λ(t, t0) = (eαβ(t0+T−t) −

1)/(eαβT − 1) ∈ (0, 1) is bounded. Using (33) and (37), we have

V (t, x̄) =

m∑
i=1

γx̄i
TPi(γ)x̄i =

m∑
i=1

γ2x̄T
i Lµi

Pµi
Lµi

x̄i

≥
m∑
i=1

γ2Λ−1
µi

x̄T
i Lµi

Lµi
x̄i

≥ χ1(γ0)γ

m∑
i=1

x̄T
i x̄i

= χ1(γ0)γ ∥x̄(t)∥2 , (60)

where χ1(γ0) ≜ min
i=1,2,...,m

{γ0Λ−1
µi

}. By employing (33), we have

V (t0, x̄(t0)) =

m∑
i=1

γ0x̄
T
i (t0)Pi(γ0)x̄i(t0)

=

m∑
i=1

γ2
0 x̄

T
i (t0)Lµi(γ0)PµiLµi(γ0)x̄i(t0)

≤ σγ2
0

m∑
i=1

x̄T
i (t0)x̄i(t0)

= χ2(γ0) ∥x̄(t0)∥2 , (61)

where σ = σmax(Lµi(γ0)PµiLµi(γ0)), i = 1, 2, . . . ,m, and χ2(γ0) ≜ σγ2
0 . Hence, it follows from (59), (60)

and (61) that

∥x̄(t)∥2 ≤ 1

χ1(γ0)γ

(
λς(t, t0)V (t0, x̄(t0)) +

1

ϵk1
δmax(1− λς(t, t0))

)
≤ eαβ(t0+T ) − eαβt

(eαβ(t0+T ) − eαβt0)γ0

(
χ2(γ0)

χ1(γ0)
λς(t, t0) ∥x̄(t0)∥2 +

1− λς(t, t0)

ϵk1χ1(γ0)
δmax

)
≤χ3(1− e−αβ(t0+T−t))(∥x̄(t0)∥2 + δmax), (62)

where t ∈ [t0, t0 + T ), χ3 represents a finite positive constant. By using (62) and the assumption that
x̄ = Tc(t)x is a Lyapunov transformation, we can get

∥x(t)∥2 ≤ χ(1− e−αβ(t0+T−t))(∥x(t0)∥2 + δmax), (63)

where t ∈ [t0, t0 + T ), χ represents a finite positive constant. Next, we will prove the boundedness of
v(t),∀t ∈ [t0, t0 + T ). According to (36), (45), (57), (59) and (61), for all t ∈ [t0, t0 + T ), we have

∥v(t)∥2 =

m∑
i=1

∥vi(t)∥2 =

m∑
i=1

f2x̄T
i Pi(γ)bib

T
i Pi(γ)x̄i

≤
m∑
i=1

f2bTi Pi(γ)bix̄
T
i Pi(γ)x̄i
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=

m∑
i=1

µif
2γx̄T

i Pi(γ)x̄i

≤ µ̄V (t, x̄)

≤ µ̄λς(t, t0)V (t0, x̄(t0)) +
µ̄

ϵk1
δmax(1− λς(t, t0))

≤ µ̄λς(t, t0)χ2(γ0) ∥x̄(t0)∥2 +
µ̄

ϵk1
δmax(1− λς(t, t0))

≤ ϑ((eαβ(t0+T−t) − 1)ς ∥x(t0)∥2 + δmax), (64)

where µ̄ = max
i=1,2,...,m

{µif
2} and ϑ is a finite positive constant. Finally, we will analyze the boundedness of

the overall controller composed of (29) and (38). Since in (29), Γ−1(t) is bounded for all t ∈ R≥0, according
to (64), for all t ∈ [t0, t0 + T ), we have

∥u(t)∥2 ≤ ϑu((e
αβ(t0+T−t) − 1)ς ∥x(t0)∥2 + δmax),

where ϑu is a finite positive constant. As of this point, the proof is finished.

Remark 4 To prevent singularity issues that when t approaches t0 + T , (39) can be updated to

γ =

{
eαβ(t0+T )−eαβt0

eαβ(t0+T )−eαβt γ0, t ∈ [t0, t0 + T#] ,
eαβ(t0+T )−eαβt0

eαβ(t0+T )−eαβ(t0+T#) γ0, t ≥ t0 + T#,

in which T# = T − δT with δT being a small enough value. [26].

Remark 5 In Theorem 3, we only utilize the special form of the controllable canonical form of LTV systems
during the controller design. The feedback linearization technique is not employed, as it would result in
increased energy consumption for the controller.

4.2 Non-lexicographically Fixed LTV Systems

Assume that the LTV system model depicted in (1) is precisely known, that is ϖ(t) = 0,∀t ∈ R≥0. Using
the controllable canonical form of non-lexicographically fixed LTV systems obtained from Theorem 2 and
following the steps of designing the global prescribed-time fault-tolerant controller for lexicographically fixed
LTV systems depicted in Theorem 3, the following result can be directly obtained.

Theorem 4 Let Assumption 4 be fulfilled. Assume that x̄g = Tg(t)xg such that the augmented system (20)
is transformed into the augmented controllable canonical form (21) is a Lyapunov transformation. Let T > 0
be a prescribed time. Then, there exist positive constants α and β, such that the closed-loop system composed
of the augmented system (20) and the linear time-varying state feedback

u = Γg(t)
−1vg, vg =

[
vTg1 vTg2 · · · vTgm

]T
, (65)

vgi = −fgb
T
giPi(γ)


ρ
[n]
v̄i,1

ρ
[n]
v̄i,2
...

ρ
[n]
v̄i,vi

Tg(t)xg, i = 1, 2, . . . ,m, (66)

where fg is a constant satisfying fg > 1
2(1−ηmax)

, Γg(t) and bgi are defined in (22) and (23), v̄i,j =
i−1∑
k=1

vk +

j, j = 1, 2, . . . , vi, and

γ =
eαβ(t0+T )−eαβt0

eαβ(t0+T )−eαβt
γ0, γ0 = max

{
kβeαβ(t0+T )

eαβ(t0+T ) − eαβt0
, 1

}
,
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Figure 1: Spacecraft rendezvous system and coordinates

Parameters Symbol Values
True anomaly θ

The θ-derivative of variable α α̊ dα /dθ
Semimajor axis a 2.4616× 107 m
Eccentricity e 0.73074

Geocentric gravitational constant µ 3.986× 1014 m3/s2

Constant k k 2.267× 10−2/s1/2

Specific angular momentum h 6.762× 1010 m2/s

Table 1: The parameters of the elliptical orbital rendezvous system

in which k ≥ 1 is a constant, and Pi(γ) is the UPDS to the PLE (32) with dimensions vi, satisfies

∥xg(t)∥2 ≤ χg(1− e−αβ(t0+T−t))(∥xg(t0)∥2 + δgmax),

for all t ∈ [t0, t0 + T ) and any xg(t0) ∈ Rn, in which χg is a finite positive constant and δgmax takes the
similar form to (26) and (27) with the only difference being that Γ (t) is replaced by Γg(t). Moreover, the
overall controller u(t) composed of (65) and (66) satisfies, for all t ∈ [t0, t0 + T ),

∥u(t)∥2 ≤ ϑug((e
αβ(t0+T−t) − 1)ςg ∥xg(t0)∥2 + δgmax),

where ϑug and ςg are finite positive constants. In addition, when the float fault δ(t) exists in the LTV system
(1), namely, δ(t) ̸= 0, the closed-loop system is UPT-ISS+C in sense of Definition 2 and the controller u(t)
is bounded. When the float fault δ(t) does not exist in the LTV system (1), namely, δ(t) = 0, the closed-loop
system is GUPTS in sense of Definition 3 and the controller u(t) satisfies lim

t→t0+T
u(t) = 0.

5 Applications to the Elliptical Orbital Rendezvous System

The spacecraft rendezvous system in elliptical orbit is shown in Figure 1. The parameters related to the
target spacecraft is represented in Table 1. Denote

ξ =
[
x y z ẋ ẏ ż

]T
,

u = af =
[
axf (t) ayf (t) azf (t)

]T
,

where af signifies the acceleration vector generated by the thrust of the pursuer spacecraft.

When the target spacecraft reaches perigee at time t = 0, the true anomaly is also equal to zero at the
initial moment. In this case, there exists a one-to-one correspondence between t and the true anomaly θ.
When R ≫ r, the elliptical orbital rendezvous system is represented as the following LTV form with model
uncertainties and actuator faults{

ξ̇ = (1 +ϖ(t))A(t)ξ + B(t)((1− η(t))u+ δ(t))
y = C(t)ξ, (67)
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where

A(t) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

w2 − kw3/2 0 ẇ 0 0 2w
0 −kw3/2 0 0 0 0

−ẇ 0 w2 + 2kw3/2 −2w 0 0

 ,

B(t) =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 , C(t) =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



T

and k = µ/h
3
2 = constant, w signifies the orbital angular velocity. Denote ρ = 1 + e cos(θ). Applying the

state transformation [x(θ), y(θ), z(θ)]
T
= ρ [x, y, z]

T
into the system (67) yields

X̊(θ) =(1 +ϖ(θ))A(θ)X(θ)+B(θ)((1− η(θ))U(θ)+ δ(θ))

=(1 +ϖ(θ))


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3
ρ 0 0 0 2 0

0 0 0 −2 0 0
0 0 −1 0 0 0

X(θ) +
1

k4ρ3


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 ((1− η(θ))U(θ)+ δ(θ)), (68)

Y (θ) =C(θ)X(θ)

=

 1
ρ 0 0 0 0 0

0 1
ρ 0 0 0 0

0 0 1
ρ 0 0 0

X(θ), (69)

where X(θ) = [x(θ), y(θ), z(θ), x̊(θ), ẙ(θ), z̊(θ)]
T
, U(θ) = u(t) = [axf (θ), a

y
f (θ), a

z
f (θ)]

T and Y (θ) = y(t).
It follows from (68) and (69) that the elliptical orbital rendezvous system depicted in the θ-domain is
lexicographically fixed with controllability indices {2, 2, 2}. Then, according to (16) and (17), computing the
transformation matrix Tc(θ) yields

Tc(θ)=


tc1(θ) 0 0 0 0 0
tc2(θ) 0 0 tc1(θ) 0 0
0 tc1(θ) 0 0 0 0
0 tc2(θ) 0 0 tc1(θ) 0
0 0 tc1(θ) 0 0 0
0 0 tc2(θ) 0 0 tc1(θ)

,

where tc1(θ) = kc1 ρ
3, tc2(θ) = kc2 e sin(θ) ρ2, kc1 = 2.6412× 10−7, kc2 = −7.9237× 10−7. It is easy to verify

that Tc(θ) is a Lyapunov transformation matrix. Applying the transformation matrix Tc(θ) to (68) and (69)
gives the following controllable canonical form associated with θ

d

dθ
X̄(θ)=(1+ϖ(θ))Ā(θ)X̄(θ)+B̄(θ)((1−η(θ))U(θ)+δ(θ)),

Ȳ (θ) = C̄(θ)X̄(θ),

where

B̄(θ) =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 ,
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Figure 2: The state responses for elliptical orbital rendezvous system subject to float fault δ(θ)

in which Γ (θ) = I3. Following the steps in (29) and (38), the controller can be determined as

U(θ) =
[
vT1 vT2 vT3

]T
x,

v1 =− f
[
γ2 2γ

] [ ρ
[6]
1

ρ
[6]
2

]
Tc(θ),

v2 =− f
[
γ2 2γ

] [ ρ
[6]
3

ρ
[6]
4

]
Tc(θ),

v3 =− f
[
γ2 2γ

] [ ρ
[6]
5

ρ
[6]
6

]
Tc(θ),

Then, a numerical simulation will be employed to demonstrate the effectiveness of the proposed prescribed-
time fault-tolerant controller for elliptical orbital rendezvous system. Let ϖ(θ) = 0.01 cos(θ), η(θ) =
0.01 sin(θ) + 0.01, δ(θ) = 0.004 sin(θ). Choose the initial state as [847.5, 0, 1467.9,−112.9,−187.7,−195.6]T.
Set T = 2.5. The parameters of the proposed prescribed-time fault-tolerant controller are given in Table
2. Our simulation will be implemented on the nonlinear model of spacecraft rendezvous system [47]. The
state responses and controller are plotted in Figure 2 and Figure 3, respectively. It is evident that the state
responses converge to zero within the specified time and the controller is bounded. In addition, when the
float fault δ(θ) does not exist, namely, δ(θ) = 0, employing the same controller with parameters described
in Table 2, the state responses and controller are plotted in Figure 4 and Figure 5, respectively. It can be
observed that the state responses converge to zero within the specified time and the controller is bounded
and approaches zero after the prescribed time.

6 Conclusion

This paper investigated the prescribed-time fault-tolerant control problem for uniformly controllable linear
time-varying (LTV) systems, whether lexicographically fixed or non-lexicographically fixed. For lexicograph-
ically fixed LTV systems, we allow for uncertainties in the system, while for non-lexicographically fixed LTV
systems, the system model is needed to be accurately known. By utilizing the clear structure of controllable
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Figure 3: The controller for elliptical orbital rendezvous system subject to float fault δ(θ)
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Figure 4: The state responses for elliptical orbital rendezvous system without float fault δ(θ)
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Figure 5: The controller for elliptical orbital rendezvous system without float fault δ(θ)
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Parameters Value
Initial moment θ0 = 0 (t0 = 0)

α 0.0638
f 1.25
β 0.04

γ0
1.01βeαβT

eαβT−1

Table 2: The parameters of the prescribed-time fault-tolerant controller designed for elliptical orbital ren-
dezvous system

canonical form and employing the properties of the parametric Lyapunov equation, a global prescribed-time
fault-tolerant controller is developed. The uncertainties present in LTV systems are reflected in the selection
of controller parameters. By choosing a suitable Lyapunov-like function, the system state will be proven to
converge to zero within the prescribed time. In addition, the designed controller is bounded and maintains
a linear, concise and smooth form. Finally, the simulation of the elliptical orbital rendezvous system verified
the effectiveness of the proposed controller.

Appendix

A1: The proof of Lemma 1

First, we introduce the Dolezar’s theorem.

Lemma 4 [41] Let n, k ∈ N+, r ∈ {1, 2, . . . , n}, and M(t) ∈ J k(R≥0,R
n×n). If rank(M(t)) = r for all

t ∈ R≥0, then there exists a nonsingular matrix T (t) ∈ J k(R≥0,R
n×n) satisfying

M(t)T (t) =
[
V (t) 0n×(n−r)

]
,

where rank(V (t)) = r, ∀t ∈ R≥0. In addition, for each m ∈ {1, 2, . . . , n}, if T (t) is partitioned as

T (t) =
[
E(t) D(t)

]
,

where D(t) ∈ Rn×m, then D(t) ∈ S∞(R≥0,R
n×m) and (DT(t)D(t))−1DT(t) ∈ S∞(R≥0,R

m×n).

Proof. According to Lemma 4, there exists a nonsingular matrix T (t) = [τ1, τ2, . . . , τn] ∈ J k(R≥0,R
n×n)

such that [
M(t)
0

]
T (t) =

[
F (t) 0
0 0

]
∈ J k(R≥0,R

n×n), (70)

where rank(F (t)) = r, ∀t ∈ R≥0. Set

V(t) =
[
τr+1 τr+2 · · · τn

]
∈ J k(R≥0,R

n×(n−r)). (71)

According to (70) and (71), we have
M(t)V(t) = 0r×(n−r). (72)

Referring to Lemma 4, we have

V(t) ∈ (J k,S∞)(R≥0,R
n×(n−r)),

(VT(t)V(t))−1VT(t) ∈ (J k,S∞)(R≥0,R
(n−r)×n).

Set
S(t) ≜ (V(t)TV(t))−1VT(t) ∈ (J k,S∞)(R≥0,R

(n−r)×n). (73)

Then, by using (72) and (73), we have

S(t)MT(t)(M(t)MT(t))−1 = 0(n−r)×r,
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S(t)V(t) = In−r.

which imply [
M(t)
S(t)

] [
MT(t)(M(t)MT(t))−1 V(t)

]
= In. (74)

A2: The proof of Lemma 2

Let (P (t))e represent taking the last ne rows of the matrix P (t) to form a new matrix. Define the following
generalized controllability matrix

Qg(t) ≜
[
Qg1(t) Qg2(t) · · · Qgm(t)

]
∈ Rn×ng , (75)

Qgi(t) =
[
bi(t) R(bi(t)) · · · Rvi−1(bi(t))

]
∈ Rn×vi ,

where i = 1, 2, . . . ,m and rank(Qg(t)) = n, ∀t ∈ R≥0. According to Lemma 1, there exists Q̃g(t) ∈
R(ng−n)×ng such that

rank

[
Qg(t)

Q̃g(t)

]
= ng, ∀t ∈ R≥0.

Define Q̂g(t) ≜
[
QT

g (t), Q̃
T
g (t)

]T
. Consider the partition

Bg(t) =
[
bg1(t) bg2(t) · · · bgm(t)

]
.

It follows from the result in [34] that

Rj
Ag

(bgi(t)) =

[
Rj(bi(t))(

Rj
Ag

(bgi(t))
)
e

]
(76)

(
Rj

Ag
(bgi(t))

)
e

=
[
A2(t) A1(t)

]
Rj−1

Ag
(bgi(t))−

(
d

dt
Rj−1

Ag
(bgi(t))

)
e

, (77)

where i = 1, 2, . . . ,m, j = 1, 2, . . .. Let Q̂g(t) be the controllability matrix of the augmented LTV system (20)
with observability indices {v1, v2, . . . , vm}. Referring to (76) and (77), for i = 1, 2, . . . ,m, j = 1, 2, . . . , vi, we
can get [

A2(t) A1(t)
]
Q̂g(t)−

(
d

dt
Q̂g(t)

)
e

= (Q̌g(t))e, (78)

where

Q̌g(t) =
[
Q̌g1(t) Q̌g2(t) · · · Q̌gm(t)

]
∈ Rng×ng , (79)

Q̌gi(t) =
[

R1
Ag

(bgi(t)) R2
Ag
(bgi(t)) · · · Rvi

Ag
(bgi(t))

]
. (80)

in which Q̌gi(t) ∈ Rng×vi , i = 1, 2, . . . ,m. It follows from (78), (79) and (80) that

[
A2(t) A1(t)

]
=

((
d

dt
Q̂g(t)

)
e

+ (Q̌g(t))e

)
Q̂−1

g (t).

According to the fact that Q̂g(t) is the controllability matrix of the augmented LTV system (20), we can
derive

Be(t) =

(
Q̂g(t)

[ (
ρ
[n]
ṽ1

)T (
ρ
[n]
ṽ2

)T
· · ·

(
ρ
[n]
ṽm

)T ])
e

,

where ṽi =
i−1∑
i=1

vi + 1, i = 1, 2, . . . ,m.
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A3: Some Preliminaries

First, we recall the well-known Lyapunov transformation.

Definition 4 The transformation x̄ = L(t)x is referred to as a Lyapunov transformation if for all t ∈ R≥0

1. L(t) is nonsingular and continuously differentiable.

2. L−1(t), L(t) and L̇(t) are bounded.

Then, we provide the following lemma to test the boundedness of inverse matrices.

Lemma 5 [48] If the nonsingular matrix L(t) is bounded and |detL(t)| has a lower bound on the interval
R≥0, then, there exist a positive constant l such that∥∥L−1(t)

∥∥ ≤ l, ∀t ∈ R≥0.
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