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Abstract

Theoretical models of the evolution of discrete phenotypes show that the most evolvable populations are composed of genotypes

with intermediate levels of phenotypic robustness. This has been attributed to a special kind of epistasis, the analog of which for

complex quantitative traits might not readily apparent. Here, with simulation models, I show that a variety of plausible kinds

of quantitative genetic epistasis will do; as long as it increases cryptic genetic diversity and expected allele effect sizes are not

too large. In fact, epistasis is not necessary, since cryptic genetic diversity can also accumulate via phenotypic plasticity. But

with phenotypic plasticity, the mapping of phenotypic robustness to evolvability is sensitive to the nature and predictability

of environmental variation. So, just as for discrete-traits, the robustness of quantitative traits can have complex effects on

evolvability, and this depends on exactly how genetic diversity is hidden and revealed.
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Abstract

Theoretical models of the evolution of discrete phenotypes show that the most evolvable 

populations are composed of genotypes with intermediate levels of phenotypic robustness. This 

has been attributed to a special kind of epistasis, the analog of which for complex quantitative 

traits might not readily apparent. Here, with simulation models, I show that a variety of plausible

kinds of quantitative genetic epistasis will do; as long as it increases cryptic genetic diversity and

expected allele effect sizes are not too large. In fact, epistasis is not necessary, since cryptic 

genetic diversity can also accumulate via phenotypic plasticity. But with phenotypic plasticity, 

the mapping of phenotypic robustness to evolvability is sensitive to the nature and predictability 

of environmental variation. So, just as for discrete-traits, the robustness of quantitative traits can 

have complex effects on evolvability, and this depends on exactly how genetic diversity is hidden

and revealed. 

1. Introduction

Counterintuitively, analyses of discrete-phenotype models have shown that phenotypic 

robustness can increase evolvability via a special kind of epistasis, one that increases the 

diversity of neighborhoods of mutationally-accessible alternative phenotypes (Ciliberti et al., 

2007; J. A. Draghi et al., 2010; Wagner, 2007, 2012). The evolution of such phenotypic 

neighborhoods may seem apropos for phenotypes such as RNA molecules and proteins. But the 

appropriateness of the discrete-phenotype theory for more integrative and quantitative traits is 

unclear (Paaby & Rockman, 2014). Here our goal is to clarify how phenotypic robustness can 

affect the evolvability for quantitative traits. One special aim is to articulate the kind of 

quantitative genetic epistasis that can recapitulate the non-monotonic relationship between 

genetic robustness and evolvability that has been found for discrete phenotypes (J. A. Draghi et 

al., 2010; Hardy, 2024). Another aim is see if there are analogous conditions in which 

evolvability is maximized by intermediate levels of plasticity. Of course, much previous work 

has looked into the effects of epistasis and plasticity on evolvability (Carter et al., 2005; Gomez-
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Mestre & Jovani, 2013; Gros et al., 2009; Lande, 2009). So, a third aim is to place the models 

developed here in that context. 

A good way to start would be with a glance at the discrete-trait models of phenotypic robustness 

and evolability (J. A. Draghi et al., 2010; Meyers et al., 2005). Much of the behavior of these 

models can be boiled down to two key properties: (1) allele effects are conditional, and (2) the 

mutational processes entails a trade-off between accumulating and realizing evolutionary 

potential. They ask us to suppose that every genotype i has a K-dimensional neighborhood ki of 

phenotypes that are accessible by one mutation (Wagner, 2007). With probability q, mutations 

are neutral in the sense of lacking direct phenotype effects, but neutral mutations change the 

phenotypic neighborhood ki, specifically, by resampling K new elements from the global set of 

phenotypes, P. Thus, “neutral” mutations are really only cryptically neutral; they have epistatic 

effects that can be exposed by subsequent, non-neutral mutations, which occur with probability 

1-q. These non-neutral mutations also affect the phenotypic neighborhood, again by triggering a 

re-choosing of K elements from P. In sum, we have a mutational system that generates and 

releases potential genetic diversity. All mutations determine a set of potential next steps along an 

evolutionary path. Non-neutral mutations take such steps. 

So, in the discrete-phenotype models, epistasis is the rather subtle notion that the only thing 

some mutations do is make other mutations possible. How does such epistasis align with the 

epistasis of quantitative genetics? Well, in classical quantitative genetics, statistical epistasis is 

what is left over after the phenotypic variance in a population has been apportioned into fixed 

additive genetic and environmental effects (Aylor & Zeng, 2008; Mackay & Anholt, 2024; Payne

& Wagner, 2019). In other words, epistasis is non-additive genetic variance  (Carter et al., 2005; 

Moore & Williams, 2005). Formally, for two di-allelic loci in a haploid genome, epistasis ε = fab 

+ fAB – faB –  fAb, where each fij term gives the quantitative phenotype of a haplotype (Payne & 

Wagner, 2019). Depending on the sign of ε, one can distinguish between negative epistasis 

(where combined allele effects are less than the sum of their parts) or positive epistasis (where 

the sum is greater than its parts). In either case, epistasis may induce a change in the sign of 

allele’s effect, something that may be especially important for adaptive dynamics, as sign-
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epistasis can increase the ruggedness of an adaptive landscape (Payne & Wagner, 2019). Of 

course, epistasis can entail interactions between more than two alleles, and such networks of 

interaction can be complicated (Gjuvsland et al., 2007; Lozovsky et al., 2021), but regardless, 

from a statistical quantitative genetic perspective, epistasis is just non-additive genetic variance.

To a certain extent, the epistasis of discrete-phenotype models resembles a kind of quantitative 

genetic negative statistical epistasis. As for an underlying mechanism, that is, for a more 

functional take on epistasis (Bank, 2022), we could imagine that the effects of one class of alleles

are suppressed until exposed by subsequent mutations affecting a modifier phenotype. This 

corresponds nicely to so-called “capacitor” models of genetic robustness (de Visser et al., 2003; 

Masel & Siegal, 2009). An oft-touted real life example is a heat-shock protein that buffers the 

phenotypes of several target proteins against environmental and mutation perturbations, with the 

upshot being that when the heat-shock protein itself is sufficiently perturbed, large stores of 

cryptic diversity can be released (Rutherford, 2000; Rutherford & Lindquist, 1998; Waddington, 

1953). Can we use a quantitative capacitor model to replicate the discrete-phenotype model 

dynamics?  

2. A quantitative epistasis model

Each of the models I describe here were developed using the SLiM v4 framework (Haller & 

Messer, 2023). Model parameters are summarized in Table 1. 

Table 1. Capacitor model parameters.

Parameter Description Values

K Environmental carrying capacity 500

b Birth rate 1.5

L Genome size 1e4

μ Mutation rate 1e-5

q Probability mutation is a β allele that epistatically 

modifies the effect of one or more α alleles

0.0 < q < 0.9
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1-q Probability mutation is an α allele 0.1 < 1-q < 1.0

σ Standard deviation of α allele effects 5.0

ψ Default epistatic capacitance {0.0, 0.1, 0.5}

ω Weakness of selection 1.0

Oi Phenotypic optimum in environment i {0, 5}

Imagine an unstructured population of individuals in an environment with a carrying capacity, K 

= 500 (Supplementary File S1). Each individual has a one-chromosome, diploid genome of 

length L= 10,000. The life cycle entails clonal reproduction, viability selection, and density-

dependent regulation. Generations are non-overlapping. The fecundity of each individual that 

survives selection is determined by a draw from a random Poisson distribution with an 

expectation, b, of 1.5. Offspring production entails mutation at rate μ=1e-5 per site, per genome, 

per individual, per generation. Two classes of mutation may occur. With probability 1-q  ∈ {0.1 

< q < 1.0}, an α mutation directly affects an individual’s phenotype, zi. Such effects are drawn 

from a zero-meaned random normal distribution with a standard deviation σ = 5.0. But α 

mutations are subject to a capacitor phenotype, and by default – that is, with a wild-type 

capacitor phenotype – α allele effects are scaled by factor ψ ∈ {0.0, 0.1, 0.5}. Conversely, with 

probability q, a β mutation indirectly affects zi, by changing the capacitor phenotype, and thus 

releasing cryptic α allele diversity. Specifically, a β allele multiplies each effect of a randomly 

chosen set of α alleles, of size nk, by a nk-dimensional vector of factors c sampled from a random 

uniform distribution {-1 < c < 1}. The value of nk for each β allele is determined as a proportion 

ρ ∈{0.1, 0.6} of active α alleles, with that constraint that nk < 20. All β mutations that happen 

before the first α mutation are neutral. If more than one β mutation modifies the effect of the 

same α allele, the modifier effects are summed. Thus, an individual phenotype value, zi = Σ αij * 

ψ + Σ αij’ * Σ βikj, where αij denotes the jth α allele of individual i, αij’ specifies that allele j is 

subject to a mutated capacitor, and βikj denotes the kth β allele affecting the jth α mutation of 

individual i. It is a subtle point, but to be clear, although a β allele does not contribute directly to 

a genotype’s potential diversity, since the capacitor phenotype is polygenic and quantitative, a 

particular capacitor phenotype configuration can be produced by many different combinations of 
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β alleles. Any compensatory effects between β alleles constitute another form of cryptic genetic 

variance.

Figure 1. A rugged adaptive landscape. After

tx=100 generations of stabilizing selection about

O0=0, a second, higher adaptive peak is added

at Ox=5.

Initially, genomes are empty containers for

mutations and the population is monomorphic

for the optimal phenotype. But after some 

generations, a second, higher peak is added to

the adaptive landscape. Concretely, before 

tx=100, the mapping of phenotypes to viabilities, v(zi), is via a Guassian fitness function with a 

mean of 0.0 and a standard deviation ω=1.0, scaled such that a perfect match confers a fitness of 

0.67: v(zi) = P0(zi)/(1.5*P0(O0)) for X ~ N(O0,  ω), where O0 is the initial phenotypic optimum, 

and division by 1.5*P(O0) sets the viability of individuals with that optimal phenotype to 0.67. 

After tx, we make a more rugged adaptive landscape, and render O0 suboptimal, by adding a 

second normal distribution to the fitness function: v(zi) = P0(zi)/(1.5*P0(O0)) for X ~ N(O0,  ω) + 

Px(pi)/(Px(Ox)) for X ~ N(Ox,  ω), where Ox = O0 + 5.0. See   Figure 1. If it helps to think of 

something tangible, you can imagine these two peaks as corresponding to two high-fitness gape 

sizes given a distribution of prey sizes, or two levels of mating aggressiveness given a social 

milieu. In addition to phenotype-by-environment matching, the viability of all individuals is 

negatively density dependent, as per a Beverton-Holt function (Beverton & Holt, 1957). 

To summarize, at the start, the population is perfectly adapted to its environment, and although 

the direct effects of α mutations can be large, they are suppressed by a wild-type capacitor 

phenotype. This capacitance can be altered by β mutations, which can thereby release some of 

the cryptic genetic diversity of α alleles. Initially, any such release would be deleterious and so 
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the capacitor phenotype is under strong purifying selection. But when the environment changes, 

a release of cryptic genetic diversity can help a population pass through a valley in the adaptive 

landscape and evolve to a new, higher optimal phenotype, that is, do stochastic tunneling (Guo et

al., 2019; Iwasa et al., 2004).

Figure 2. How, q, the probability of mutation affecting an epistatic capacitor affects ta, 

evolvability, measured as the expected number of generations for adaptation across a valley in a 

rugged fitness landscape. Results are for

when the proportion of active α alleles

targeted by β mutation, ρ, is 0.6. Results

are qualitatively similar for other values

of ρ. Each point represents the outcome

of an individual simulation. Lines are

loess regressions. The colors of points

and lines correspond to different values

for ψ, the default capacitance phenotype,

that is, the initial rescaling of the effects

of α alleles.

If we iterate this life cycle and count ta, the number of generations it takes the population to 

evolves a mean phenotype within 25% of Ox, running 25 replicated simulations for each 

combination of values for model parameters q and ψ, we recover a relationship between q and ta 

similar to what has been found for discrete-phenotype models (Fig. 2). If the combination of σ 

and ψ is sufficiently large for there to be a decent probability that an α mutation can carry a 

genotype across the valley in the adaptive landscape (Fig. 1), mutational robustness trades off 

with evolvability; ta increases monotonically with q. This corresponds to the behavior of discrete-

phenotype models when all possible phenotypes are in the one-mutation-accessible phenotypic 

neighborhood (J. A. Draghi et al., 2010). But with smaller ψ values – that is, higher wild-type 

capacitance – the relationship between robustness and evolvability is non-monotonic; 

evolvability is maximized at intermediate robustness. Moreover, increasing the default 
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capacitance – that is, shrinking ψ – increases genotype evolvability across the range of q values, 

since this tantamount to hiding more genetic variance. And this effect is strong enough that at 

intermediate values for q, genotypes with ψ=0 are more evolvable than genotype with ψ=0.5. (In 

Figure 2, the gray and green lines cross.) This is a robustness effect on evolvability stronger than 

anything observed with discrete-phenotype models.

So, a genetic variance capacitor is one specific form of epistasis that can translate an increase in 

quantitative genetic robustness to an increase in evolvability. More specifically, our model shows

us that it can help populations traverse rugged adaptive landscapes. Indeed, qualitatively, the 

dynamics of the model are robust to the addition of a third class of mutation that is not subject to 

the capacitor phenotype: Suppose that class γ mutations occur as often as either α or β mutations,

and their effects are drawn from a random normal distribution with a mean of zero and standard 

deviation of one. Given that distribution, the odds of a γ mutation having an effect large enough 

to move a population directly between peaks in the adaptive landscape is about one in a million, 

so adaptation via γ mutation would depend on the combination of several alleles. But for a 

population with a mean phenotype value centered on O0, each allele on its own would have a 

deleterious effect on fitness and be selected against. Therefore, populations stochastically tunnel 

to the new optimal phenotype by building-up and releases α allele diversity. That is the beauty of 

cryptic genetic variance (Kawecki, 1994).

What connects robustness to evolvability is a positive relationships between robustness and 

cryptic genetic variation. In a quantitative genetic context, we can get there by assuming that 

alleles with potentially large effects are suppressed by a capacitor, which when mutated, can stop

suppressing. But a similar epistatic damping of allele effects can occur without capacitors per se. 

In fact it could apply to any system with a so-called bow-tie architecture, that is, wherever a 

system’s dynamics are governed by a few highly-connected hubs in an interaction network, and 

conversely, system dynamics are little affected by variation at other nodes in the network 

(Bergman & Siegal, 2003; Kitano, 2004). Such architectures are typical of metabolic, 

developmental, and gene regulatory networks. Hence, the dynamics inferred from our capacitor 

model should apply more broadly to any bow-tie system that promotes genetic robustness.
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3. Cryptic genetic variation not with epistasis but plasticity.

To repeat the theme, phenotypic robustness can boost evolvability by increasing a population’s 

stores of cryptic genetic variance (Paaby & Rockman, 2014). In Section 2, we saw that 

mutational robustness via quantitative genetic epistasis can cause such increases. Cryptic genetic 

diversity can also arise via phenotypic plasticity, that is, some departure from complete 

environmental robustness (Gomez-Mestre & Jovani, 2013; Ledón-Rettig et al., 2014; Scheiner, 

2013; Schlichting, 2008). In this section, to get a better sense for how the manner in which 

genetic diversity is concealed and released affects evolvability, I describe and analyze two 

models of phenotypic plasticity. See Table 2 for a summary model parameters and variables. 

These models show that when it comes from plasticity, the relationship between phenotypic 

robustness depends not just on the distribution of exposed and hidden allele effect sizes, but also 

on how the environment varies. As predicted by other authors (Paaby & Rockman, 2014), in 

comparison to epistasis, it is harder to find conditions in which cryptic genetic variation 

predicated on plasticity does not increases evolvability. Nevertheless, there are such conditions, 

and they are plausible.

Table 2. Plasticity model parameters and variables are as for the epistatic capacitor model, but 

for the following changes.

Parameter Description Values

ej Environmental sate {0, 1}

ƛ Per-generation probability of environmental change 0.05

m Migration rate between demes 0.3

μ Mutation rate 1e-4

p Probability that mutation is plastic (analogous to q) 0.1 < p < 1.0

σ Standard deviation of allele effects {0.1, 0.2, 0.4}

ω Weakness of selection 1.3

Oi Environmental-state-specific phenotypic optimum {-2.5, 2.5} : 

Temporal variation.

{0, 3} : Spatial 
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variation.

Variable Description Range

ta Number of generations to adapt to novel environmental 

state

0 < ta

φm Phenotypic variance of migrants to deme2 0 <  φm

φo Phenotypic variance of offspring of migrants to deme2 0 <  φo

3.a. Phenotypic plasticity in environments that vary over time.

Consider the evolution of a population like that described above, but for a few changes 

(Supplementary File S2). Let the external environment vary over time. Specifically, suppose the 

environment can be in one of two states ej {0, 1}, with parameter ƛ=0.02 determining the per-

generation probability of a change in state. Suppose the adaptive landscape has the same rugged, 

two-peaked surface as in our epistastic capacitor model, but shift the peaks so they are equally 

distant from zero, O1 = -2.5, and O2=2.5, and relax the steepness of the selection gradients some 

by setting ω to 1.6. (The combinations of these parameters values were found via trial and error, 

to reveal interesting transitions in the mapping of robustness to evolvability. But admittedly, they

are rather arbitrary.) Let the phenotype value of each individual be determined by summing the 

effects plastic and non-plastic alleles. Mutations occur at rate μ=1e-4 per site, per individual, per 

generation, and with probability p  ∈ {0.1 < p < 1.0}, allele effects are phenotypically plastic. 

Call these B mutations. Conversely, with probability 1 - p an A mutation occurs that has an effect

that is insensitive to the state of the environment. For a mutation j of either type, a genotype 

effect, Gj, is drawn from a zero-meaned random normal distribution with a standard deviation σ 

{0.1, 0.2, 0.4}. For A mutations this genotype effect contributes directly to an individual’s 

phenotype. For B mutations, in addition to a genotype effect Gj, each allele j has an 

environmental specificity Sj {0, 1}. Plastic B alleles only contribute to the phenotype when they 

are in an environment of the correct state, Sj = ej.
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As for the epistatic capacitor model, before generation tx=100, the population adapts to O1. Then 

the second and higher adaptive peak is added at O2, and the population is challenged to cross the 

adaptive valley between the peaks. In this case, fluctuations between environmental states work 

as a kind of cryptic diversity pump; cryptic genetic diversity accumulate during one 

environmental phase, and then is converted to additive genetic diversity when the environment 

changes. 

Figure 3. How, p, the probability of a mutation

being conditionally neutral in one of the

environmental states ei, affects ta, the expected

number of generation for adaptation across a

valley in a rugged fitness landscape. Each point

represents the outcome of an individual

simulation. Lines are loess regressions. The

colors of points and lines correspond to

different values for sigma, the standard

deviation of the allele effect distribution.

More routinely, in individual-based models, plasticity is modeled at the genotype level; genotype

effects of plastic alleles are summed, and then this summed value is multiplied by an 

environmental effect (or cue) to determine the overall plastic contribution of the genotype to the 

phenotype (J. Draghi, 2020; Scheiner, 2013; Scheiner & Holt, 2012). Here, we model it at the 

allele level to highlight the parallels with our models of epistasis. Also note that class A alleles 

can be equally well described as non-plastic, or as contributing to the elevation (i.e., intercept) of

a plastic reaction norm (Lande, 2009). Indeed, the latter emphasizes the integrative process by 

which the phenotype is determined. Even if only a few of many alleles affecting a phenotype are 

plastic, the phenotype is plastic. But here, to emphasize differences in the environmental 

sensitivity of allele effects, we will just call them non-plastic. 

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237



12 Hardy | Quantitative genetic robustness and evolvability

Figure 3 shows a summary of 50 replicated simulations for every combination of above-given 

values for p and σ, that is, the probability of plastic B mutations and the spread of allele genotype

values, G. Here, with a relatively broad distribution of allele effects (σ=0.4), as for our epistasis 

models with low default capacitance (that is high values for ψ) we see a monotonically 

increasing relationships between p and ta, the time for adaption to O2. And as for our epistasis 

models with higher default capacitance (low values for ψ), here with smaller expected allele 

effects, σ ∈ {0.1, 0.2}, we find a convex-functional mapping of p to ta, with evolvability (ta
-1) 

maximized at intermediate value of environmental robustness (p-1). Decreasing the variance of 

allele effects, σ=0.1, pushes the maximum evolvability to higher p values such that as p 

approaches one there is only a slight decrease in evolvability. With yet tighter dispersions of 

allele effects, evolvability would be maximized at p=1. So, the effects on evolvability of 

phenotypic robustness via this kind of plasticity, in this kind of environment, are similar to those 

inferred for phenotypic robustness via epistasis, except that when allele effects tend to be small, 

and hence adaptation to O2 depends on cryptic genetic diversity across many loci, evolvability is 

greatest when most, if not all, alleles are plastic. In fact, as allude to above, the conditions 

required for a non-monotonic relationship between p and ta are much more stringent that for a 

monotonically decreasing or increasing relationship. Hence, what might have seemed rather 

arbitrary choices for the values of some model parameters, e.g., ƛ, σ, and ω.

This disparity with the epistasis model can be explained by the fact that with plasticity, the trade-

off between cryptic genetic diversification and release is relaxed somewhat, and consequently the

positive effects of phenotypic robustness on evolvability are diminished. With epistasis, 

increasing q – the probability that a mutation is an epistatic modifier –  causes a direct and 

proportional decrease in the rate of non-neutral mutation. Moreover, non-neutral mutations affect

the phenotype only indirectly, via the release of cryptic genetic diversity. In contrast, with 

plasticity, increasing p – which is analogous to q and gives the probability that a mutation’s 

effects can be masked by one of the environmental states – causes a less than proportional 

decrease in the rate on non-neutral mutation, since some fraction of plastic mutations will be 

exposed in their natal external environment. Moreover, with plasticity, non-neutral mutations 

directly affect the phenotype, with cryptic diversity released by changes in the environment. So, 
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in environments that change over time but not space, evolvability can indeed be maximized by 

intermediate levels of phenotypic plasticity, but only given the right combination of allele effect 

sizes, environmental sensitivities, and environmental variations.

3.b. Phenotypic plasticity in environments that vary over space.

Figure S1. How, p, the probability of plastic

mutation, affect ta, the number of generations it

takes to adapt to a marginal habitat. Each point

represents the outcome of an evolutionary

simulation. Lines are loess regressions through

points grouped, and color-coded, according to

values for σ, that is, the spread of allele effects.

In the previous model, we let the environment vary

over time. Suppose instead that it varies over

space. To keep things simple, let the population be split into two subpopulations (deme1, deme2) 

of equal carrying capacity, K=500, that occur in different environments such that optimal 

phenotype values also differ (O1 = 0, O2 = 3). Each simulation starts with 500 individuals in 

deme1 and none in deme2. Then, starting in generation 101, in each iteration of the life cycle, 

individuals migrate between demes at per capita rate m = 0.3. In the simplest case, this occurs 

after offspring production but before development of the adult phenotype that is subject to 

selection (Scheiner, 2013, 2014), a sequence of events typical of lineages that could be described 

as having ‘larval’ dispersal, for example, seed plants and barnacles (Supplementary File S3). In 

this case, the relationship between p and ta is uncomplicated; evolvability – ta, here the number of

generations until deme2 achieves half of its carrying capacity – is maximized when p=1 (Fig. 

S1). 

Now, suppose instead that migration occurs after development but before reproduction, for 

example, as in butterflies (Supplementary File S4). Individuals develop in one environment, but 

are then subject to selection in another. Therefore, the plastic reaction norms of the would-be 
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founders of deme2 are quite different from the reaction norms of their offspring; each is 

predicated on a different set of B alleles. This makes the relationship between p and ta more 

interesting (Fig 4.a.): unless allele effects tend to be quite large, ta varies non-monotonicaly 

across the range of values for σ; evolvability is highest with intermediate levels of plasticity. 

Figure 4. How, when migration and selection take place after plastic development, the odds of 

plastic mutation affects (a) evolvability, parameterized as ta, time in generation for adaptation to 

a marginal habitat, (b) φm, the phenotypic variance of migrants from the core habitat, and (c) φo, 

the phenotypic variance expressed by the offspring of migrants from the core habitat. Each point 

represents the outcome of an evolutionary simulation. Lines are loess regressions through points 

grouped, and color-coded, according to values for σ, that is, the spread of allele effects.

To understand this pattern, consider that there are two main factors affecting the odds of adapting

to O2: φm, the variance of phenotypes expressed by migrants from deme1, and φo, the variance of 

phenotypes expressed by their offspring. For such offspring, the odds of survival go up if their 

parents have brought stores of cryptic B alleles. Therefore, the odds of plastic mutation, p, and 

the rate of adaptation to O2, ta
-1, should have a positive relationship. On the other hand, For 

migrants to deme2 to have a decent chance of surviving to reproduce, they need to carry A and B 

alleles that would have been selected against in deme1 had they remained. But only half of B 

alleles are expressed in either deme, so when p increases, the effective rate of non-neutral 
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mutation in deme1 decreases. Therefore, the odds of plastic mutation, p, should have a negative 

effect on the rate of adaptation to O2. In sum, p has countervailing effects on ta
-1. 

A further complication is that the offspring of migrants to deme2 can move back to deme1, from 

whence their parents came, before they are subject to selection. Consequently, another potential 

effect of increasing the odds of plastic mutation, p, is an increase in the phenotypic variance in 

deme1 via immigration of individuals that developed in deme2. But this effect would be much 

attenuated by selection in deme1 prior to the next round of reproduction and migration.

Figure 4.c. shows that the phenotypic variance of the offspring of migrants from deme1 to deme2 

increases with the probability of plastic mutation. This explains why over the bottom end of its 

range, increasing p boosts evolvability. On the other hand, Figure 4.b. shows that across values 

for p, the phenotypic variance of migrants from deme1 decreases. This effect explains how, over 

the top half of its range, p decreases evolvability. So, to put a point on it, when cryptic genetic 

diversity arises from phenotypic plasticity in an environment that varies over space, and there is 

a lag between development and selection, unless allele effects tend to be large relative to the 

distance between peaks in the adaptive landscape, evolvability is maximized with intermediate 

levels of developmental plasticity. With too little plasticity, the offspring of migrants to a new 

environment have too little cryptic genetic diversity to draw from. But with too much plasticity, 

the would-be parents of those offspring have too little genetic diversity to make it through 

selection before reproduction.

4. Contextualizations

Using discrete-phenotype models as a springboard, we identified plausible conditions in which 

epistasis and plasticity have non-monotonic effects on the evolvability of quantitative traits. 

From what I can tell, this has yet to be widely appreciated. Take adaptive landscape theory. 

Building on ideas proposed almost a century ago by Sewell Wright (Wright, 1931), modern 

probabilistic genotype-fitness landscape models – such as rough Mount Fuji Models (Aita et al., 

2000) and NK-Modles (Kauffman & Weinberger, 1989; Østman et al., 2011) – cast epistasis as 

the de facto cause of ruggedness in adaptive landscapes and hence unequivocally a hindrance for 
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evolvability (Bank, 2022). This may be true enough in a classical population genetic framework, 

that is, if we assume a direct mapping of genotypes to fitness without any inter-mediating 

interactions with phenotypes and environments. But otherwise, such an assertion is hard to 

justify; ruggedness in the adaptive landscape could just as well arise from ecological 

contingencies. The other main branch of adaptive landscape theory, Fisher’s Geometric Model 

(FGM), is explicitly quantitative genetic (Tenaillon, 2014), but dismisses a priori the possibility 

of function epistasis – that is, non-additive allele effects on phenotypes – and explains epistasis 

as solely the statistical consequence of a non-linear functional mapping of phenotypes to fitness 

(Bank, 2022)  In other words, Fisher’s concept of epistasis boils down to a kind of relativity for 

the fitness effect of additive alleles (Hardy & Forister, 2023). (Although, since Fisher’s days, 

much empirical evidence has pointed to the ubiquity of functional epistasis (de Visser & Krug, 

2014; Fowler et al., 2014; Johnson et al., 2019).) So, the adaptive landscape theory gives us two 

extreme perspectives on how functional epistasis affects evolvability: it gets in the way, or it is 

not a factor. The FGM does allow for more open-ended effects of statistical epistasis on 

evolvability, which depend on its sign and direction (Carter et al., 2005). And FGM analyses 

have indicated a fundamental connection between epsistasis and genetic robustness (Gros et al., 

2009; Wilke & Christoph, 2001). But the connection between epistasis and quantitative 

phenotypic robustness has been missed.

Outside of adaptive landscape theory, some previous theoretical work has demonstrated ways in 

which epistasis can increase cryptic genetic diversity, and hence evolvability (Barton & Turelli, 

2004; Cheverud & Routman, 1996; Hansen & Wagner, 2001). But the focus has been on how 

epistatic variation can be converted to additive variation via genetic drift or genetic draft (Neher, 

2013; Paaby & Rockman, 2014). Here, by contrast, we consider the release of epistatic variation 

by epistatic mutation, that is, at genes encoding capacitor proteins, or the hubs of bow-tie 

regulatory networks. Consequently, we consider situations in which there may be a trade-off 

between the rate at which cryptic diversity grows and the rate at which it is exposed. This trade-

off is at the core of the discrete-phenotype models of robustness and evolvability (J. A. Draghi et 

al., 2010; Hardy, 2024). But it is not an obvious feature of drift and draft scenarios. It seems that 

the mechanisms by which genetic diversity is concealed and exposed matter.
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Which brings us to plasticity. Much intuition and previous work points to positive effects of 

plasticity on evolvability, and more specifically, via cryptic genetic diversity affecting reaction 

norm slopes (Lande, 2009; Ledón-Rettig et al., 2014). Moreover, analyses of gene-regulatory-

network (GRN) models have shown that (1) selection for a plastic developmental system tends to

reshape the distributions of allele effects such that populations become more evolvable (J. A. 

Draghi & Whitlock, 2012; Gomez-Mestre & Jovani, 2013), (2) in comparison to populations 

evolving simple linear reaction norms, populations of plastic GRNs – which can evolve non-

linear reaction norms – evolve more adaptive and evolvable plasticity, and (3) this is because 

plastic GRNs accumulate more cryptic genetic variation (van Gestel & Weissing, 2016). But 

such analyzes have use rather stylized measures of evolvability, and have not considered the 

specific life history and meta-population structures for which we found non-monotonic effects of

plasticity on evolvability. One such life history feature in particular is unpredictable change in 

the environment during a lag in the life cycle between plastic development and selection. This 

has previously been shown to curtail the evolution of adaptive plasticity, but previous work has 

focused on how such unpredictability affects the evolution of plasticity per se, rather than 

evolvability (Lande, 2009; Scheiner & Holt, 2012). So, as for epistasis, to my knowledge, this is 

the first clear demonstration that certain types of plasticity map non-monotonically to 

evolvability.

In comparison to the more traditional quantitative genetic approaches that we have used here, a 

GRN framework offers a much richer and more evolvable mapping of genotypes to phenotypes. 

Therefore, it can yield insights into how the developmental systems underlying quantitative 

phenotypes might themselves evolve adaptively. Further analysis of GRNs is sure to further 

advance our understanding of the effects of phenotypic robustness on evolvability, for example, 

by telling us about how specific network properties or subsystems affect evolvabilty, and about 

how the mechanics of evolvability depend on the nature of the adaptive challenge and 

developmental system constraints. On the other hand, the complexity of GRN models makes 

their analysis and interpretation more challenging (Hardy, 2024). The main selling point of the 

quantitative genetic approaches we have taken here is that they are easy to interpret. So, to close, 
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let us repeat our main interpretations: As for discrete phenotypes, when it increases cryptic 

genetic diversity, quantitative epistasis can have non-monotonic effects evolvability. This is true 

of both capacitor and bow-tie network models of functional epistasis. This can also be true of 

phenotypic plasticity, but only with the right combinations of environmental variation, life 

history, population structure, and genetic architecture. 
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