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Introduction

Most organisms exhibit plastic responses to the developmental environment. These responses are adaptive if
they generate phenotypes suited to conditions in spatially and/or temporally heterogeneous habitats (Lande
2009, Monaghan 2008, Arnold et al. 2019). Indeed, developmental plasticity (i.e., the capacity of a genotype
to express multiple phenotypes in response to early-life environments) is one route by which organisms could
overcome the challenges of environmental heterogeneity (West-Eberhard 2003, DeWitt and Scheiner 2004;
Snell-Rood and Ehlman 2021). For example, some species develop defensive morphologies when predators
are detected, but otherwise, do not expend energy on these traits (e.g. Daphnia waterfleas, Parejko and
Dodson 1991; larval amphibians, Newman 1989). Such plasticity is described by a reaction norm, which is a
mathematical function that describes phenotype values across different environments. Consequently, reaction
norms are useful tools to calculate, visualize, and evaluate differences in plastic traits among environments,
populations, and individuals (Gomulkiewicz and Kirkpatrick 1992, Brommer et al. 2005, Monaghan 2008).

Reaction norms may vary among individuals and populations, potentially due to genetic variation (Ellis
and Boyce 2008; Scheiner 1993, Murren et al. 2015). This indicates an opportunity for natural selection to
shape plasticity in adaptive ways (Levis and Pfenning 2016) like any trait with additive genetic variation
(Hillesheim and Stearns 1991, Gavrilets and Scheiner 1993, Scheiner 2002). Environmental heterogeneity
creates conditions that allow developmental plasticity to be adaptive (Gomulkiewicz and Kirkpatrick 1992,
Lande 2009), as selection will favor reaction norms that match phenotypes to different environments, thereby
enhancing fitness. Furthermore, adaptive plasticity should arise if the environmental cues that generate a
phenotype also predict the future environment in which the phenotype is expressed and where its fitness
consequences are realized (Casal et al. 2004, Beldade et al 2011).

Variation in reaction norms among individuals of a population provides an opportunity for selection to act
on plasticity, whereas variation across populations may signify past selection that has shaped plasticity in
response to local environments. Both theory (Gavrilets and Scheiner 1993; Lande 2009, Levis and Pfenning
2016) and empirical studies (Suzuki and Nijhout 2006) indicate that under strong selection, the magnitude
(i.e., slope) of reaction norms should be maintained and become homogenized, decreasing within-population
variation. Alternatively, if distinct populations experience different environmental pressures with varying
levels of heterogeneity, then both the magnitude and variation of reaction norms might change (Duffy et al.
2015). Moreover, experimental evolution studies demonstrate that patterns of plasticity can vary between
populations (e.g., populations with or without plasticity; van der Burg et al. 2020), and this process could
be reversed with artificial or natural selection. Ultimately, a population’s genetic structure may contain
individuals that are more (or less) plastic to environmental conditions. Consequently, when a population is
faced with a major environmental change due to natural or human-induced causes, or resulting from invasion,
plasticity may be amenable to selection.
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The aim of this study is to quantify variation in developmental reaction norms among individuals and within
populations of a non-native lizard, the brown anole (Anolis sagrei ). Past work on A. sagrei (Warner et
al. 2012; Pearson & Warner 2018; Hall & Warner 2022), as well as studies on other reptiles (Mitchell et al.
2018; Noble et al. 2018; Warner et al. 2018), demonstrate strong effects of egg incubation environments on
developmental rate, offspring body size, locomotor performance, behavior, physiology, and fitness; however,
within- and among-population variation in reaction norms has never been examined inA. sagrei , but among-
population variation in embryonic reaction norms of other Anolis species has been documented (Goodman
2008; Goodman & Heah 2010). Here, we collected lizards from two islands that differ in habitat structure
and, thus, the predominant nest environments in which embryos develop (i.e., open-canopy island with
warm, dry conditions versus closed-canopy with cool, moist conditions). Individuals from each island were
bred in a common garden, and we incubated eggs in one of two regimes that mimic natural conditions on
each island. Because each females’ eggs were divided between treatments (i.e., split-clutch design), we could
quantify among-individual and among-population variation in reaction norms for a range of fitness-related
phenotypes.

Our novel study design helps fill two important knowledge gaps in studies of developmental plasticity. First,
most studies of developmental plasticity consider the isolated effects of factors like incubation temperature or
moisture, but such factors usually co-vary in predictable ways in the wild (e.g. warmer nests are often drier;
Pruett et al. 2020). We need a better understanding of the effects of real nest environments on plasticity.
For example, warmer temperatures result in greater sprint speed at hatching (Pearson & Warner 2018), but
dry incubation conditions can decrease hatchling performance (Gatto & Reina 2022). Moreover, the effect
of temperature on sprint speed may depend upon thermal variation, not just mean temperature (Hall &
Warner 2020). Thus, we need studies that combine multiple nest conditions that represent real habitats to
better understand developmental plasticity in the wild.

Second, we test the hypothesis that variation in offspring phenotypes results from the influence of the
environment (i.e., open- vs closed-canopy conditions), parentally induced variation in phenotypes (i.e., family-
group reaction norm intercepts), and plasticity (i.e., family-group reaction norm slopes). We address this
hypothesis by quantifying the slopes of reaction norms (for morphological, physiological, and performance
traits) for each family group and comparing them among families and populations. Significant variation in
reaction norm slopes among family groups (indicative of genetic x environment interactions) would support
this hypothesis and indicate potential for plasticity to evolve in response to future pressures. Our results
have important implications for understanding how natural developmental environments generate phenotypic
variation, and the capacity for populations to adapt to changing environments.
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Figure 3. Possible family-level relationships between the slope and intercept of reaction norms. Each line
represents a reaction norm for an individual family-group (i.e., offspring from a single female and her mate):
(a) random intercept model; (b) random slope model; (c) random intercept and slope model; (d) null model
with no random effect (i.e., identical slope and intercept among families).
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Figure 4 : Effect of incubation treatment on body size and performance of Anolis sagrei hatchlings. (a)
Body mass at hatching; (b) Snout-vent length (SVL) at hatching; (c) Running speed; (d) Water loss dur-
ing desiccation trials. All data points in the graphs are model adjusted for time of hatching, egg mass,
and maternal island of origin. All points have been mean standardized as described in methods (but see
supplemental figure 2 for plots of non-scaled means). Results from statistical tests are reported in Table 1.
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Figure 5 : Reaction norms for each family separated by source island; the first and second columns of
graphs are for individuals from the open and shaded islands, respectively (i.e., reaction norms reflect the
trait values for all offspring from a single mother. The third column represents the reaction norms averaged
for each family group (red curve = open island, blue curve = shaded island, black curve = average of all
family groups). (a) Reaction norms for body mass; (b) Reaction norms for snout-vent length; (c) Reaction
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norms for spring speed; (d) Reaction norms for water loss. All reaction norm slopes reported are measured
directionally from the open to the shaded incubation treatment. That is, a positive slope conveys a larger
trait value in the shaded treatment and a negative slope conveys a larger trait value in the open treatment.
The y -axis has been changed for the plots showing the average reaction norms to better see the patterns.

Table 1. Effect of incubation treatment, island, and covariates on hatchling phenotypes. Statistically
significant interaction terms were retained in the final models. Descriptive statistics (means and standard
deviations) for each island and incubation treatment are reported in supplemental Table 2). Estimates for
treatment and source island effects were calculated with the shaded incubation treatment and shaded island
as references. In the random effects columns σ2 = the residual variance, τ00 = the random intercept variance
(maternal ID was the random effect in models for mass and SVL), ICC = interclass correlation.

Estimates 95% CI d.f. f value P

Hatchling Mass (N=358, conditional r2=0.425, marginal r2=0.254)
Treatment (Shade) 0.2391 0.09 – 0.39 292.73 9.3538 0.0022
Island (Shade) -0.0049 -0.26 – 0.25 43.94 0.0015 0.9696
Hatch Day 0.0898 -0.17 – -0.01 329.19 4.7965 0.029
Egg mass 0.4568 0.37 – 0.55 340.63 98.7034 <0.0001
Random effect (σ2 = 0.53, τ00 = 0.16, ICC = 0.23, N = 63)
Hatchling SVL (N=358, conditional r2=0.274, marginal r2=0.101)
Treatment (Shade) 0.3579 0.18 – 0.54 301.64 15.5641 <0.0001
Island (Shade) 0.1349 -0.14 – 0.41 50.37 0.9292 0.33966
Hatch Day -0.0781 -0.17 – 0.02 335.5 2.7053 0.10095
Egg mass 0.3659 0.22 – 0.51 329.13 23.5409 <0.0001
Treatment:Eggmass -0.2220 -0.40 – -0.04 316.5 507535 0.01703
Random effect (σ2 = 0.72, τ00 = 0.17, ICC = 0.19, N = 63)
Sprint Speed (N=341, r2= 0.223)
Treatment (Shade) -0.094 -0.29 – 0.10 335 0.1801 0.3836
Island (Shade) 0.02 -0.17 – 0.21 335 0.0346 0.9081
Snout-vent Length 0.19 0.09 – 0.29 335 27.2059 0.0002
Trial Temperature 0.08 -0.02 – 0.18 335 4.2103 0.1076
Number of Stops -0.39 -0.48 – -0.29 335 65.001 >0.0001
Desiccation (N=328, r2=0.94)
Treatment (Shade) -0.0643 -0.22 – 0.09 328 0.6041 0.438
Island (Shade) 0.0325 -0.12 – 0.19 328 0.2039 0.692
Relative humidity (%) 0.0545 -0.02 – 0.13 328 0.2175 0.183
Starting Mass 0.2330 0.15 – 0.31 328 31.2057 >0.0001

Table 2: Models to test for difference in variance of reaction norms. Results of Fishers F-test for variance
and Flinger – Killeen test for homogeneity of group variance. The null hypothesis for both tests is that
population variances are equal. The +/- slope count records the number of positive or negative slopes in
the group.

not-yet-known not-yet-known not-yet-known unknown

Slope Mean Slope Range Slope variance F-test of variance Fligner-Killeen +/- Slope Count

Body mass (mg) 4.585 -23.58 – 34.65 167.453 F1,23= 0.684, p = 0.373 x2=0.191, p = 0.661 31/16
Open Island 9.230 -15.15 – 32.81 120.505 18/6
Shaded Island -0.260 -23.58 – 34.65 176.062 13/10
SVL (mm) 0.315 -1.00 – 2.00 0.392 F1,23=1.212, p = 0.653 x2=0.002, p = 0.961 6/41
Open Island 0.379 -0.66 – 2.00 0.433 3/21
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Slope Mean Slope Range Slope variance F-test of variance Fligner-Killeen +/- Slope Count

Shaded Island 0.247 -1.00 – 1.33 0.357 3/20
Speed (cm/s) 0.07 -27.33 – 35.80 145.115 F1,23=0.885, p = 0.772 x2=0.584, p = 0.444 21/26
Open Island -0.038 -22.58 – 18.27 139.471 12/12
Shaded Island 0.201 -27.33 – 35.80 157.582 9/14
Water loss (mg) -0.235 -2.24 – 2.90 1.273 F1,17=1.105, p = 0.852 x2=0.055, p = 0.814 3/31
Open Island -0.233 -2.24 – 2.90 1.375 2/16
Shaded Island -0.238 -1.96 – 2.27 1.243 1/15

Table 3: Models to test for difference in means of reaction norms. Shaded island is the reference in all
models.

not-yet-known not-yet-known not-yet-known unknown

Estimates 95% C.I. S.E. d.f. F value P value R2

Mass (mg) -9.230 -16.63 – -2.35 2.480 45 7.164 0.0103 0.137
SVL (mm) -0.132 -0.50 – 0.24 1.837 45 0.5166 0.4760 0.011
Speed (cm/s) 0.240 -6.92 – 7.40 3.553 45 0.0046 0.9463 0.001
Water Loss (ml) 0.004 -0.81 – 0.80 0.393 32 0.0004 0.9902 0.001

Bold text denotes statistical significance at alpha = 0.05
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