
P
os
te
d
on

3
S
ep

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
72
53
75
76
.6
29
31
05
8/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

SIB: Sorted-integers-based Index for Compact and Fast Caching in

Top-down Logic Rule Mining

Ruoyu Wang1, Raymond Wong1, Daniel Sun2, and Rajiv Ranjan3

1University of New South Wales School of Computer Science and Engineering
2UGAiForge LLC
3Newcastle University

September 03, 2024

1

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

R E S E A R C H A R T I C L E

SIB: Sorted-integers-based Index for Compact and Fast Caching
in Top-down Logic Rule Mining

Ruoyu Wang1 Raymond Wong1 Daniel Sun2 Rajiv Ranjan3

1Computer Science and Engineering, University of
New South Wales, NSW, Australia

2UGAiForge LLC., ACT, Australia
3Newcastle University, England, United Kingdom

Correspondence
Raymond Wong, University of New South Wales,

Sydney, 2032.

Email: ray.wong@unsw.edu.au

Funding Information
This research was supported by the the UNSW
School of Computer Science & Engineering
scholarship

Abstract
Mining logic rules from structured knowledge bases is the basis of knowledge engineering. Due to the
NP-hardness of the rule mining problem, logic rules cannot be efficiently induced from knowledge bases,
especially large-scale ones, and most mining techniques employ algorithmic and architectural optimizations
to improve efficiency. Data-oriented optimizations have also been explored to some extent, but the data
efficiency is relatively low, and the memory consumption is thus becoming a new challenge for state-of-the-
art systems. In this article, we propose a compact and efficient index structure for the maintenance of the
intermediate data during top-down rule mining. The index is based on a mapping from constant symbols
to integers and the sorting of the mapped integers. We evaluate our method on six datasets which contain
up to 160K records and are frequently used as benchmarks in knowledge engineering related tasks. The
experimental results show that the proposed technique speeds up the rule mining procedure by 5x on average
and reduces memory consumption by up to 70%. The space overhead of the data structure is about twice that
of the indexed records, which is more than 80% lower than that of the state-of-the-art technique.

K E Y W O R D S

rule mining, optimization, indexing, data structures, data efficiency, knowledge bases

1 INTRODUCTION

Logic rule mining provides an interpretable and manipulable way to induce semantic patterns from structured knowledge
bases (KBs)1. Induced rules can be used to predict missing knowledge2,3, answer questions/queries4,5, integrate different
knowledge6,7, and detect information redundancies8,9,10,11. However, rule mining algorithms are usually slow and consume a lot
of computational resources.

The main reason for the low efficiency of rule mining algorithms is that the complexity of the rule mining problem is NP-
hard10, and the search space of logic rules is exponential to the size of KBs and the maximum length of rules. Although pruning
techniques have been extensively proposed2,12, the number of candidate rules explored during mining routines remains orders of
magnitude more than the ones that are qualified and returned10. Moreover, the cost for a single evaluation of a specific logic
rule is also expensive, especially on large-scale KBs, as the number of variable substitutions in a rule is also exponential to the
maximum rule length.

Top-down rule mining techniques have been more extensively optimized and are thus usually faster than bottom-up ones.
Although many recent works explore neuro-symbolic approaches to logic rule mining13,14, these approaches require additional
hardware support, such as GPUs, to complete the task. In order to improve the mining efficiency, most top-down techniques
optimize the mining algorithm2,10,15,16 and the implementation architecture17,18 of the algorithms. Databases and customized
data structures have also been exploited to maintain records/tuples in a KB and build indices for fast queries. For example,
QuickFOIL19 implements the FOIL algorithm20 based on relational database systems and groups queries to avoid repetitive
data operations. AMIE2 employs an in-memory RDF database and builds permutation indices for RDF tuples. SINC 21 uses a

Abbreviations: KB, knowledge base; RDF, resource description framework; ILP, inductive logic programming; SIB, sorted-integer-based; SR, sorted referece; VC, values in columns;
IO, index offsets; NV, numbers of values; LLM, large language model.

Journal 2023;00:1–18 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1

2 WANG ET AL.

T A B L E 1 Memory cost (Byte) of rule mining

KB Fs Fm UMLS CoDEx WN18 NELL-500

Disk Space 36.44K 148.78K 58.21K 300.43K 1.75M 1.71M
Memory Cost of SINC 32.37M 235.21M 1.43G 6.63G 2.64G 6.90G
Memory Expansion 910 1619 25832 22848 1550 4136
Proportion of Cache (%) 56.49 57.81 73.79 81.13 23.95 64.16

*The memory expansion is the memory cost of SINC over the disk space used by the original KB.

customized data structure to cache intermediate results of logic rule inference, and the inference of other rules may be simply
obtained by modifications to the cached content.

Nevertheless, the data efficiency and operation efficiency in such approaches still need improvement. Database systems are
efficient for indexing records in KBs, but repeated data queries cannot be fully avoided10. The query engines in database systems
are optimized for generic data queries rather than logic inference in which join queries dominate the query patterns. For example,
although customized data structures and the fine-grained specialization operations12 have been employed in the state-of-the-art
system SINC to improve the reuse of intermediate data and simplify data queries to a small set of basic operators, resulting
in orders of magnitude acceleration towards previous approaches, the indices of the cache consume too much memory space,
especially when mining large KBs. The implementation of SINC with the customized cache structure runs out of memory when
mining KBs with millions of records (see Section 5).

Table 1 compares the disk space of the KBs used in Section 5 and the peak memory consumption during rule mining on the
KBs by SINC. Rule mining consumes up to four orders of magnitude more space than the original KB. The 5th row in Table 1
shows the proportion of memory consumption by cached content, illustrating that most of memory has been consumed by cached
content during rule mining. Therefore, we set the following objectives to study the data efficiency issue in logic rule mining:

• Analyze the data structures used for caching in logic rule mining and propose a compact representation for the cache, such
that the memory consumption can be reduced.

• Propose efficient operations on the new data structure, such that the overall rule mining speed on the new data structure will
not be slower than the original one.

This article tackles the challenge with a novel index structure based on sorted integer tables. The index blocks also serve
as the cache of logic inference in top-down mining procedures, and more efficient data operations can be used to improve the
efficiency of overall rule mining. Contributions of this article include:

• We propose a sorted-integer-based (SIB) structure to compactly index the cached records in KBs. References to records in a
KB are also used as the cache of logic inference. The structure can be reused and significantly reduces space consumption
during rule mining.

• We disassemble the operations used in rule mining into four basic operators: Get, Split, Match, and Join, of the proposed
index structure. Then, we present efficient algorithms for the operators.

• We comprehensively evaluate our techniques against state-of-the-art rule mining systems and present a detailed ablation study
of the data operators based on the new data structure. The results show that the new index structure improves the speed of rule
mining by 5x on average and reduces up to 70% of space throughout the rule mining procedures. Besides, the space overhead
of the new structure is twice the size of the indexed records, which is much smaller than that of the state-of-the-art technique.

The remainder of the article is as follows: Section 2 reviews techniques for logic rule mining from KBs. Section 3 introduces
background knowledge of top-down logic rule mining. The SIB index and the improved cache update operations are proposed in
Section 4. Then, we evaluate our technique in Section 5 and present a detailed ablation study. Section 6 discusses the implications
and important open questions from this article. Finally, the article is concluded in Section 7.

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 3

2 RELATED WORK

2.1 Logic Rule Mining

Logic rule mining is mainly studied within the settings of Inductive Logic Programming (ILP)22, and logic rules can be induced
in a discrete or a differentiable manner. The discrete approaches construct logic rules by explicitly combining predicate and
constant symbols appearing in a given KB via a top-down2,10,19,20 or a bottom-up15,16 procedure, where rules are modified from
general to specific or the inverse, respectively. The top-down methods are usually integrated into database management systems.
The bottom-up methods are studied via formal methods and can be employed to generate expressive logic programs, such as
answer set programs23 or higher-order logic programs. The differentiable approaches represent logic operators as differentiable
functions24,25,26 or train neural networks13,14 to capture the semantics of logic rules.

2.2 Optimizations for Top-down Logic Rule Mining

Optimizations of logic rule mining can be categorized as algorithm-, architecture-, or data-oriented. Algorithm-oriented
optimizations improve logic rule mining with more efficient algorithms and procedures. A common solution for efficiency is to
restrict the expressiveness of semantic models, such as extracting a fragment of first-order logic where the mining complexity
is lowered, such as description logic27,28, association patterns8, and frequent graph structures9. Pruning is another widely
applied methodology to reduce the number of data queries during mining. Besides trivial syntax duplications and renaming
duplications29,30, QuickFOIL19 also prunes replaceable duplications of literals. AMIE2 prunes candidate rules that entail an
insufficient number of tuples and calculates the confidence score in a lazy manner to stop the calculation of bad scores at an early
stage. Statistical estimation has also been explored to improve pruning efficiency31,32,33,34. Algorithm-oriented optimizations
usually speed up rule mining procedures by 5-10x.

Architectural-oriented optimizations improve the system architecture that supports the rule mining algorithm, and they do
not change the behavior of algorithms. Parallelization of logic rule mining belongs to this category. Srinivasan et al.18 studied
the parallelization of ILP algorithms at data and task level. They found the performance improvement via data parallelism can
only be expected above some minimal dataset size, and the improvement via task parallelism can only be expected above some
minimal search-space size. Nishiyama and Ohwada17 propose a novel communication protocol for sharing evaluation results of
candidate rules, achieving a higher-than-linear speed-up of ILP algorithms. ScaleKB35 parallelizes the ontological path-finding
algorithm to mine first-order Horn rules from open-domain RDF KBs. The system also parallelizes inference procedures to
efficiently produce new facts via the induced rules.

Data-oriented approaches focus on optimizing data structures and data operations, not interfering with the control flow
of the rule mining algorithm. The proposed technique in this article belongs to this category. FOIL-D31 integrates the top-
down logic rule mining algorithm with relational database systems and converts evaluations of logic rules as SQL queries.
CrossMine36 optimizes data queries used for evaluating the quality of logic rules by an ID propagation technique, reducing
the cost of join operations and defining a new grammar to represent the propagation operations. QuickFOIL19 groups identical
SQL operators and runs the queries in batches to avoid repetitive data queries. AMIE2 also groups similar queries, and the
system also calculates quality scores of logic rules in a lazy manner, such that the scores of pruned rules will not be calculated.
SINC 21 implements a customized data structure to cache intermediate inference results of logic rules. The systems also propose
fine-grained specialization operations12 to simplify the update of the cache structure. The speed of SINC is faster than the other
discrete rule mining approaches, but the memory cost is high, especially when mining large-scale KBs. Our rule mining system
employs a more compact index structure that also caches intermediate results, and more efficient operations are applied to the
new data structure. Hence, the proposed technique is faster and the memory cost is lower.

3 PRELIMINARIES

This article focuses on optimizing the discrete top-down mining of first-order Horn rules, the procedure of which is shown in
Algorithm 1. In each iteration of top-down mining, every candidate rule in set R is specialized by introducing new predicates or
variables. The quality of each rule r is evaluated by eval(r). The procedure stops when one or more local optimums are found.

4 WANG ET AL.

Algorithm 1 Top-down Logic Rule Mining

Input: RDF KB K
Input: Target relation p
Input: Beamwidth b
Output: A single logic rule that entails tuples in relation p
1: R← {p(?, ?)←}
2: while true do
3: L← ∅
4: for r ∈ R and each r′ that is specialized from r do
5: if r′ is not pruned and eval(r′) > eval(r) then
6: L← L ∪ {r′}
7: end if
8: end for
9: if ∃rm ∈ R, s.t.∀r ∈ R ∪ L, eval(rm) ≥ eval(r) then
10: return rm

11: else
12: R← b rules in L with highest scores according to eval(·)
13: end if
14: end while

T A B L E 2 An example knowledge base about kinship relations

uncle brother parent

adam bob adam cain diana bob
adam eric adam diana diana eric
felix ginny felix hue hue ginny
jim kite jim iris hue jim

uncle(?, ?)← (1)

⇓
uncle(X, ?)← brother(X, ?) (2)

⇓
uncle(X, Y)← brother(X, ?), parent(?, Y) (3)

⇓
uncle(X, Y)← brother(X, Z), parent(Z, Y) (4)

F I G U R E 1 An example top-down mining of Rule (4). The parts in red denote the modification by specialization operations.

First-order Horn rules are in the following form: H ← B1, . . . , Bn, where H is the head predicate and Bi’s are the body
predicates. For example:

uncle(X, Y)← brother(X, Z), parent(W, Y) (5)

uncle(X, Y)← brother(X, ?), parent(?, Y) (6)

Capital letters in the argument list of a first-order predicate refer to variables, and uncapitalized words are constant symbols.
Variables that appear only once (called the unique variables) in the rule are simplified as ‘?’. For example, the above two rules
are equivalent.

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 5

F I G U R E 2 Caching in top-down rule mining

Table 2 shows an example kinship KB consisting of three relations: uncle, brother, and parent. Rules (1) to (4) in Figure 1
illustrate a possible top-down mining routine. Rule (4), the induced logic rule, states that if X is the brother of Z and Z is the
parent of Y , then we can infer that X is the uncle of Y .

4 SORTED-INTEGER-BASED INDEX

In order to improve the speed of top-down logic rule mining, the logic inference results of candidate rules should be maintained
in memory to reduce the cost of rule quality evaluation. Query grouping2,19 and result caching21 are used for this purpose.
Caching is better at reusing intermediate data than query grouping, but the memory cost is much higher, especially the cost of
indexing the cached records for further operations. In this section, we propose a sorted-integer-based table structure that serves
as a compact index as well as a cache for records in KBs.

4.1 Caching in Logic Rule Mining

As shown in Figure 2, every candidate rule in top-down rule mining manages a cache in memory, explicitly enumerating the
substitutions of variables in the rule. When rule r is specialized to r1, . . . , rn, the cache of ri is updated from that of r.‘ When a
candidate rule is no longer used in the mining procedure, the cache attached to the rule is deleted. The following (referred to as
Cache (7)) shows such a cache of Rule (2) with respect to the KB in Table 2:

uncle(adam, bob)← brother(adam, cain)

uncle(adam, bob)← brother(adam, diana)

uncle(adam, eric)← brother(adam, cain)

uncle(adam, eric)← brother(adam, diana)

uncle(felix, ginny)← brother(felix, hue)

uncle(jim, kite)← brother(jim, iris)

(7)

According to the fine-grained specialization12, every new rule r′ is generated by modifying one or two unique variables in the
original rule r. When specializing Rule (2) to Rule (3), the second arguments of relations uncle and parent are assigned to the
same variable Y , resulting in a join operation by the two arguments. The following shows the cache of Rule (3), where the bold
font emphasizes the matched arguments:

uncle(adam, bob)← brother(adam, cain), parent(diana, bob)

uncle(adam, bob)← brother(adam, diana), parent(diana, bob)

uncle(adam, eric)← brother(adam, cain), parent(diana, eric)

uncle(adam, eric)← brother(adam, diana), parent(diana, eric)

uncle(felix, ginny)← brother(felix, hue), parent(hue, ginny)

(8)

6 WANG ET AL.

F I G U R E 3 Three grouped cache entries representing the six entries in Cache (7), where each dashed red rectangle represents a single block.

F I G U R E 4 Integer tables (shown in dashed red rectangles) representing the cache blocks in Figure 3.

The set of inferred records and the quality score of Rule (3) can thus be efficiently calculated (used in Line 5 of Algorithm 1).
Then, the inference results of Rule (4) are generated in the same way from Cache (8). The cache of a specific rule is immutable,
as one candidate rule may be specialized to multiple new rules.

4.2 Sorted-integer-based Index Structure

Theoretically, the number of variable substitutions is exponential to the number of different variables in a logic rule. In order to
reduce the number of entries in the cache, the cached records are grouped by relations and variable substitutions. For example,
the six entries in Cache (7) can be grouped into three entries, each consisting of two blocks, as shown in Figure 3. The Cartesian
product of the two blocks in the first entry of Figure 3 implicitly represents the first four entries in Cache (7). Such blocks in
cache entries are the basic components in the rule cache during logic rule mining.

In order to efficiently update the rule cache, SINC 21 builds indices of records in cache blocks according to the argument
values, and the indices are implemented by hash tables. However, hash tables are an overkill for this purpose, as they reserve
extra memory space for index entry insertion and rearrangement. The extra space in hash tables is unnecessary during logic rule
mining, as no modification is applied to existing indices throughout the life cycle of the cache blocks. Taking this property into
consideration, we propose a sorted-integers-based (SIB) index structure to compactly index records in cache blocks.

The fist step of building SIB indices is to map the constant symbols in a KB to integers. Without loss of generality, we map all
constants to integers 1, 2, . . . , n by a function I(·), where n is the number of constant symbols in the given KB. For the simplicity
of presentation, I(·) maps constants to their alphabetical order. I.e., I(adam) = 1, I(bob) = 2, Disregarding the relation
symbol, the records in a cache block can be represented as an integer table. For example, the six blocks in Figure 3 can be
represented as six integer tables shown in Figure 4.

Given an integer-represented cache block, a SIB index block is created according to the sorted references to the record.
Specifically, a SIB index block is composed of four components, as shown in Figure 5: 1) Sorted References, 2) Values in
Columns, 3) Index Offsets, and 4) Numbers of Values. The construction of a SIB block is illustrated in Algorithm 2.

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 7

F I G U R E 5 The structure of a SIB index block. This figure also illustrates an example of the SIB index block.

Algorithm 2 Construction of an Integer Table

Input: A list of records L
Output: A SIB index block B
1: B ← an empty SIB block
2: for i = a – 1 to 0 (a is the arity of the records in L) do
3: L ← sort L w.r.t. the ith argument by a stable sorting algorithm
4: B.SR[i]← references of records in L in the sorted order
5: Fill in the other three components corresponding to B.SR[i] given L
6: end for
7: return B

• Sorted Reference (SR): This part contains a columns of references to records in a cache block, where a is the arity of the
records. The references in the ith column are sorted in ascending order with respect to the values from the ith to the last
arguments of the records. A stable sorting algorithm is used to sort the references, as shown in Algorithm 2. B.SR[i][j] refers
to the element in the ith column and jth row in the SR of a SIB block B.

• Values in Columns (VC): The ith column in this part contains the integers in the ith arguments of the records without
duplication. Values in each column are also in ascending order.

• Index Offsets (IO): This part indicates where to find the records with specific argument values. Suppose B.IO[i][j] = k,
B.IO[i][j + 1] = k′, and B.VC[i][j] = c for a given SIB block B. The references to the records, where the ith arguments are c,
start from the kth row to the k′th row (exclusive) in B.SR[i].

• Numbers of Values (NV): This part is a list of length a. B.NV[i] = l means that the lengths of B.VC[i] and B.IO[i] are l.

Figure 5 also demonstrates an example SIB index block. On the left of the figure, there are three records from a binary relation.
The records are: (6, 7), (5, 5), (6, 4), and the memory addresses of the records are: 0xa, 0xb, 0xc, respectively. There are
two columns in the SR part of the constructed SIB block.

Let B be the SIB block constructed from the three records. The values in B.SR[1] (the 2nd column in the “sorted reference”
part of B) are the addresses of the three records in ascending order with respect to the 2nd arguments. The values in B.SR[0]
are the addresses of the records in the ascending order w.r.t. the 1st and the 2nd arguments. Values 5 and 6 appear as the first
arguments of the records. Thus, B.VC[0] contains the two values in ascending order. Similarly, B.VC[1] = [4, 5, 7]. According to
the references in B.SR[0], the value 5 first appears in the first argument of the first referred record, which is (5, 5). Thus, the
corresponding offset B.IO[0][0] = 0. Similarly, B.IO[0][1] = 1, as the value 6 first appears in the first argument of the second
referred record in B.SR[0]. The fourth part of B, B.NV , is trivial. There are two and three elements in the first and the second
columns of B.VC. Therefore, B.NV[0] = 2 and B.NV[1] = 3.

According to the definition, the total space of a SIB block is:

Sr · a · |L| + 2 · O(Si · a · |L|) + Si · a ≤ 5SL

8 WANG ET AL.

Function 3 Match
Input: B: A SIB block
Input: i, j: two arguments in B
Input: si, ei: starting and ending offsets (inclusive) of argument i (default: 0, B.NV[i]–

1)
Input: sj, ej: starting and ending offsets (inclusive) of argument j (default: 0, B.NV[j]–

1)
Output: The result of operation Match(B, i, j)
1: R ← ∅
2: if si > ei or sj > ej then
3: return R
4: end if
5: oi ← ⌊ ei–si

2 ⌋
6: vi ← B.VC[i][oi]
7: oj ← the insert index of vi in B.VC[j] ▷ Binary search
8: if oj > ej then
9: R ← R∪Match(B, i, j, si, oi – 1, sj, ej)
10: else
11: vj ← B.VC[j][oj]
12: if vi < vj then
13: R ← R∪Match(B, i, j, si, oi – 1, sj, oj – 1)
14: R ← R∪Match(B, i, j, oi + 1, ei, oj, ej)
15: else ▷ vi ≡ vj

16: R ← R∪ {r ∈ Get(B, i, vi)|r.i ≡ r.j}
17: R ← R∪Match(B, i, j, si, oi – 1, sj, oj – 1)
18: R ← R∪Match(B, i, j, oi + 1, ei, oj + 1, ej)
19: end if
20: end if
21: return R

where Sr, Si, and SL are the sizes of reference, integer, and records in L, respectively. The size of a SIB block is no more than
five times the total size of the records it indices, as Sr ≤ 2Si in modern operating systems. The equivalence of the above formula
can be approached only when |L| = 1. In real-world cases, the space overhead of SIB blocks is only about twice the size of the
records, as shown in Section 5.3.

Given that all the records in a cache block are referred to in the corresponding SIB block, it is not necessary to keep the cache
block in memory, that is, the SIB blocks also act as cache blocks.

4.3 Index Update Operations for Logic Rule Mining

Let L be the list of records maintained by a SIB block B. Operations applied to the cache involved in rule mining are dissembled
into four basic operations to SIB blocks:

• Get(B, i, c): Select all records from L, such that the ith arguments of the selected records are of value c;
• Split(B, i): Split L into s slices, such that s is minimum, and in each slice, the ith arguments of the records are the same;
• Match(B, i, j): Find all records that the ith and the jth arguments are the same, then Split such records by the ith arguments.
• Join(B1, i1,B2, i2): θ-join two blocks B1 and B2 by the two arguments and Match the result by the arguments:

Match(SIB(L1 ▷◁L1.i1=L2.i2 L2),L1.i1,L2.i2)

where SIB(L) means constructing a SIB block from L.

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 9

Function 4 Join
Input: B1, i1: The first SIB block and the argument in the block;
Input: B2, i2: The second SIB block and the argument in the block;
Input: s1, e1: The starting and ending offsets (inclusive) of argument B1.i1 (default: 0,
B1.NV[i1] – 1)

Input: s2, e2: The starting and ending offsets (inclusive) of argument B2.i2 (default: 0,
B2.NV[i2] – 1)

Output: The result of operation Join(B1, i1,B2, i2)
1: R ← ∅
2: if s1 > e1 or s2 > e2 then
3: return R
4: end if
5: o1 ← ⌊ e1–s1

2 ⌋
6: v1 ← B1.VC[i1][o1]
7: o2 ← the insert index of v1 in B2.VC[i2] ▷ Binary search
8: if o2 > e2 then
9: R ← R∪ Join(B1, i1, s1, o1 – 1,B2, i2, s2, e2)
10: else
11: v2 ← B2.VC[i2][o2]
12: if v1 < v2 then
13: R ← R∪ Join(B1, i1,B2, i2, s1, o1 – 1, s2, o2 – 1)
14: R ← R∪ Join(B1, i1,B2, i2, o1 + 1, e1, o2, e2)
15: else ▷ v1 ≡ v2

16: R ← R∪ {Get(B1, i1, v1) ▷◁ Get(B2, i2, v2)}
17: R ← R∪ Join(B1, i1,B1, i2, s1, o1 – 1, s2, o2 – 1)
18: R ← R∪ Join(B1, i1,B1, i2, o1 + 1, e1, o2 + 1, e2)
19: end if
20: end if
21: return R

All the above operations can be efficiently implemented under the schema of the SIB index. Get queries can be answered by a
binary search w.r.t. the ith column in VC. Split queries scan through B.VC[i]. Results of Match and Join queries are obtained by
the divide-and-search procedures shown in Algorithms 3 and 4. When matching B.VC[i] with B.VC[j], the median value in
B.VC[i] is used to divide B.VC[i] and B.VC[j] into four smaller arrays. Then, the matching can be recursively calculated by
matching those small arrays, as the arrays are already sorted. Join is implemented in a similar way.

The worst-case complexity of the search procedure is O(nlog(n)), and in the best case, Ω(log(n)), where n is the number of
records in L. Figure 6 shows an example of Join(B1, i1,B2, i2), where B1.VC[i1] = [1, 5, 8, 10, 15] and B2.VC[i2] = [2, 3, 4, 6, 8].
The Join based on the SIB block uses 3 binary searches to find the final result, while by hash tables, 5 table searches are required.
The difference in the number of searches will be more significant on larger KBs.

The first column in the sorted reference part of a SIB block B, i.e., B.SR[0], can be used to check the existence of a record in
L via a binary search, as all records in B.SR[0] are in the alphabetical order, which is guaranteed by Proposition 1.

Proposition 1. All records in a SIB block are of alphabetical order with respect to the references in the first column in SR of the
generated SIB block.

Proof. According to Algorithm 2, the records in L are sorted in alphabetical order with respect to the last column after the first
iteration of sorting.

Moreover, if the records in L are in alphabetical order with respect to the ith to the last arguments before the ith iteration, the
records in L are in alphabetical order with respect to the (i – 1)th to the last arguments after the iteration, as the sorting algorithm
is stable.

Therefore, all records in L are of alphabetical order with respect to the references in the 1st column in SR of the generated
SIB block.

10 WANG ET AL.

F I G U R E 6 An example of Join(B1, i1,B2, i2)

The following shows the query results of the example SIB block B in Figure 5:

• Get(B, 0, 6) = [(6, 4), (6, 7)]
• Split(B, 0) = {[(5, 5)], [(6, 4), (6, 7)]}
• Match(B, 0, 1) = {[(5, 5)]}
• Join(B, 0,B, 1) = {[((5, 5), (5, 5))]}

5 EVALUATION

This section evaluates the proposed indexing technique and answers the following questions:

Q1 How fast and compact is the proposed sorted-integer-based index structure compared to state-of-the-art systems with
respect to overall logic rule mining?

Q2 To what extent are the construction and query operations optimized by the SIB index structure?
Q3 Is the proposed sorted-integer-based index structure robust to the mapping of constant symbols in speed and space?

5.1 Experimental Settings

Datasets: Table 3 shows the statistics of the datasets used in our experiments. The datasets are from different domains of
knowledge and are frequently used as benchmarks in related studies. “Fs”, “Fm”, “UMLS”, and “WN18” are adopted in SINC 12.
CoDEx is a benchmark for knowledge graph completion tasks37. “NELL-500” is a benchmark extracted from “NELL” (used
in9) by filtering out relations containing less than 500 tuples. “Yago”38 and “DBpedia”39 are large-scale knowledge graphs that
are widely used as benchmarks of knowledge-related tasks. The small and medium-sized datasets are included in our GitHub
project‡.
Competitors: Our rule mining system with the proposed indexing technique is SIB. The baseline is SINC 12, as it is the
state-of-the-art top-down mining system for first-order logic rules. The rule mining speed and the memory usage of SINC is
compared to SIB. The latest version of AMIE2 is also adopted as the baseline of rule mining speed. Most differentiable logic
rule mining techniques rely on more hardware (e.g., GPUs) and parallelization to train the models, and the resource consumption
is higher than the discrete ones. In this article, our goal is to optimize data structures for top-down logic rule mining under a
single thread. Therefore, the differentiable techniques are not adopted as competitors.

‡ https://github.com/TramsWang/SIB/tree/main

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 11

T A B L E 3 Dataset overview

Dataset Short #Rel. #Const. #Rec.

Family.simple Fs 4 402 1200
Family.medium Fm 9 702 5500
UMLS U 46 135 6529
CoDEx C 42 2034 37K
WN18 W 18 41K 151K
NELL-500 N 122 33K 167K
Yago Y 37 2M 4M
DBpedia D 620 4M 20M

*The 3rd, 4th, and 5th columns are the numbers of relations, constant symbols, and records in the KBs.

Large language models (LLMs), such as ChatGPT§, Bard¶ 40, FLAN41, and LLaMA42, have been used for few-shot learning
tasks, such as knowledge-based question answering43,44. Although LLMs have been criticized for their induction and reasoning
capabilities45, researchers have been trying to convert the rule mining task into a few-shot learning manner46. Despite this,
LLMs are not appropriate to be competitors for our techniques. First, the goal of this article is to reduce the computational cost
of overall rule mining. The model size itself of an LLM is much larger than the memory cost throughout the rule mining of the
competitors in this experimental evaluation. Second, the inference of LLMs relies on hardware clusters, especially GPUs, which
is much heavier than the discrete mining involved in this article. Therefore, LLMs are not adopted as competitors.
Environment: The proposed approach is implemented in C++ and is open-sourced on GitHub. As we are not focusing on
multi-threading in this article, the systems are implemented and compared in a single-thread manner. The beamwidth of top-
down rule mining is 3, and the compression capacity11 is used as the eval(·) function in Algorithm 1. The same setting is applied
to SINC. The maximum rule length of AMIE is set to 5. All tests were performed on Deepin Linux (kernel: 5.18.4-amd64) with
Ryzen 3600X and 128GB RAM.
Measures: Rule mining time and memory consumption are measured to compare the performance of the proposed index
structure. The resulting rule quality (e.g., accuracy) is not compared, as the proposed data structure does not interfere with the
workflow of the rule mining algorithm and thus has no effect on the rule quality.

5.2 SIB Index vs State-of-the-art

This section answers the research question Q1: The rule mining has been accelerated by about 5x on average compared to SINC
and more than 10x compared to AMIE; In terms of memory, up to 70% memory space can be reduced.

Table 4 compares the rule mining time of SIB against SINC and AMIE. Runtime errors occurred when mining “UMLS”
and “NELL-500” by AMIE, which is denoted as × in Table 4. SINC runs out of memory on “Yago” and “DBpedia”. SINC is
much faster than AMIE, and SIB is about 5x faster than SINC on average. One reason for such acceleration is that less memory
is acquired and accessed by SIB. As presented in Table 5, where the peak memory consumption throughout a rule mining
procedure is shown, up to 72% of memory has been reduced. Another reason is the speed-up by the query operations on the SIB
index, and this is more significant on datasets where the average numbers of records and constants in a relation are large. For
example, the speed-up of SIB is up to 8.86x faster than SINC on “WN18”, while the number is 1.82 on “UMLS”. The detailed
analyses for these reasons are studied in the next section.

5.3 Ablation Study

This section answers the research question Q2: The speed-up of SIB is mainly due to the efficient construction and Join queries
on the proposed index structure; The construction of SIB indices reduces up to 85% memory space and is 2x faster than the hash
tables in SINC; Join queries to the SIB index blocks is up to 4.5x faster than SINC, and the speed-up is more significant on
relations containing more constants.

§ https://openai.com/blog/chatgpt
¶ https://bard.google.com

12 WANG ET AL.

T A B L E 4 Rule mining speed

Dataset Overall Time (s) Speed-up towards

SIB SINC AMIE SINC AMIE

Fs 0.06 0.39 2.30 6.17 36.51
Fm 1.49 10.37 20.35 6.94 13.69
UMLS 20.30 36.89 × 1.82 -
CoDEx 66.32 395.37 1h 5.96 54.28
WN18 49.58 439.17 > 3h 8.86 > 217.83
NELL-500 544.63 4424.65 × 8.12 -
Yago 1.2h × × - -
DBpedia 7.9h × × - -

T A B L E 5 Peak memory cost (GByte) throughout rule mining

Dataset SIB SINC Memory Reduction (%)

Fs 0.01 0.03 71.62
Fm 0.06 0.23 72.19
UMLS 1.10 1.43 23.30
CoDEx 5.85 6.63 11.81
WN18 1.02 2.64 61.42
NELL-500 2.30 6.90 66.69
Yago 19.86 × -
DBpedia 7.88 × -

F I G U R E 7 Memory overhead of the SIB index vs SINC

In order to explain the detailed reasons for the performance of the SIB index, we generate random datasets with different
numbers of records (r), record arities (a), and the number of constants in the records (c). Experiments have been repeated 100
times for each group of the settings. The total time consumption and memory overhead of index construction is presented in
Figure 7. The three columns correspond to the settings varying the three parameters, and the two rows refer to the time cost and

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 13

T A B L E 6 Proportion (%) of queries during rule mining in SINC

Dataset Fs Fm UMLS CoDEx WN18 NELL-500

Get 34.04 26.19 27.17 62.79 19.93 17.04
Split 0 2.06 × 10–2 9.72 × 10–3 2.19 × 10–2 1.08 × 10–2 3.27 × 10–3

Match 4.65 × 10–3 1.08 × 10–3 4.37 × 10–4 8.62 × 10–5 1.56 × 10–4 1.59 × 10–4

Join 65.96 73.79 72.82 37.18 80.06 82.96

Join (Time) 99.97 99.96 99.97 99.88 99.98 99.99

*The second to the fourth rows show the proportions of the queries with respect to the total number of queries. The last row
shows the proportion of Join query time with respect to the total time cost of all queries on the index.

memory overhead of index construction in SIB and SINC. The memory overhead is given by the memory cost of the index over
that of the original records in the tested relation:

Memory Overhead Ratio =
Index Data Memory Cost

Records Data Memory Cost
(9)

SIB outperforms SINC in all settings. The construction speed is about 2x faster than the hash tables, as less memory is modified.
The reduction of memory consumption is more significant (up to 85%) when there are more constants in the tested relations.
Although the performance of SIB and SINC are close in the upper left sub-figure, the construction time of SIB is still less than
SINC.

Figure 8 compares the query time in SIB and SINC under the same settings as Figure 7. Each row in the figure shows the total
time of one type of queries on the index. The results show that the Join query on the SIB index is more than 50% faster than
SINC, and for relations with more constants, the acceleration is more significant (more than 4.5x faster, shown in the bottom
right sub-figure). This is because the divide-and-search Join of SIB significantly reduces the number of searches, as analyzed in
Section 4.3. For example, in the experiments when r = 500, a = 5, and c = 500, the number of the constant search in SIB is
46.34% less than that of SINC. The Get and Split queries in SIB are about 15% slower than SINC. Match queries are about
70% slower than SINC, but the difference narrows down when the number of constants in a relation is increasing. Despite the
fact that these queries are slower, the costs of the operations do not dominate the rule mining procedure. As shown in Table 6,
the proportions of Join queries are up to 80% with respect to the number of all queries during rule mining routines, and the
proportions are more than 99% with respect to the total query time. Therefore, the overall speed of SIB is faster than SINC.

5.4 Robustness to Integer Mappings

This section answers the research question Q3: The difference in rule mining speed under different mapping functions of
constants is less than 5% on average, and the difference in memory consumption is less than 1%; Therefore, the SIB index is
robust to the constant mapping strategy.

In this section, we employ four strategies for the mapping function I(·) and test the overall rule mining speed:

• Original: Mapping constant symbols to the order they appear in a KB;
• Alphabetical: Mapping constants to their alphabetical order;
• Frequency: Mapping constants to their frequency order (decreasing);
• Random: Mapping constants to a random order.

Let s denote a strategy among the above, Ts be the overall rule mining time with the mapping function under s. The variation of
the mining time is measured by (variation of mining memory is calculated in the same way):

maxs Ts – mins Ts

avgsTs
× 100% (10)

The results are shown in Table 7. The rule mining time costs on the same KB are close to each other, and the maximum
performance variation is 5.63%. Different order of constants may affect individual Join queries. Some queries are slower, while

14 WANG ET AL.

F I G U R E 8 Query time of the SIB index vs SINC

others are faster. The overall time is insensitive to such variations, as all records in a KB are accessed during rule mining.
According to the definition of the SIB index, the mapping of constants does not affect the index structure. Thus, the size of
indices is the same under different mapping strategies, which is justified in Table 8. The difference of space costs is due to
temporary variables used in index queries and the memory maintenance by the underlying operating system, and the variation is
less than 1% in most datasets.

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 15

T A B L E 7 Rule mining time (s) with different strategy of function I(·)

Dataset Constant Mapping by the Order of Variation (%)
Original Alphabetical Frequency Random

Fs 0.06 0.06 0.06 0.06 4.80
Fm 1.49 1.42 1.42 1.50 5.63
UMLS 20.30 20.55 20.15 20.44 1.95
CoDEx 66.32 66.07 64.09 66.30 3.39
WN 49.58 49.63 48.62 50.77 4.33
NELL-500 544.63 551.89 550.57 558.05 2.44
Yago 1.2h 1.2h 1.2h 1.2h 2.63
DBpedia 7.9h 7.8h 7.8h 7.9h 3.61

T A B L E 8 Rule mining memory (MByte) with different strategy of function I(·)

Dataset Constant Mapping by the Order of Variation (%)
Original Alphabetical Frequency Random

Fs 8.97 8.74 8.84 8.94 2.59
Fm 63.87 63.81 63.82 63.73 0.22
UMLS 1126.40 1126.42 1126.31 1126.41 0.01
CoDEx 5995.45 5987.07 5989.92 5988.35 0.14
WN 1044.21 1043.60 1044.36 1044.28 0.07
NELL-500 2354.89 2354.95 2355.73 2354.92 0.04
Yago 19.86G 19.85G 19.85G 19.86G 0.03
DBpedia 7.88G 7.88G 7.89G 7.89G 0.12

6 DISCUSSION

Most studies on logic rule mining, especially the ones under the discrete approaches, focus on optimizations from the algorithmic
and architectural perspectives rather than system implementation and data efficiency, even though the practice and experience in
other domains of data mining have shown the importance of data-oriented optimizations47,48,49,50.

Algorithm-oriented optimizations improve rule mining speed with a more efficient control flow. Architecture-oriented
optimizations improve system architectures supporting mining algorithms. In this article, we improve the space efficiency of the
underlying data structures of the discrete top-down mining of first-order Horn rules. Compared to the results of prior works in
Section 2, the speed-up of data-oriented approaches is competitive to the algorithm- and architecture-oriented ones, implying
that data-oriented optimizations are as critical as the other two methodologies to logic rule mining.

As reported in previous works, the hardware requirement when mining KBs with hundreds of thousands of predicates is
either a cluster consisting of tens of computers or dozens of threads with more than 100GB memory. AnyBURL51 extends the
bottom-up mining process to millions of tuples in large-scale knowledge graphs, but it requires 1TB memory to complete the
task. Our work reduces the amount of computational resources to a single thread with no more than 10GB memory, which is
easily met on a normal PC platform.

Although the proposed technique is effective to top-down logic rule mining, whether the data structures are applicable to
bottom-up approaches requires further explorations. Recently, differentiable mining approaches of logic rules have frequently
been studied, and most of them are by neural networks14,25,52,53. These approaches rely on GPUs due to the implementation of
low-level frameworks. To what extent data efficiency impacts the performance of such approaches and how it can be improved
should also be explored in the future.

7 CONCLUSION

In this article, we improve the data efficiency of discrete top-down logic rule mining via a compact and efficient index structure.
The index is based on mapping constants to integers and sorting the records with respect to the mapped integers. The overall
results show a 5x speed-up and a 70% total memory cost reduction. The reasons are explained in a detailed ablation study. We
also show that the approach is robust to different strategies of the constant mapping function. Most importantly, the results

16 WANG ET AL.

emphasize the importance of data efficiency in the discrete top-down mining of logic rules. In the future, we will explore the
data efficiency of differentiable rule mining methods and extend the study to multi-dimensional relations.

AUTHOR CONTRIBUTIONS
Ruoyu Wang: Conceptualization, Methodology, Software, Validation, Data Curation, Writing - Original Draft, Visualiza-
tion; Raymond Wong: Investigation, Resources, Writing - Review & Editing, Supervision, Project Administration, Funding
Acquisition; Daniel Sun: Writing - Review & Editing, Supervision, Project Administration.

ACKNOWLEDGMENTS
This research is supported by the UNSW School of Computer Science & Engineering scholarship.

FINANCIAL DISCLOSURE
None reported.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

REFERENCES
1. Chen P, Du X, Lu Z, Wu J, Hung PCK. EVFL: An explainable vertical federated learning for data-oriented Artificial Intelligence systems. J. Syst.

Archit.. 2022;126:102474. doi: 10.1016/J.SYSARC.2022.102474
2. Lajus J, Galárraga L, Suchanek FM. Fast and Exact Rule Mining with AMIE 3. In: . 12123 of Lecture Notes in Computer Science. Springer

2020:36–52
3. Park E, Wong RK, Chu VW. Story Ending Generation Using Commonsense Casual Reasoning and Graph Convolutional Networks. In: Gal K,

Nowé A, Nalepa GJ, Fairstein R, Radulescu R., eds. ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30 - October 4,
2023, Kraków, Poland - Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023). 372 of Frontiers in Artificial
Intelligence and Applications. IOS Press 2023:1843–1850

4. Cui W, Xiao Y, Wang H, Song Y, Hwang S, Wang W. KBQA: Learning Question Answering over QA Corpora and Knowledge Bases. Proc. VLDB
Endow.. 2017;10(5):565–576. doi: 10.14778/3055540.3055549

5. Li L, Zhang H, Fang Z, Xie Z, Liu J. Transductive Cross-Lingual Scene-Text Visual Question Answering. In: Luo B, Cheng L, Wu Z, Li H, Li C.,
eds. Neural Information Processing - 30th International Conference, ICONIP 2023, Changsha, China, November 20-23, 2023, Proceedings, Part
VI. 14452 of Lecture Notes in Computer Science. Springer 2023:452–467

6. Huang Q, Yuan Z, Xing Z, Zuo Z, Wang C, Xia X. 1+1>2: Programming Know-What and Know-How Knowledge Fusion, Semantic Enrichment
and Coherent Application. IEEE Trans. Serv. Comput.. 2023;16(3):1540–1554. doi: 10.1109/TSC.2022.3207273

7. Shu Y, Zhang J, Huang G, Chi C, He J. Entity alignment via graph neural networks: a component-level study. World Wide Web (WWW).
2023;26(6):4069–4092. doi: 10.1007/S11280-023-01221-8

8. Joshi AK, Hitzler P, Dong G. Logical Linked Data Compression. In: Cimiano P, Corcho Ó, Presutti V, Hollink L, Rudolph S., eds. The Semantic
Web: Semantics and Big Data, 10th International Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceedings. 7882 of Lecture
Notes in Computer Science. Springer 2013:170–184

9. Belth C, Zheng X, Vreeken J, Koutra D. What is Normal, What is Strange, and What is Missing in a Knowledge Graph: Unified Characterization
via Inductive Summarization. In: ACM / IW3C2 2020:1115–1126

10. Wang R, Sun D, Wong RK. Symbolic Minimization on Relational Data. IEEE Trans. Knowl. Data Eng.. 2023;35(9):9307–9318. doi:
10.1109/TKDE.2022.3222827

11. Wang R, Sun D, Wong RK, Ranjan R, Zomaya AY. SInC: Semantic approach and enhancement for relational data compression. Knowl. Based
Syst.. 2022;258:110001. doi: 10.1016/J.KNOSYS.2022.110001

12. Wang R, Sun D, Wong RK. RDF Knowledge Base Summarization by Inducing First-Order Horn Rules. In: Amini M, Canu S, Fischer A, Guns T,
Novak PK, Tsoumakas G., eds. Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble,
France, September 19-23, 2022, Proceedings, Part II. 13714 of Lecture Notes in Computer Science. Springer 2022:188–204

13. Sen P, Carvalho dBWSR, Riegel R, Gray AG. Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks. In: AAAI Press
2022:8212–8219

14. Yang Y, Song L. Learn to Explain Efficiently via Neural Logic Inductive Learning. In: OpenReview.net 2020.
15. Muggleton SH, Santos JCA, Tamaddoni-Nezhad A. ProGolem: A System Based on Relative Minimal Generalisation. In: Raedt LD., ed. Inductive

Logic Programming, 19th International Conference, ILP 2009, Leuven, Belgium, July 02-04, 2009. Revised Papers. 5989 of Lecture Notes in
Computer Science. Springer 2009:131–148

16. Muggleton SH, Lin D, Pahlavi N, Tamaddoni-Nezhad A. Meta-interpretive learning: application to grammatical inference. Mach. Learn..
2014;94(1):25–49. doi: 10.1007/S10994-013-5358-3

17. Nishiyama H, Ohwada H. Parallel Inductive Logic Programming System for Superlinear Speedup. In: Lachiche N, Vrain C., eds. Inductive Logic
Programming - 27th International Conference, ILP 2017, Orléans, France, September 4-6, 2017, Revised Selected Papers. 10759 of Lecture Notes
in Computer Science. Springer 2017:112–123

18. Srinivasan A, Faruquie TA, Joshi S. Data and task parallelism in ILP using MapReduce. Mach. Learn.. 2012;86(1):141–168. doi: 10.1007/S10994-
011-5245-8

19. Zeng Q, Patel JM, Page D. QuickFOIL: Scalable Inductive Logic Programming. Proc. VLDB Endow.. 2014;8(3):197–208. doi:
10.14778/2735508.2735510

20. Quinlan JR. Learning Logical Definitions from Relations. Mach. Learn.. 1990;5:239–266. doi: 10.1007/BF00117105

http://dx.doi.org/10.1016/J.SYSARC.2022.102474
http://dx.doi.org/10.14778/3055540.3055549
http://dx.doi.org/10.1109/TSC.2022.3207273
http://dx.doi.org/10.1007/S11280-023-01221-8
http://dx.doi.org/10.1109/TKDE.2022.3222827
http://dx.doi.org/10.1109/TKDE.2022.3222827
http://dx.doi.org/10.1016/J.KNOSYS.2022.110001
http://dx.doi.org/10.1007/S10994-013-5358-3
http://dx.doi.org/10.1007/S10994-011-5245-8
http://dx.doi.org/10.1007/S10994-011-5245-8
http://dx.doi.org/10.14778/2735508.2735510
http://dx.doi.org/10.14778/2735508.2735510
http://dx.doi.org/10.1007/BF00117105

SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining 17

21. Wang R, Sun D, Wong RK, Ranjan R. Horn rule discovery with batched caching and rule identifier for proficient compressor of knowledge data.
Softw. Pract. Exp.. 2023;53(3):682–703. doi: 10.1002/SPE.3165

22. Cropper A, Dumancic S, Muggleton SH. Turning 30: New Ideas in Inductive Logic Programming. In: Bessiere C. , ed. Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020ijcai.org 2020:4833–4839

23. Law M, Russo A, Broda K. Inductive Learning of Answer Set Programs. In: Fermé E, Leite J., eds. Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings. 8761 of Lecture Notes in Computer Science. Springer
2014:311–325

24. Raedt LD, Kersting K. Probabilistic Inductive Logic Programming. In: Ben-David S, Case J, Maruoka A., eds. Algorithmic Learning Theory,
15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004, Proceedings. 3244 of Lecture Notes in Computer Science. Springer
2004:19–36

25. Evans R, Grefenstette E. Learning Explanatory Rules from Noisy Data. J. Artif. Intell. Res.. 2018;61:1–64. doi: 10.1613/JAIR.5714
26. Raedt LD, Dries A, Thon I, Broeck dGV, Verbeke M. Inducing Probabilistic Relational Rules from Probabilistic Examples. In: Yang Q, Wooldridge

MJ., eds. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015AAAI Press 2015:1835–1843.

27. Kietz J. Learnability of Description Logic Programs. In: . 2583 of Lecture Notes in Computer Science. Springer 2002:117–132
28. Fanizzi N, d’Amato C, Esposito F. DL-FOIL Concept Learning in Description Logics. In: . 5194 of Lecture Notes in Computer Science. Springer

2008:107–121
29. Costa VS, Srinivasan A, Camacho R, et al. Query Transformations for Improving the Efficiency of ILP Systems. The Journal of Machine Learning

Research. 2003;4:465–491.
30. Fonseca NA, Costa VS, Silva FMA, Camacho R. On Avoiding Redundancy in Inductive Logic Programming. In: . 3194 of Lecture Notes in

Computer Science. Springer 2004:132–146
31. Bockhorst J, Ong IM. FOIL-D: Efficiently Scaling FOIL for Multi-relational Data Mining of Large Datasets. In: Camacho R, King RD, Srinivasan

A., eds. Inductive Logic Programming, 14th International Conference, ILP 2004, Porto, Portugal, September 6-8, 2004, Proceedings. 3194 of
Lecture Notes in Computer Science. Springer 2004:63–79

32. Kononenko I, Robnik-Sikonja M, Pompe U. ReliefF for estimation and discretization of attributes in classification, regression, and ILP problems.
Artificial intelligence: methodology, systems, applications. 1996:31–40.

33. Oliphant L, Shavlik JW. Using Bayesian Networks to Direct Stochastic Search in Inductive Logic Programming. In: . 4894 of Lecture Notes in
Computer Science. Springer 2007:191–199

34. Pitangui CG, Zaverucha G. Learning Theories Using Estimation Distribution Algorithms and (Reduced) Bottom Clauses. In: . 7207 of Lecture
Notes in Computer Science. Springer 2011:286–301

35. Chen Y, Wang DZ, Goldberg S. ScaLeKB: scalable learning and inference over large knowledge bases. VLDB Journal. 2016;25(6):893–918. doi:
10.1007/S00778-016-0444-3

36. Yin X, Han J, Yang J, Yu PS. Efficient Classification across Multiple Database Relations: A CrossMine Approach. IEEE Trans. Knowl. Data Eng..
2006;18(6):770–783. doi: 10.1109/TKDE.2006.94

37. Safavi T, Koutra D. CoDEx: A Comprehensive Knowledge Graph Completion Benchmark. In: Webber B, Cohn T, He Y, Liu Y., eds. Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020Association for
Computational Linguistics 2020:8328–8350

38. Tanon TP, Weikum G, Suchanek FM. YAGO 4: A Reason-able Knowledge Base. In: . 12123 of Lecture Notes in Computer Science. Springer
2020:583–596

39. Lehmann J, Isele R, Jakob M, et al. DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web. 2015;6(2):167–
195. doi: 10.3233/SW-140134

40. Singh SK, Kumar S, Mehra PS. Chat GPT & Google Bard AI: A Review. In: 2023:1-6
41. Wei J, Bosma M, Zhao VY, et al. Finetuned Language Models are Zero-Shot Learners. In: OpenReview.net 2022.
42. Touvron H, Lavril T, Izacard G, et al. LLaMA: Open and Efficient Foundation Language Models. CoRR. 2023;abs/2302.13971. doi:

10.48550/ARXIV.2302.13971
43. Kandpal N, Deng H, Roberts A, Wallace E, Raffel C. Large Language Models Struggle to Learn Long-Tail Knowledge. In: Krause A, Brunskill E,

Cho K, Engelhardt B, Sabato S, Scarlett J., eds. International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA. 202 of Proceedings of Machine Learning Research. PMLR 2023:15696–15707.

44. Deng C, Zhang T, He Z, et al. K2: A Foundation Language Model for Geoscience Knowledge Understanding and Utilization. In: WSDM ’24.
Association for Computing Machinery 2024; New York, NY, USA:161–170

45. Bang Y, Cahyawijaya S, Lee N, et al. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity.
CoRR. 2023;abs/2302.04023. doi: 10.48550/arXiv.2302.04023

46. Luo L, Ju J, Xiong B, Li Y, Haffari G, Pan S. ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning.
CoRR. 2023;abs/2309.01538. doi: 10.48550/ARXIV.2309.01538

47. Manegold S, Boncz PA, Kersten ML. Optimizing Main-Memory Join on Modern Hardware. IEEE Trans. Knowl. Data Eng.. 2002;14(4):709–730.
doi: 10.1109/TKDE.2002.1019210

48. Peng H, Yang R, Wang Z, et al. Lime: Low-Cost and Incremental Learning for Dynamic Heterogeneous Information Networks. IEEE Trans.
Computers. 2022;71(3):628–642. doi: 10.1109/TC.2021.3057082

49. Amato D, Bosco GL, Giancarlo R. Standard versus uniform binary search and their variants in learned static indexing: The case of the searching on
sorted data benchmarking software platform. Softw. Pract. Exp.. 2023;53(2):318–346. doi: 10.1002/SPE.3150

50. Krishnaraj N, Elhoseny M, Lydia EL, Shankar K, Aldabbas O. An efficient radix trie-based semantic visual indexing model for large-scale image
retrieval in cloud environment. Softw. Pract. Exp.. 2021;51(3):489–502. doi: 10.1002/SPE.2834

51. Meilicke C, Chekol MW, Betz P, Fink M, Stuckenschmidt H. Anytime bottom-up rule learning for large-scale knowledge graph completion. VLDB
J.. 2024;33(1):131–161. doi: 10.1007/S00778-023-00800-5

52. Cheng K, Ahmed NK, Sun Y. Neural Compositional Rule Learning for Knowledge Graph Reasoning. In: OpenReview.net 2023.
53. Xu Z, Ye P, Chen H, Zhao M, Chen H, Zhang W. Ruleformer: Context-aware Rule Mining over Knowledge Graph. In: Calzolari N, Huang C,

Kim H, et al., eds. Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea,

http://dx.doi.org/10.1002/SPE.3165
http://dx.doi.org/10.1613/JAIR.5714
http://dx.doi.org/10.1007/S00778-016-0444-3
http://dx.doi.org/10.1007/S00778-016-0444-3
http://dx.doi.org/10.1109/TKDE.2006.94
http://dx.doi.org/10.3233/SW-140134
http://dx.doi.org/10.48550/ARXIV.2302.13971
http://dx.doi.org/10.48550/ARXIV.2302.13971
http://dx.doi.org/10.48550/arXiv.2302.04023
http://dx.doi.org/10.48550/ARXIV.2309.01538
http://dx.doi.org/10.1109/TKDE.2002.1019210
http://dx.doi.org/10.1109/TC.2021.3057082
http://dx.doi.org/10.1002/SPE.3150
http://dx.doi.org/10.1002/SPE.2834
http://dx.doi.org/10.1007/S00778-023-00800-5

18 WANG ET AL.

October 12-17, 2022International Committee on Computational Linguistics 2022:2551–2560.

	SIB: Sorted-integers-based Index for Compact and Fast Caching in Top-down Logic Rule Mining
	Abstract
	Introduction
	Related Work
	Logic Rule Mining
	Optimizations for Top-down Logic Rule Mining

	Preliminaries
	Sorted-integer-based Index
	Caching in Logic Rule Mining
	Sorted-integer-based Index Structure
	Index Update Operations for Logic Rule Mining

	Evaluation
	Experimental Settings
	SIB Index vs State-of-the-art
	Ablation Study
	Robustness to Integer Mappings

	Discussion
	Conclusion
	Author contributions
	Acknowledgments
	Financial disclosure
	Conflict of interest
	REFERENCES

