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Abstract

Teleost fishes are a highly diverse and ecologically essential group of aquatic vertebrates and include coho salmon, Onchorhynchus
kisutch. Coho are semelparous and all ovarian follicles develop synchronously. Owing to their ubiquitous distribution, teleost
provide critical sources of food worldwide through subsistence, commercial fisheries, and aquaculture. Enhancement of com-
mercial hatchery practices requires a detailed knowledge of teleost reproductive physiology. Despite decades of research on
teleost reproductive processes, an in-depth proteome of teleost ovarian development has yet to be generated. We describe
a coho salmon ovarian proteome of over 5700 proteins, generated with data independent acquisition, revealing the suite of
detectable proteins that change through the transition from primary to secondary ovarian follicle development. This transition
is critical for puberty onset, egg quality, and further embryonic development. Primary ovarian follicle development was marked
by differential abundances of proteins involved in carbohydrate metabolism, protein turnover, and the complement pathway,
suggesting elevated metabolism as the oocytes enter maturation. The greatest proteomic shift occurred during the transition
from primary to secondary follicle growth, with increased abundance of proteins underlying cortical alveoli formation, extracel-
lular matrix reorganization, iron binding, and cell-cell signaling. This work provides a foundation for identifying biomarkers of

salmon oocyte stage and quality.
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