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Abstract

The study introduces a computational method that combines Legendre polynomials with Gauss-Lobatto points to solve nonlinear

coupled differential equations, focusing on the Williamson fluid model with the existence of mixed convection and permeability

under mixed boundary conditions. The nonlinear governing equations were transformed to ordinary differential equation (ODE)

from partial differential equation (PDE), applying the appropriate similarity conversions. By using Legendre polynomials as

trial functions and collocating residual equations with Gauss-Lobatto points, the system is solved with Mathematical software.

The technique was validated by comparing the obtained solution with an existing literature and further validation was done

with Runge-Kutta of order 4 via shooting method. Validation against the Shooting Runge-Kutta method showed minimal

discrepancies, confirming the method’s accuracy. Graphical analysis indicated that an increase in the Grashof number enhances

velocity, while higher porosity raises temperature but reduces fluid velocity. This approach offers an efficient and precise solution

for complex nonlinear equations, with broader potential applications in fluid dynamics.
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1 INTRODUCTION

In fluid dynamics, Non-Newtonian fluids are characterized by flow behavior that differs from
Newtonian fluids, as their viscosity is not fixed and varies with the application of external forces
like shear stress. While Newtonian fluids, such as water and air, maintain a constant viscosity
regardless of the stress applied, non-Newtonian fluids display a range of behaviors that depend
on the specific conditions under which they are subjected, One particular form of Non-Newtonian
fluid is the Williamson fluids, which are of special interest due to their distinctive properties. Un-
like typical Newtonian fluids, Williamson fluids exhibit shear-thinning behavior, meaning their
viscosity decreases with increasing flow velocity according to Sarkar et al.[1]. This characteristic is
particularly important in systems involving complex materials such as blood, polymers, and vari-
ous industrial substances. Alwawi et al.[2] noted that the practical applications of the Williamson
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fluid model extend beyond theoretical considerations, impacting industries like polymer manufac-
turing, food processing, and medical science, where a deep understanding of blood flow dynamics
is critical. There is increasing interest in studying the thermal and mass transfer properties of
Williamson fluids. Kebede et al.[3] explored these aspects in the context of unsteady boundary
layer flows of Williamson nanofluids, highlighting the need for models that capture the distinct
features of these fluids. This is consistent with the earlier work of Nadeem et al.[4], who focused
on the flow of Williamson fluids over stretching sheets, setting a foundation for future studies
using semi-analytical approaches. Trisaksri and Wongwises [5] conducted a critical evaluation
of the heat transfer characteristics of nanofluids. Similarly, Bachok et al. [6] investigated the
steady boundary-layer flow of a nanofluid in a uniform free stream over a moving, semi-infinite
flat plate.

Recent research has also incorporated various physical effects into Williamson fluid models.
Anagandula and Reddy[7] investigate the impact of velocity and thermal slips on Williamson fluid
flow over a stretching sheet, accounting for an inclined magnetic field and radiation. Alharbi [8]
investigated the influence of thermophoresis and magnetohydrodynamic effects on the behavior
of Williamson fluids, emphasizing the complexity of practical applications. Addressing this com-
plexity often requires advanced mathematical techniques, such as those employed by Ahmed et
al.[9], who used similarity transformations to simplify nonlinear partial differential equations into
ordinary differential equations, making them more amenable to semi-analytical solutions.

The influence of magnetic fields on the flow of Williamson fluids has been a subject of exten-
sive research. Megahed [10] examined the magnetohydrodynamic (MHD) behavior of Williamson
fluid over a continuously moving surface, highlighting the significance of viscous dissipation and
slip velocity. This study illustrates how the presence of magnetic fields can modify the flow
characteristics and thermal properties of non-Newtonian fluids. Similarly, Abbas et al.[11] inves-
tigated MHD flow and heat transfer of Williamson nanofluids past a nonlinear stretching sheet,
showing that magnetic fields can enhance heat transfer through mechanisms like induced con-
vection and viscous dissipation. Furthermore, Bibi et al. [12] reported substantial alterations in
both the velocity profile and temperature distribution within the fluid due to the influence of
magnetic fields. Srinivasulu and Goud [13] also investigated the effects of an inclined magnetic
field on the flow, heat transfer, and transport phenomena of a Williamson nanofluid passing over
a stretching sheet.

Thermal effects, particularly those related to thermal radiation, are crucial in the dynam-
ics of Williamson fluids. Reddy et al.[14] studied the irreversibility of radiative heat transport
in Williamson materials, revealing that thermal radiation can have a significant impact on heat
transfer and flow behavior. This notion is further supported by Hayat et al.[15], who explored the
combined effects of thermal radiation and viscous dissipation in the flow of Williamson fluids over
an unsteady stretching surface. Their research indicated that thermal radiation can enhance the
temperature field, consequently improving overall heat transfer efficiency. The interplay between
thermal and velocity effects in Williamson fluids is also vital. Akolade et al.[16] addressed the
influences of thermophoresis and heat sources on Williamson fluid flow, stressing the importance
of temperature-dependent properties in their analysis. Their findings demonstrate how variations
in temperature can lead to changes in viscosity and thermal conductivity, subsequently affecting
flow dynamics and heat transfer rates. Additionally, Choudhari [17] stated that, in mixed con-
vection scenarios where both natural and forced convection are present, complex flow patterns
and enhanced heat transfer performance can arise.

Semi-analytical methods have garnered considerable attention in fluid dynamics, particu-
larly for the analysis of Williamson fluids. These methods are valued for their ability to handle
complex boundary conditions and the nonlinearities inherent in non-Newtonian fluid behavior.
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Recent research highlights the effectiveness of semi-analytical approaches in solving the nonlinear
differential equations governing Williamson fluids. Araujo et al.[18] introduced a semi-analytical
technique for fluid flows, demonstrating its superiority over traditional numerical methods. How-
ever, their focus on the linear Phan-Thien-Tanner fluid model may limit the applicability of their
findings to Williamson fluids. Similarly, Karabut et al. [19] found that combining semi-analytical
methods with techniques such as Padé approximants can enhance accuracy compared to purely
numerical approaches, although they also noted challenges related to complexity and reliabil-
ity. Additionally, recent developments in semi-analytical techniques, especially the Differential
Transform Method (DTM) and Adomian Decomposition Method (ADM), have greatly advanced
the study of non-linear differential equations. These approaches not only simplify the process
of deriving analytical solutions but also deepen the comprehension of complex systems across
numerous scientific fields. Current research in this domain continues to investigate novel combi-
nations of these techniques, broadening the range of tools available to both mathematicians and
engineers. (see ref. 20-29)

Kelil and Appadu [30] examined the connection between semi-classical orthogonal polynomials
and modified weight functions, highlighting how perturbations in orthogonality measures can lead
to novel mathematical insights. Their work underscores the importance of integrating orthogonal
polynomials, such as Legendre polynomials, to enhance the accuracy of semi-analytical methods.
Additionally, the Gauss-Lobatto collocation technique, a key tool for discretizing differential
equations, has proven effective in solving boundary value problems, with successful applications
in studies involving nanofluids and magnetohydrodynamic (MHD) flows.

This study indicates that semi-analytical methods, particularly when combined with poly-
nomial basis functions like Legendre polynomials and Gauss-Lobatto collocation points, offer
significant potential for enhancing the accuracy and efficiency of solutions. By integrating these
techniques, researchers can develop more comprehensive models that effectively capture the com-
plex behaviors of Williamson fluids across diverse practical scenarios.

2 FORMULATIONS OF THE MODEL

In this research, we explore the steady, two-dimensional, laminar flow of a Williamson fluid
between two parallel, permeable porous walls. The governing equations for the fluid dynamics
are derived by building on the foundational work of Anagandula and Reddy [7]. Specifically,
the momentum equation is modified to include the effects of mixed convection, allowing for the
influence of both temperature and concentration gradients on the flow. The energy equation is
further modified to incorporate the influence of permeability within the porous medium, capturing
the heat transfer characteristics of the system. Moreover, the concentration equation is adapted
from the work of Alao et al. [34], reflecting the diffusion and reaction phenomena within the flow.
This comprehensive model integrates the complexities of fluid mechanics, heat transfer, and mass
diffusion to describe the attribute of non-Newtonian Williamson fluid flow under the influence of
various forces and physical factors. Fig. 1 shows the flow model for the problem by Anagandula
and Reddy[7]
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Fig. 1 Flow geometry
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Q0(T − T∞) +
ν

ρCpK∗u
2, (Energy Equation) (3)

u
∂C

∂x
= −v

∂C

∂y
+D

∂2C

∂2y
−Kn(C − C∞), (Concentration Equation) (4)

The associated boundary conditions with the governing equations (1) to (4) given in the work of
Anagandula and Reddy [7] as:

uw = u = ax+A∗∂u

∂y
, v = vw, T = Tf +B∗∂T

∂y
, C = Cf +X∗∂C

∂y
as y → 0,

u = 0, T = T∞, C = C∞as y → ∞

 (5)

Similarity variables is given as follows:

η = y

√
a

ν
, u = axf ′(η), v = −

√
aνf(η),

θ̄(η) =
T − T∞
Tw − T∞

, ϕ̄(η) =
C − C∞
Cw − C∞

.

 (6)

By using equation (6), the formulated equations (2)-(5) are now reduced to dimensionless form:

(1 + λf̄ ′′)f̄ ′′′ + f̄ f̄ ′′ − (f̄ ′)2 − (Msin2(α) +Kp)f̄
′ +Grθ +Gmϕ̄ = 0, (7)

θ̄′′ +
Pr

(1 +R)

[
f̄ θ̄′ + Ec

(
(f̄ ′′)2 +We(f̄ ′′)3 +Mf̄ ′2 +Kpf̄

′2
)
+Qθ̄

]
= 0, (8)

ϕ̄′′ + Le
(
f̄ ϕ̄′ −Knϕ

)
= 0. (9)
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Upon transformtion, the boundary conditions are given as:

f̄(η) = f̄w, f̄
′(η) = 1 +Af̄ ′′(0), θ̄(0) = 1 + δθ̄′(0), ϕ̄(0) = 1 + βϕ̄′(0) as η → 0

f̄ ′(η) → 0, θ̄(η) → 0, ϕ̄(η) → 0, as η → ∞

}
(10)

where, M =
σB2

0
ρfa

Magnetic term, λ =
√

2a
ν axΓ Williamson factor, R = 16σT 3

∞
3kk∗ Radiative

term, We = xΓ
√

2a3

ν Weinnesberg parameter, Pr = k
ρCpf

Prandtl number, Ec = u2
w

Cp(Tf−T∞)

Eckert number, Le = ν
Da

Schmidt number, f̄w = vw√
aν

Suction/Injection constraint, A = A∗√a
ν

Velocity Slip, δ = B∗√a
ν Thermal slip, β = X∗√a

ν Mass Slip Gr = agβt(Tw−T∞)
Uw

Grasshof

number, Gm = agβc(Cw−C∞)
Uw

Modified Grasshof number,Kp = ν
ak∗ Permeability factor, Q = Qo

ρCp

Heat Source
The local skin friction Cfx using (6) is given as:

Cfx =
τw
ρu2w

=

(
1 +

λ

2
f ′′(0)

)
f ′′(0), (11)

where the shear stress is defined as:

τw =

[
∂u

∂y
+

Γ√
2

(
∂u

∂y

)2]
y=0

, and the thermal flux qw(x) = −k

(
∂T

∂y

)
y=0

. (12)

From the similarity variables in (6), solving for the Nusselt number, Nux = xqw
k(T−Tw)

Nux = −(1 +R)θ′(0) (13)

3 NUMERICAL APPROACH

The analytical approach employed to solve equations (7) - (9) is the Legendre polynomial in
conjunction with shifted Gauss-Lobatto points as collocation points. This technique utilizes
interpolation over discrete sub-intervals, selecting a trial function, typically in the form of an
exponential or polynomial, to approximate the solution of a differential equation within the
integral range a ≤ x ≤ b. This trial function is then used to determine the coefficients by solving
a system of equations at selected nodes. The functions f̄ , θ̄, and ϕ̄ are used as trial functions in
this process as follows:

f̄ = LegendreP
n∑

k=0

ak

(
2η

η∞
− 1

)
(14)

θ̄ = LegendreP

n∑
k=0

bk

(
2η

η∞
− 1

)
(15)

ϕ̄ = LegendreP

n∑
k=0

ck

(
2η

η∞
− 1

)
(16)

In this approach, ak, bk, and ck, where k = 0, 1, 2, . . . , n, represent the unknown coefficients
to be determined, with n denoting the point of convergence of the solution. The transformed
boundary conditions (10) are applied to the base functions (14)-(16) to form a system of algebraic
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equations. The residuals, f̄res, θ̄res, and ϕ̄res, are then formulated by substituting (14)-(16) into
(7)-(9) and collocating at Gauss-Lobatto nodes. These coefficients [ak, bk, ck | k = 0, 1, . . . , n] are
expressed as polynomials that minimize the residual error. Using the Mathematica software 11.0,
the unknowns are substituted into the trial functions (14)-(16), transforming equations (7)-(9)
into:

f̄(η) = 0.646963+0.139541(−2+η)−0.0228544(8−12η+3η2)+0.00418138(−16+48η−30η2)−
0.00012927(128− 640η + 720η2 − 280η3 + 35η4) + ...+

1.48034× 10−21(274877906944− 28862180229120η + 7540244585760η2 − 8671281272586240η3+

55279418112737280η4−221117672450949120η5+59886036288798700η6−115494498556968960η7+

598860362887987200η8−1763830912568524800η9+ ...+25519280463600η18+137846528820019+

34461632205η20) (17)

θ̄(η) = 0.115522−0.136023(−2+η)+0.0347857(8−12η+3η2)−0.0113605(−16+48η−30η2+5η3)+

0.000572607(128− 640η + 720η2 − 280η3 + 35η4) + ...+

5.90009×10−19(274877906944−28862180229120η+754024458485760η2−8671281281272586240η3+

55279418112737280η4−2221117672450949120η5+59886036288798700η6−115494498556968960η7+

598860362887987200η8−1763830912568524800η9+ ...+25519280463600η18+137846528820019+

34461632205η20) (18)

ϕ̄(η) = 0.192086−0.17183(−2+η)+0.0268998(8−12η+3η2)−0.00490243(−16+48η−30η2+5η3)+

0.000121942(128− 640η + 720η2 − 280η3 + 35η4) + ...+

1.16334×10−22(274877906944−28862180229120η+754024458485760η2−8671281281272586240η3+

55279418112737280η4−2221117672450949120η5+59886036288798700η6−115494498556968960η7+

598860362887987200η8−1763830912568524800η9+ ...+25519280463600η18+137846528820019+

34461632205η20) (19)

The procedures are iterated for varying the values of thermo-physical parameters. With
Pr = 7, Ec = 0.2, We = 3, Q = 0.2, λ = 0.2, δ = 0.1, R = 0.2, Table 1 and Table 2 demonstrates
the accuracy of Legendre collocation method compared to the existing findings.

Table 1:Comparing the values of Nusselt number, −θ′(0) with previous results
when λ = R = Ec = M = Kp = α = fw = A = Q = δ = 0

Pr Wang [31] Gorla and
Sidawi[32]

Khan and
Pop[33]

Anagandula
and
Reddy[7]

Present
Study

0.7 0.4539 0.4539 0.4539 0.4539 0.4544
2 0.9114 0.9114 0.9113 0.9113 0.9114
7 1.8954 1.8954 1.8954 1.8954 1.8954
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Table 2: The quantities of Nux(Rex)
−1/2 = −(1 +R)θ′(0), Nusset number with various

values of M , fw, Kp, A, and α and Gr = Gm = Le = Kn = 0
M fw Kp A α Anagandula

and
Reddy[7]

Present
Study

1 0.1 0.1 0.1 π/6 1.909836 1.909831
2 0.1 0.1 0.1 π/6 1.736706 1.736705
3 0.1 0.1 0.1 π/6 1.602261 1.602256
1 0.3 0.1 0.1 π/6 2.832506 2.832502
1 0.5 0.1 0.1 π/6 3.692629 3.692624
1 0.1 0.3 0.1 π/6 2.014749 2.014745
1 0.1 0.5 0.1 π/6 2.118347 2.118363
1 0.1 0.1 0.3 π/6 1.481884 1.481878
1 0.1 0.1 0.5 π/6 1.268373 1.268369

Table 3: Comparing Outputs of Skin Friction
(
1 + λ

2f
′′(0)

)
f ′′(0) with varying Gr, M ,

fw, and Kp; other values are R = 0.2, Kn = 0.5, Le = 1, β = 0.2, α = π
6 , A = 0.5 using

Shooting Runge-Kutta Method (SRK) and Legendre Collocation Method (LCM)
Gr Gm M fw Kp SRK LCM

0.5 0.1 1.0 0.1 0.1 -0.620668 -0.622017
1.0 0.1 1.0 0.1 0.1 -0.524751 -0.526129
1.5 0.1 1.0 0.1 0.1 -0.438566 -0.440006
0.5 0.5 1.0 0.1 0.1 -0.517852 -0.519804
0.5 1.0 1.0 0.1 0.1 -0.403309 -0.405426
0.5 0.1 2.0 0.1 0.1 -0.666787 -0.667241
0.5 0.1 3.0 0.1 0.1 -0.708830 -0.709621
0.5 0.1 1.0 0.3 0.1 -0.702310 -0.705824
0.5 0.1 1.0 0.5 0.1 -0.777817 -0.779436
0.5 0.1 1.0 0.1 0.3 -0.664450 -0.666721
0.5 0.1 1.0 0.1 0.5 -0.704115 -0.705812

Table 4: Comparing Outputs of Nusselt Number (1 +R)θ′(0) varying Kp, Pr, Ec,
We, and R; other values remain the same using Shooting Runge-Kutta Method

(SRK) and Legendre Collocation Method (LCM)
Kp Pr Ec We R SRK LCM

0.5 3 0.2 3 0.2 -0.618327 -0.618425
1.0 3 0.2 3 0.2 -0.502557 -0.502621
1.5 3 0.2 3 0.2 -0.391398 -0.391543
0.5 5 0.2 3 0.2 -0.923485 -0.923643
0.5 7 0.2 3 0.2 -1.181955 -1.182359
0.5 3 0.4 3 0.2 -0.446266 -0.446514
0.5 3 0.6 3 0.2 -0.256102 -0.256372
0.5 3 0.2 4 0.2 -0.664453 -0.664684
0.5 3 0.2 5 0.2 -0.711120 -0.711352
0.5 3 0.2 3 0.3 -0.627211 -0.627413
0.5 3 0.2 3 0.4 -0.635129 -0.635482
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Fig. 2: Effect of varying Gr on f ′(η) . Fig. 3: Effect of varying Gm on f ′(η).

Fig. 4: Influence of varying M on f ′(η). Fig. 5: Influence of varying M on θ(η).
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Fig. 6: Impact of varying Kp on f ′(η). Fig. 7: Impact of varying Kp on θ(η).

Fig. 8: Influence of R against θ(η). Fig. 9: Influence of Pr against θ(η).
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Fig. 10: Effect of varying Ec on θ(η). Fig. 11: Effect of varying We on θ(η).

Fig. 12: Kn against ϕ(η). Fig. 13: Le against ϕ(η).

4 DISCUSSION OF RESULTS

This study effectively derived approximate solutions for the non-linear modified coupled system
of equations (7)-(9) by applying the Legendre collocation method and utilizing the fourth-order
Runge-Kutta technique with the shooting method as a control method. The impact of the physical
parameters on velocity, temperature, and concentration distributions is illustrated through the
results, which are presented in Tables 3 and 4 and Figures 2-13.

Tables 3 and 4 illustrate the computed values for skin friction and the Nusselt number respec-
tively. The tables compare the results obtained using the shooting method with the Runge-Kutta
approach against the present study, further demonstrating the credibility and effectiveness of the
proposed method.

The graphs correspond to the solutions of (7)-(9), which are subject to the boundary con-
ditions given in (10), Figure 2 illustrates how changes in the Grashof number (Gr) impact the
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velocity profile. As the Grashof number increases, it indicates that buoyancy forces within the
fluid are becoming stronger compared to the resisting viscous forces. This increase in buoyancy
leads to more active fluid movement, resulting in a faster flow. With higher Grashof numbers,
heat convection plays a more significant role, contributing to greater circulation and mixing,
which in turn raises the velocity.

Similarly, Figure 3 presents the effects of the modified Grashof number (Gm) on the velocity
profile. As Gm increases, buoyancy starts to dominate over viscosity, encouraging more fluid
circulation and leading to a noticeable rise in velocity.

Figures 4 and 5, shows the effect of magnetic factor (M) on velocity and temperature profiles
respectively. It is noticeable that as M increases, there is a corresponding increase in temperature,
in contrast, the influence of the magnetic field on velocity suppresses the movement of the fluid,
This is because the magnetic field introduces a resistive effect, usually described as the Lorentz
force, a drag force, similar to friction, that opposes the movement of the fluid particles.

Figures 6 and 7 demonstrate the variance in velocity and temperature profiles, in relation to
the porosity term Kp. It is evident that as the porosity factor rises, an associated increase is
seen in temperature, while velocity decreases. This indicates that higher porosity enhances heat
retention within the medium but reduces fluid flow due to the greater resistance to movement
through the porous structure.

The increase in the radiation factor shown in Figure 8 corresponds to a decrease in the
temperature profile. This suggests that as radiation increases, it effectively enhances heat loss
from the fluid, leading to lower temperatures within the system.

Figure 9 illustrates the manner with which the Prandtl number (Pr) influences the temper-
ature profile of the fluid. As the Prandtl number goes up, the fluid’s ability to conduct heat
decreases. This means that heat doesn’t spread through the fluid as quickly, causing it to take
longer to penetrate and distribute evenly. As a result, there is steeper temperature differences
near the heated surface, highlighting how the fluid’s thermal behavior changes with varying
Prandtl numbers.

Figure 10 demonstrates the impact of the Eckert number on the thermal distribution. It
is observed that an increase in the viscous dissipation parameter (Ec) results in a rise in the
temperature profile. This occurs because the frictional heating generated by fluid motion causes
heat energy to be retained within the liquid, thus increasing its temperature.

The outcome of a rise in the Weinnesberg parameter in figure 11, depicts a noticeable reduc-
tion in the temperature profile, implying that with a rise in the parameter, the fluid’s viscosity
decreases under shear stress. Similarly, Figure 12 highlights the impact of the chemical reaction
term (Kn) on the concentration profile. As the chemical reaction term increases, the concen-
tration decreases. This happens because the reaction reduces the thickness of the concentration
boundary layer, making it harder for mass to accumulate, thus lowering the concentration.

Figure 13 demonstrates how the Schmidt parameter (Le) impacts the concentration profile.
As the Schmidt number increases, the ability of the fluid to diffuse mass decreases, which in turn
reduces the overall mass transfer and lowers the concentration in the fluid.

5 CONCLUSION

This research focused on applying Legendre polynomials and Gauss-Lobatto points to solve dif-
ferential equations arising from the Williamson fluid model under mixed boundary conditions.
The study involved formulating an appropriate model to examine the effects of mixed convec-
tion, porosity, and concentration. By using similarity variables, the independent variables were
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reduced from partial differential equations (PDEs) to ordinary differential equations (ODEs), and
numerical methods were employed to analyze the behavior of various thermophysical parameters.
The results were compared with the existing work using the Shooting RK-4 method as a con-
trol and the Legendre collocation method for verification. The findings showed consistency with
established literature Anagandula and Reddy [7]. It was observed that:

� As the Grashof number increased, the velocity profile enhanced.

� An increase in porosity led to a rise in temperature, while the velocity decreased. This
suggests that higher porosity improves heat retention in the medium but reduces fluid flow
due to increased resistance through the porous structure.

� An increase in the magnetic parameter results in higher skin friction values at the lower
wall, while the upper wall exhibits a decrease in skin friction.

� An increase in the radiation parameter R and the Eckert number Ec leads to a rise in
temperature.

This study successfully developed a mathematical model to analyze the combined effects of key
parameters such as the Grashof number, modified Grashof number, porosity, Schmidt number,
and chemical reactions on the behavior of Williamson fluid dynamics. By employing a novel
computational approach using Legendre polynomials as basis functions, an innovative solution to
the nonlinear Williamson fluid model was achieved. The results of this research provide valuable
insights into the impact of these parameters on fluid flow. It is recommended that future studies
consider incorporating nanoparticles into the model to enhance thermal energy transfer, offering
further optimization of fluid flow dynamics and a deeper understanding of the thermal properties
involved in Williamson fluids.
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