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Abstract

Based on Fourier series, we adapt an approach discussed in a recent work on the Laplace operator to classical results obtained

in the literature, describing the singularities of solutions to a fourth-order elliptic problem on a polygonal domain of the plane

that may appear near a concave corner. We demonstrate how the Fourier series method provides explicit decomposition and

precise description of the coefficients of singularities of the solution. As a main result, explicit and sharp estimates with respect

to the opening angle parameter can be obtained via this method. We recall that such estimates can be useful for the asymptotic

analysis of solutions near corners where the opening angle generates a jump in singularity in Sobolev’s exponent.
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Abstract
Based on Fourier series, we adapt an approach discussed in a recent work on the Laplace operator to classical
results obtained in the literature, describing the singularities of solutions to a fourth-order elliptic problem
on a polygonal domain of the plane that may appear near a concave corner. We demonstrate how the Fourier
series method provides explicit decomposition and precise description of the coefficients of singularities
of the solution. As a main result, explicit and sharp estimates with respect to the opening angle parameter
can be obtained via this method. We recall that such estimates can be useful for the asymptotic analysis of
solutions near corners where the opening angle generates a jump in singularity in Sobolev’s exponent.
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1 INTRODUCTION

The bi-harmonic equation is a fourth order elliptic partial differential equation which has diverse applications across various fields
such as structural engineering, fluid dynamics, biomathematics, geophysics, and electromagnetic modeling. The behavior of
solutions to elliptic problems on polygons, particularly near corners, began in the 1960s. In engineering and applied mathematics,
there is significant interest in analyzing singular solutions to partial differential equations in non-smooth domains. When
approximating solutions to elliptic problems in a regular open set, the order of the approximation error depends on the finite
elements, the mesh used, and the regularity of the solutions. This regularity becomes a challenge when the open set has
singularities or the boundary data are discontinuous. Specifically, for planar polygons, the solution’s regularity is influenced
by both the data’s regularity and the polygon’s geometry. It is well-known that such singularities can significantly reduce
convergence in error estimates of standard numerical approximation schemes. For example, some authors discus techniques
for computing the singular part or stress intensity factor (SIF) through explicit extraction formulas and numerical methods
separately, cf.1,2,3 and the references therein. Our main aim in this paper was motivated by a slightly similar drawback which is
the jump of singularity in Sobolev’s exponent in such problems near a critical angle such as π (for nearly flat boundaries) or
2π (for domains with a crack). For example, one could ask the following question: Can we approach a nearly flat boundary
by another completely flat one? The answer to such a question will depend on the convexity of the domain near the corner in
question. Elements of answers to this question have already been described by4,5,6 in the case of the bi-harmonic problem on a
convex domain and recently7 for the laplacian operator on a family of non-convex open sectors.

We consider a model case of Fourth order equation from linear elasticity, in planar polygonal domains with concave corner
type singularities. This occurs for example in the linear model problem for a hinged plate where mixed or Navier’s type boundary
conditions are used on straight boundaries and away from the corners. Well-posedeness of such problems and description of their
singularities near corners with different boundary conditions were addressed, whether in the harmonic or bi-harmonic case, by
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many authors in the literature, cf., Grisvard8,9,10, Kondrat’ev11, Blum12, Maz’ya13,14,15, Nicaise16,17, Dauge18,19, Stylianou20,
Gerasimov21, Tami4,5,6, Douah7 and the references therein. To study the behavior of solutions near a polygon’s corner, standard
localization techniques involving suitable cut-off functions and partition of unity are commonly used, cf.4 and the references
therein. Thus, the problem turns out to consider a family of open planar non-convex sectors with opening angle ω ∈ (π, 2π). We
aim at studying by means of partial Fourier analysis in polar coordinates, cf.22,7 and references therein, w.r.t to the polar angle θ,
the asymptotic behavior of solutions, when ω → π+, by deriving explicit formulas for the coefficients of the singularities (or
SIF), along with explicit estimates that show the behavior (in H4 norm) of the family of solutions uω near the critical angle ω = π.
As in the case of a recent work on the Laplace’s operator7, a main result of our approach is the lack of uniformity in the estimates
with respect to the opening angle parameter ω, contrarily to those obtained for convex corners, cf.4,5. To the knowledge of the
authors, no such study was performed on a family of non-convex open sets, that is, when ω ∈ (π, 2π), for bi-harmonic problems.

Throughout this paper, a same generic constant C > 0 independent of ω in all estimates that follow will be used at different
occurrences. In Section 2, we present the problem setting and the main result, along with a partial proof of H2 uniform estimates
w.r.t the opening angle ω ∈ (π, 2π) of the family of weak solutions uω for our problem. The proof of H4 estimates will be
justified progressively in the sections that follow. In addition, some preliminaries, such as Sobolev’s spaces in polar coordinates,
Sobolev’s norms expressed via Fourier coefficients, and some fundamental tools useful for estimating Fourier coefficients are
presented. In Section 3, formal determination of corner singularity via Fourier series is presented. Fourier coefficients of the
regular part of the solution and the coefficient of singularity are given explicitly. Explicit and sharp estimates are given w.r.t to
ω ∈ (π, 4π/3). These estimates are not uniform in the vicinity of π, even for the regular part taken separately in the case of the
first frequency k = 1 in the Fourier series. Section 4 is devoted to the completion of the proof of the main result, in particular the
characterization of the coefficient of singularity and the estimates on of the regular part in the norm H4. Concluding remarks and
comments are presented in the last section.

2 PROBLEM SETTING AND MAIN RESULTS

Let us denote by {Ωω}ω∈(π,2π) a family of open bounded sectors of radius 1 centered all at the origin O (here O represents the
reentering corner where the localization has been performed). In polar coordinates (x, y) = (r cos θ, r sin θ), one has , cf. Figure 1,

Ωω = {(x, y), 0 < r < 1, 0 < θ < ω},

with boundary ∂Ωω = Γ0 ∪ Cω ∪ Γω where

Γα = {(x, y), 0 < r < 1, θ = α},

Cω = {(x, y), r = 1, 0 < θ < ω}.

For a right hand side (r.h.s) fω ∈ L2(Ωω) given and assumed continuously depending on the parameter ω ∈ (π, 2π), we look for
solutions uω to the following fourth order boundary value problem:{

∆2uω = fω in Ωω ,

uω = ∆uω = 0 on ∂Ωω .
(1)

2.1 Existence of weak solution and a uniform estimates

Let Ωω a planar sector with concave corner at the origin as described in Figure 1, and fω ∈ L2(Ωω). Let Vω := H2(Ωω) ∩ H1
0(Ωω)

the Hilbert space equipped with the norm of H2(Ωω).

Definition 1. A function uω is called a weak solution of (1) if uω ∈ Vω , and if∫
Ωω

(∆uω∆v – fωv)dxdy = 0, ∀v ∈ Vω . (2)
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F I G U R E 1 Planar sector Ωω with concave corner at the origin: opening angle ω ∈ (π, 2π).

Theorem 1. Problem (1) admits a unique weak solution in Vω that depends continuously on the r.h.s fω ∈ L2(Ωω) and uniformly
on the parameter ω ∈ (π, 2π), i.e. there exists a constant independent of ω, C > 0, such that:

||uω ||H2(Ωω) ≤ C||fω ||L2(Ωω). (3)

If, in addition, ∆2uω ∈ L2(Ωω) then uω satisfies the equations:

∆2uω = fω in L2(Ωω), and uω = ∆uω = 0 on L2 (∂Ωω)

which gives sense to the trace of the second boundary condition on ∂Ωω .

Proof. The proof is standard unless the uniformity of the constant C w.r.t ω that one can sketch as follows: Let a(u, v) =∫
Ωω

∆u∆vdxdy and l(v) =
∫
Ωω

fvdxdy the corresponding bi-linear an linear forms associated to (2) on the Hilbert space Vω

equipped with the norm ||.||H2(Ωω). Then, the continuity of a(., .) and l(.) and the uniformity of constants w.r.t ω are straightforward.
However, the uniformity in the coercivity constant of the bi-linear form a(., .) needs more precision. In fact, it comes from
Poincare’s inequality on the one hand, cf.6, for all u ∈ Vω ,

||u||H2(Ωω) ≤ c|||∇2u|||L2(Ωω), (4)

which yields equivalence, with uniform constant, between the norm and semi-norm H2 in the space Vω , and, on the other hand,
the “second fundamental inequality” , cf. (20, Corollary 2.3.6 p.31), which can be reformulated in the case of a planar sector Ωω

as follows: Using the Green’s formula in H3(Ωω) ∩ H1
0(Ωω), as in (20, p.29),∫

Ωω

(∆v)2 dxdy =
∫
∂Ωω

κ(m) (∂nv)2 dm + |||∇2u|||2L2(Ωω) ≥ |||∇2u|||2L2(Ωω) (5)

where ∂n represents the normal derivative operator outward to ∂Ωω , and

κ(m) =

{
0 if m ∈ Γ0 ∪ Γω

1 if m ∈ Cω

designates the curvature of ∂Ωω which is essentially positive in the case of the planar sector Ωω, no matter if it is concave or
convex.

Hence, and by same arguments as in20, based on density of H3(Ωω) ∩ H1
0(Ωω) in Vω , one arrives at the inequality (5) for all

v ∈ Vω . We conclude that, for all v ∈ Vω:

a(v, v) =
∫
Ωω

∆v∆vdxdy ≥ c||u||2H2(Ωω)

Therefore, the Lax-Milgram theorem gives the existence and uniqueness of uω ∈ Vω and we have:

c||uω ||2H2(Ωω) ≤ a(uω , uω) =
∫
Ωω

fω∆uωdxdy ≤ ||fω ||L2(Ωω)||uω ||H2(Ωω)
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which yields the desired estimate independent of ω, ||uω ||H2(Ωω) ≤ C||fω ||L2(Ωω). On the other hand, if ∆2uω ∈ L2(Ωω) then one
applies the Green’s formula to the variational equation in (2) to obtain∫

Ωω

(∆2uωv – fωv)dxdy = 0, ∀v ∈ C∞
c (Ωω)

which gives, by density argument, ∆2uω = fω in L2(Ωω). By a second integration by part, we obtain∫
∂Ωω

∆uω∂nvdm = 0, ∀v ∈ H1
0(Ωω) ∩ C∞(Ωω),

and by the fact that the range of the trace function v 7→ ∂nv defined on H1
0(Ωω) ∩ C∞(Ωω) is dense in L2(∂Ωω) , one concludes

that ∆uω = 0 on L2 (∂Ωω). The first condition uω = 0 on L2(∂Ωω) is contained in the definition of H1
0(Ωω) and the proof is

ended.

2.2 Sobolev’s norms in polar coordinates by Fourier modes

In polar coordinates, ϕ : (r, θ) 7→ (x = r cos θ, y = r sin θ), if a distribution v lies in D′(Ωω), let us denote by ṽ(r, θ) := (v ◦ϕ)(r, θ),
ṽ is a distribution w.r.t r, θ. Then, we denote by H̃m(Ωω) the Sobolev’s space

H̃m(Ωω) :=
{

ṽ; v = ṽ ◦ ϕ–1 ∈ Hm(Ωω)
}

,

which is the image of Hm(Ωω) by the mapping u 7→ ũ = u ◦ ϕ. Equipped with the norm ∥ṽ∥H̃m(Ωω) := ∥v∥Hm(Ωω) , H̃m(Ωω) is a
Hilbert space for the natural scalar product (ṽ, w̃)H̃m(Ωω) := (v, w)Hm(Ωω) . In what follows, we denote by

V (k1,k2) :=
∂k1+k2

∂rk1∂θk2
Ṽ , ∀k1, k2 : 0 ≤ k1 + k2 ≤ m,

where V (0,0) denotes simply Ṽ . For m ≤ 4, we can thus characterize the Hm semi-norms of a distribution V in polar coordinates
as follows:

Lemma 1. Let V ∈ Hm(Ωω), m ≤ 4.

Hm(Ωω) =
{

V ∈ L2(Ωω); ∇lV ∈ L2(Ωω); ∀l : 0 ≤ l ≤ m
}

,

where:

∥V∥2
L2(Ωω) =

∫
Ωω

∣∣Ṽ∣∣2 rdrdθ

∥∇V∥2
L2(Ωω) =

∫
Ωω

(∣∣V (1,0)
∣∣2 +

∣∣∣∣V (0,1)

r

∣∣∣∣2
)

rdrdθ

∥∥∇2V
∥∥2

L2(Ωω) =
∫
Ωω

(∣∣V (2,0)
∣∣2 + 2

∣∣∣∣ rV (1,1) – V (0,1)

r2

∣∣∣∣2 +
∣∣∣∣V (0,2) + rV (1,0)

r2

∣∣∣∣2
)

rdrdθ

∥∥∇3V
∥∥2

L2(Ωω) =
∫
Ωω

(∣∣V (3,0)
∣∣2 + 3

∣∣∣∣V (2,1)r2 – 2V (1,1)r + 2V (0,1)

r3

∣∣∣∣2

+ 3

∣∣∣∣∣ r
(
–V (1,0) + V (1,2) + rV (2,0)

)
– 2V (0,2)

r3

∣∣∣∣∣
2

+
∣∣∣∣–2V (0,1) + V (0,3) + 3rV (1,1)

r3

∣∣∣∣2
)

rdrdθ
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∥∥∇4V
∥∥2

L2(Ωω) =
∫
Ωω

∣∣V (4,0)
∣∣2 + 4

∣∣∣∣∣ r
(
6V (1,1) + r

(
rV (3,1) – 3V (2,1)

))
– 6V (0,1)

r4

∣∣∣∣∣
2

+ 6

∣∣∣∣∣6V (0,2) + r
(
2V (1,0) – 4V (1,2) + r

(
–2V (2,0) + V (2,2) + rV (3,0)

))
r4

∣∣∣∣∣
2

+ 4

∣∣∣∣∣6V (0,1) – 3V (0,3) + r
(
–8V (1,1) + V (1,3) + 3rV (2,1)

)
r4

∣∣∣∣∣
2

+

∣∣∣∣∣–8V (0,2) + V (0,4) + 3r
(
–V (1,0) + 2V (1,2) + rV (2,0)

)
r4

∣∣∣∣∣
2
 rdrdθ

Proof. Results from calculus and transformation of iterated gradient form Cartesian to polar coordinates.

In what follows, we will use the same notation V for both V and its image Ṽ .

Lemma 2. Let V ∈ Hm(Ωω) a periodic distribution such that V(., 0) = V(.,ω) = 0, and m ≤ 4. Let us denote by V(r, θ) =∑
k≥1 Vk(r) sin

kπ
ω
θ a.e in Ωω the partial Fourier series of V in θ, where

Vk(r) =
2
ω

∫ ω

0
V(r, θ) sin

kπ
ω
θdθ

is the kth Fourier mode seen as a function of r ∈ (0, 1). Then,

||V ||2L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

∣∣Vk
∣∣2 rdr,

||∇V ||2L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

(∣∣V ′
k

∣∣2 +
(

kπ
ω

)2 ∣∣∣∣Vk

r

∣∣∣∣2
)

rdr,

||∇2V ||2L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

∣∣V ′′
k

∣∣2 + 2
(

kπ
ω

)2 ∣∣∣∣V ′
k

r
–

Vk

r2

∣∣∣∣2 +

∣∣∣∣∣V ′
k

r
–
(

kπ
ω

)2 Vk

r2

∣∣∣∣∣
2
 rdr.

∥∥∇3V
∥∥2

L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

∣∣∣V ′′′

k

∣∣∣2 + 3
(

kπ
ω

)2
∣∣∣∣∣V

′′

k

r
–

2V
′

k

r2 +
2Vk

r3

∣∣∣∣∣
2

+ 3

∣∣∣∣∣V
′′

k

r
–

(
1 +
(

kπ
ω

)2
)

V
′

k

r2 + 2
(

kπ
ω

)2 Vk

r3

∣∣∣∣∣
2

+
(

kπ
ω

)2
∣∣∣∣∣3V

′

k

r2 –

(
2 +
(

kπ
ω

)2
)

Vk

r3

∣∣∣∣∣
2
 rdr
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∥∥∇4V
∥∥2

L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

∣∣∣V (4)
k

∣∣∣2 + 4
(

kπ
ω

)2
∣∣∣∣∣V

′′′

k

r
–

3V
′′

k

r2 +
6V

′

k

r3 –
6Vk

r4

∣∣∣∣∣
2

+ 6

∣∣∣∣∣V
′′′

k

r
–

(
2 +
(

kπ
ω

)2
)

V
′′

k

r2 +

(
2 + 4

(
kπ
ω

)2
)

V
′

k

r3 – 6
(

kπ
ω

)2 Vk

r4

∣∣∣∣∣
2

+ 4
(

kπ
ω

)2
∣∣∣∣∣3V

′′

k

r2 –

(
8 +
(

kπ
ω

)2
)

V
′

k

r3 +

(
6 + 3

(
kπ
ω

)2
)

Vk

r4

∣∣∣∣∣
2

+

∣∣∣∣∣3V
′′

k

r2 –

(
3 + 6

(
kπ
ω

)2
)

V
′

k

r3 +
(

kπ
ω

)2
(

8 +
(

kπ
ω

)2
)

Vk

r4

∣∣∣∣∣
2
 rdr

Proof. Follows, with the help of Lemma 1, from orthogonality of Fourier basis and Parseval’s type identities.

2.3 Fundamental Lemmas for Fourier analysis

Let us denote by
∫ 1

0

∣∣ϕ(r)
∣∣2 rdr := ||ϕ||2L2(rdr). The two following lemmas, which result from a variant of Hardy’s type weighted

inequalities, (G. Hardy 1927)23, are essential for the estimation of the norms in H4(Ωω) of the Fourier modes of the regular and
singular parts of the solution uω of problem (1). In fact, Fourier series method is efficient to obtain the decomposition of uω

into its regular/singular part uω = uω,r + uω,s just by handling some critical powers of r and balancing integral limits between
those from 0 to r and others from r to 1 in order to isolate what is called the roots of a transcendent equation as obtained in
the literature. In the following section, these roots are extracted directly by imposing the condition on the singular part uω,s to
belong to the space Hσ(Ωω) with 2 ≤ σ < 4. The two following lemmas are fundamental in the uniform estimates for the Fourier
coefficients that will be given later.

Lemma 3. For any α,β ∈ R and f ∈ L2(rdr), let Iα,β
f (r) := rα

∫ r
0 f (s)sβds defined for r ∈ (0, 1). If β > 0 and α + β ≥ –1 then

Iα,β
f ∈ L2(rdr) and we have:

||Iα,β
f ||L2(rdr) ≤

1
2
√
β (α + β + 1)

||f ||L2(rdr), if α + β > –1, (6)

||Iα,β
f ||L2(rdr) ≤

1
β

||f ||L2(rdr), if α + β = –1. (7)

Proof. See7.

Lemma 4. For any α,β ∈ R and f ∈ L2(rdr), let f 7→ Jα,β
f where Jα,β

f (r) := rα
∫ 1

r f (s)sβds defined for r ∈ (0, 1). If
β < 0 and α + β ≥ –1 then Jα,β

f ∈ L2(rdr) and we have

||Jα,β
f ||L2(rdr) ≤

1
2
√

|β| (α + β + 1)
||f ||L2(rdr), if α + β > –1, (8)

||Jα,β
f ||L2(rdr) ≤

1
|β|

||f ||L2(rdr), if α + β = –1. (9)

Proof. See7.

Remark 1. As a consequence of optimality results of Hardy’s inequalities, the estimates given by Lemmas 3 and 4 are optimal in
the sens that one can not, for example, expect better that 1/|β| in the inequalities (7) and (9), in particular in the critical case
when β → 0.

Lemma 5. Let F ∈ L2 (Ωω) such that F(r, θ) := f (r) sin π
ω θ in polar coordinates. Let us define:

V(r, θ) :=
ω

2π

(
r

π
ω

∫ r

0
f (s)s1– π

ω ds – r– π
ω

∫ r

0
f (s)s1+ π

ω ds
)

sin
π

ω
θ = v(r) sin

π

ω
θ,
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Then, V ∈ H1 (Ωω), and there exists a constant C > 0 independent of F and ω ∈ (π, 2π), such that:√
1 –

π

ω
||V ||H1(Ωω) ≤ C||F||L2(Ωω). (10)

Proof. We have

||∇V ||2L2(Ωω) =
ω

2

(
∥v′∥2

L2(rdr) +
(π
ω

)2 ∥∥∥v
r

∥∥∥2

L2(rdr)

)
,

where
v(r)

r
=
ω

2π

(
r

π
ω –1
∫ r

0
f (s)s1– π

ω ds – r– π
ω –1
∫ r

0
f (s)s1+ π

ω ds
)

v′(r) =
1
2

(
r

π
ω –1
∫ r

0
f (s)s1– π

ω ds – r– π
ω –1
∫ r

0
f (s)s1+ π

ω ds
)

Thus, applying Lemma 3, Inequality (10) follows immediately.

Lemma 6. Let c ∈ L2(rdr) and b defined by the following expression (assuming the four integrals exist):

b(r) = r2– π
ω

∫ r

0

c(s)s1+ π
ω

8
((

π
ω

)2
– π

ω

)ds + r2+ π
ω

∫ r

0

c(s)s1– π
ω

8
((

π
ω

)2
+ π

ω

)ds

– r
π
ω

∫ r

0

c(s)s3– π
ω

8
((

π
ω

)2
– π

ω

)ds – r– π
ω

∫ r

0

c(s)s3+ π
ω

8
((

π
ω

)2
+ π

ω

)ds. (11)

Then, b can be written in terms of two integrals recursively as follows:

b(r) =
ω

2π

(
r

π
ω

∫ r

0
v(s)s1– π

ω ds – r– π
ω

∫ r

0
v(s)s1+ π

ω ds
)

, (12)

where
v(r) =

ω

2π

(
r

π
ω

∫ r

0
c(s)s1– π

ω ds – r– π
ω

∫ r

0
c(s)s1+ π

ω ds
)

. (13)

Proof. Lemma 5 ensures that v(r) sin π
ω θ ∈ H1 (Ωω) ,i.e., v′ is L2(rdr). Starting from (13) and (12), replace the expression of v

given by(13) inside each integral of the r.h.s of (12) and use integration by part to obtain the equation given by (11).

2.4 Main result

After having introduced the framework of Sobolev’s spaces and Fourier series in polar coordinates, we are now in position to
state the main result of this paper. It should be pointed that, as in the previous work on the Laplace operator7, only the first
frequency in the Fourier series of the data fω is responsible of the lack of uniformity of estimates in the vicinity of π.

Theorem 2 (Main Theorem). Let ω ∈ (π, 4π/3) and fω ∈ L2(Ωω) with Fourier coefficients

ck,ω(r) =
2
ω

∫ ω

0
fω(r, θ) sin

kπ
ω
θdθ, k ≥ 1.

The family of solutions (uω)ω∈(π,4π/3) of Problem 1 satisfies the following:
i) uω ∈ H2+σ(Ωω) ∩ H1

0(Ωω) , for all σ < 1 – π
ω , and uω admits in Ωω the decomposition into regular and singular parts:

uω = uω,r + uω,s, where
uω,r = u(1)

ω,r + u(2)
ω,r + u(3)

ω,r + u[4]
ω,r, (14)

uω,s =
(
λ1,1r2– π

ω + λ2,1r2+ π
ω

)
sin

π

ω
θ + +λ3,2r

2π
ω sin

2π
ω
θ + λ3,3r

3π
ω sin

3π
ω
θ, (15)
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u(j)
ω,r ∈ H4(Ωω), for j = 1, 2, 3, 4, are given by

u(j)
ω,r(r, θ) = bj,ω(r) sin

jπ
ω
θ, for j = 1, 2, 3 (16)

u[4]
ω,r(r, θ) =

∑
k≥4

(
bk,ω(r) + Ak,ωr2+ kπ

ω + Bk,ωr
kπ
ω

)
sin

kπ
ω
θ (17)

where bj,ω(r) (j ≥ 1) , λ1,1,λ2,1,λ3,2,λ3,3, and Ak,ω, Bk,ω (k ≥ 4) are (respectively) given by their explicit extraction formulas
(27), (52), (71), (75), (29), (30), (54), (73), and (77).

ii) Moreover, there exists C > 0 independent of ω ∈ (π, 4π/3) and fω ∈ L2(Ωω) such that the following estimate holds and is
sharp: √

1 –
π

ω

(∣∣λ1,1
∣∣ +
∣∣λ2,1

∣∣ +
∥∥u(1)

ω,r

∥∥
H4(Ωω)

)
≤ C||fω ||L2(Ωω). (18)∣∣λ3,2

∣∣ +
∣∣λ3,3

∣∣ +
∥∥u(2)

ω,r

∥∥
H4(Ωω) +

∥∥u(3)
ω,r

∥∥
H4(Ωω) +

∥∥u[4]
ω,r

∥∥
H4(Ωω) ≤ C||fω ||L2(Ωω). (19)

3 COEFFICIENTS OF SINGULARITIES REVISITED BY FOURIER COEFFICIENTS

Following the results in12, we can summarize that a solution uω of (1) admits near the origin the following decomposition:

uω = uω,r + uω,s,

such that
uω,r ∈ H4

loc(Ωω), and uω,s(r, θ) =
∑

–2<ℑmζk<0

r1+iζkψk(θ),

where the ζk are roots of the transcendent equation sinh2(ζω) + sin2 ω = 0 with imaginary part in ] – 2, 0[ and the ψk are C∞

functions of θ. In this section, we will give some results on the Fourier series method applied to this model case of bi-harmonic
problem with Navier’s boundary conditions on a family of planar non convex sectors. This method allows us to retrieve such a
decomposition and to extract the roots systematically. Moreover, both regular and singular parts are given explicitly and explicit
and sharp estimates w.r.t the opening angle ω are obtained in the vicinity of π.

Since singularities are caused by the geometry of the domain, it follows that they are found in the kernel of the bi-harmonic
operator, i.e., they are solutions to the homogeneous equation

∆2uω,s = 0 in L2(Ωω). (20)

Let
uω,s(r, θ) =

∑
k≥1

ak,ω(r) sin
kπ
ω
θ,

be the Fourier series of uω,s(r, θ) in polar coordinates. Thus, one obtains, at least formally, by putting the Fourier coefficients of
∆2uω,s all equal zero, that ak,ω(r) is solution to the following differential equation, for all k ≥ 1,

a(4)
k,ω(r) +

2
r

a(3)
k,ω(r) –

1
r2

(
1 + 2

(
kπ
ω

)2
)

a′′k,ω(r) +
1
r3

(
1 + 2

(
kπ
ω

)2
)

a′k,ω(r) +
1
r4

((
kπ
ω

)4

– 4
(

kπ
ω

)2
)

ak,ω(r) = 0, (21)

whose general solution is given by

ak,ω(r) = λ1,kr2– kπ
ω + λ2,kr2+ kπ

ω + λ3,kr
kπ
ω + λ4,kr– kπ

ω , (22)

where λj,k are constants, j = 1, 2, 3, 4, that can be determined by imposing the condition on the singular part uω,s to belong to
the space Hσ(Ωω) with 2 ≤ σ < 4. As far as we know, the power function in r, (r, θ) 7→ rαk sin kπ

ω θ, αk not integer, belongs to
Hσ(Ωω) as long as σ < αk + 1. Henceforth, we look for the Fourier coefficient of uω,s that satisfy

ak,ω(r) sin
kπ
ω
θ ∈ Hσ(Ωω), 2 ≤ σ < 4,
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or, in other words, the problem turns out to find non-integer powers αk in the r.h.s of (22) such that 1 < αk < 3. Figure 2
illustrates regions plot for different powers αk = 2 – kπ

ω , 2 + kπ
ω , – kπ

ω , kπ
ω , respectively for ω ∈ (π, 2π). If we denote by Aαk the set

of integers k such that 1 < αk < 3, then we observe the following:

A– kπ
ω

= ∅, and A2± kπ
ω

= {1},∀ω ∈ (π, 2π),

A kπ
ω

=


{2, 3} if ω ∈ (π, 4π

3 ],

{2, 3, 4} if ω ∈ ( 4π
3 , 5π

3 ],

{2, 3, 4, 5} if ω ∈ ( 5π
3 , 2π).

F I G U R E 2 Region Plot of αk = 2 – kπ
ω

, 2 + kπ
ω

, – kπ
ω

, + kπ
ω

respectively for ω ∈ (π, 2π).

It follows immediately λ4,k = 0 for all k and that ak,ω(r) = 0 for all k ≥ 6. More precisely, we conclude that the singular part
of uω takes the following expression, in the three regions of ω, denoted by uI

ω,s, uII
ω,s, uIII

ω,s:

uω,s =



(
λ1,1r2– π

ω + λ2,1r2+ π
ω

)
sin

π

ω
θ

+λ3,2r
2π
ω sin

2π
ω
θ + λ3,3r

3π
ω sin

3π
ω
θ = uI

ω,s if ω ∈ (π, 4π
3 ],

uI
ω,s + λ3,4r

4π
ω sin

4π
ω
θ = uII

ω,s if ω ∈ ( 4π
3 , 5π

3 ],

uII
ω,s + λ3,5r

5π
ω sin

5π
ω
θ = uIII

ω,s if ω ∈ ( 5π
3 , 2π).

In the case ω ∈ (π, 2π), the constants λj,k, for j = 1, 2, 3 and k = 1, ..., 5, are called the coefficients of singularity (or stress
intensity factors in the literature of mechanics). They can be determined by boundary conditions on the solution uω = uω,r + uω,s

after having given the expression of the regular part uω,r. As we will see later, they are linear forms of the r.h.s fω in the original
problem (1). As far as we are interested in the asymptotic behavior of the solution in the vicinity of π, then let us consider only
the first case ω ∈ (π, 4π/3) without considering the case ω = 4π/3. In this case, we will state later explicit and sharp estimates
of λ1,1,λ2,1,λ3,2 and λ3,3 w.r.t the angle parameter ω in the vicinity of π. We will look for the regular part uω,r of uω as the
particular solution of the problem (1) with the regularity property of being in H4(Ωω) for all ω ∈ (π, 4π/3). Actually, uω,r is
solution to the non homogeneous equation ∆2uω,r = fω in L2(Ωω) such that the global solution uω ∈ H2(Ωω)∩H1

0(Ωω). Observe
that one does not need homogeneous Dirichlet/Navier’s boundary condition on the curved boundary Cω as in the case of a
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convex corner4. We start by Fourier series decomposition of the r.h.s fω as follows:

fω(r, θ) =
∑
k≥1

fk,ω(r, θ) =
∑
k≥1

ck,ω(r) sin
kπ
ω
θ, ck,ω(r) =

2
ω

∫ ω

0
fω(r, θ) sin

kπ
ω
θdθ (23)

∑
k≥1

∫ 1

0
ck,ω(r)2rdr = ||fω ||2L2(Ωω)(Parseval’s identity)

uω,r(r, θ) =
∑
k≥1

(
bk,ω(r) + Ak,ωr2+ kπ

ω + Bk,ωr
kπ
ω

)
sin

kπ
ω
θ, (24)

where the coefficients Ak,ω, Bk,ω are equal zero for k = 1, 2, 3, and they are not in the case k ≥ 4. we can extract them with
the help of the Navier’s boundary condition on the global solution uω = ∆uω = 0 on ∂Ωω. We have uω,r ∈ H2(Ωω) since uω,s

is also H2 by construction. Plugging the Fourier series in the non homogeneous equation ∆2uω,r = fω in L2(Ωω), and since
Ak,ωr2+ kπ

ω + Bk,ωr
kπ
ω lies in the kernel of bi-harmonic operator (∆2), we look for bk,ω by identifying all the Fourier coefficients in

the equation in polar coordinates. We obtain that bk,ω(r) is solution to the following differential equation, for all k ≥ 1,

b(4)
k,ω(r) +

2
r

b(3)
k,ω(r) –

1
r2

(
1 + 2

(
kπ
ω

)2
)

b′′
k,ω(r)

+
1
r3

(
1 + 2

(
kπ
ω

)2
)

b′
k,ω(r) +

1
r4

((
kπ
ω

)4

– 4
(

kπ
ω

)2
)

bk,ω(r) = ck,ω(r). (25)

The general form of a particular solution of this equation is:

bk,ω(r) = r2– kπ
ω

∫ r

a

ck,ω(s)s1+ kπ
ω

8
(( kπ

ω

)2
– kπ

ω

)ds + r2+ kπ
ω

∫ r

b

ck,ω(s)s1– kπ
ω

8
(( kπ

ω

)2
+ kπ

ω

)ds (26)

– r
kπ
ω

∫ r

c

ck,ω(s)s3– kπ
ω

8
(( kπ

ω

)2
– kπ

ω

)ds – r– kπ
ω

∫ r

d

ck,ω(s)s3+ kπ
ω

8
(( kπ

ω

)2
+ kπ

ω

)ds,

where a, b, c, d are any constants in (0, 1). We will see later that they can be determined together with the coefficients of singularity
λj,k and the coefficients Ak,ω , Bk,ω either with the help of boundary conditions on ∂Ωω and/or the expected regularity of uω,r in H4.

Remark 2. Integrals in the r.h.s of (26) have the same forms as those in fundamental lemmas 3 and 4 where the right powers
α and left ones β all satisfy the condition α + β ≥ –1 for all the derivatives w.r.t r until order 4. Hence, the set of parameters
a, b, c, d can already be refined according the signs of β, i.e., the missing integral’s limit will be 0 if β > 0 and 1 if β < 0.

3.1 Lowest frequency term, k = 1 and determination of λ1,1and λ2,1

According to Remark 2, and the fact that 3
4 < π

ω < 1, all the powers β in the four integrals in expression of b1,ω(r) given by (26)
have positive sign, hence we write:

b1,ω(r) = r2– π
ω

∫ r

0

c1,ω(s)s1+ π
ω

8
((

π
ω

)2
– π

ω

)ds + r2+ π
ω

∫ r

0

c1,ω(s)s1– π
ω

8
((

π
ω

)2
+ π

ω

)ds (27)

– r
π
ω

∫ r

0

c1,ω(s)s3– π
ω

8
((

π
ω

)2
– π

ω

)ds – r– π
ω

∫ r

0

c1,ω(s)s3+ π
ω

8
((

π
ω

)2
+ π

ω

)ds.
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It follows that the first term U1,ω(r, θ) in the Fourier series of the global solution

uω = uω,r + uω,s =
∑
k≥1

uk,ω(r) sin
kπ
ω
θ =

∑
k≥1

Uk,ω(r, θ)

is obtained by (recall that a1,ω(r) = λ1,1r2– π
ω + λ2,1r2+ π

ω is the first Fourier coefficient of the singular part uω,s):

U1,ω(r, θ) =
(
b1,ω(r) + a1,ω(r)

)
sin

π

ω
θ =

r2– π
ω

λ1,1 +
∫ r

0

c1,ω(s)s1+ π
ω

8
((

π
ω

)2
– π

ω

)ds

 + r2+ π
ω

λ2,1 +
∫ r

0

c1,ω(s)s1– π
ω

8
((

π
ω

)2
+ π

ω

)ds


–r

π
ω

∫ r

0

c1,ω(s)s3– π
ω

8
((

π
ω

)2
– π

ω

)ds – r– π
ω

∫ r

0

c1,ω(s)s3+ π
ω

8
((

π
ω

)2
+ π

ω

)ds

 sin
π

ω
θ (28)

and applying the boundary conditions uω = ∆uω = 0 on Cω (i.e. at r = 1) term by term in the Fourier series expansion of uω ,one
obtains for the lowest frequency k = 1, U1,ω = ∆U1,ω = 0 at r = 1, which implies (we have two equations and two unknowns):

λ1,1 =
π + ω

2π

∫ 1

0

c1,ω(s)s3– π
ω

8
((

π
ω

)2
– π

ω

)ds +
∫ 1

0

c1,ω(s)s3+ π
ω

8
((

π
ω

)2
+ π

ω

)ds

 –
∫ 1

0

c1,ω(s)s1+ π
ω

8
((

π
ω

)2
– π

ω

)ds (29)

λ2,1 =
π – ω

2π

∫ 1

0

c1,ω(s)s3– π
ω

8
((

π
ω

)2
– π

ω

)ds +
∫ 1

0

c1,ω(s)s3+ π
ω

8
((

π
ω

)2
+ π

ω

)ds

 –
∫ 1

0

c1,ω(s)s1– π
ω

8
((

π
ω

)2
+ π

ω

)ds (30)

Theorem 3. U1,ω(r, θ) given by (28) is solution of (1) with r.h.s f1,ω(r, θ) = c1,ω(r) sin π
ω θ. Moreover, there exists C > 0 uniform

in ω ∈ (π, 4π/3), such that:√
1 –

π

ω

(∣∣λ1,1
∣∣ +
∣∣λ2,1

∣∣ +
∥∥∥b1,ω sin

π

ω
θ
∥∥∥

H3(Ωω)

)
+
∥∥∥∇4

(
b1,ω sin

π

ω
θ
)∥∥∥

L2(Ωω)
≤ C ∥f1,ω∥L2(Ωω) . (31)

Moreover, this estimate is sharp, i.e, there exists f1,ω such that ∥f1,ω∥L2(Ωω) = 1 and√
1 –

π

ω

(∣∣λ1,1
∣∣ +
∣∣λ2,1

∣∣ +
∥∥∥b1,ω sin

π

ω
θ
∥∥∥

H3(Ωω)

)
= O (1) , as ω → π+. (32)

Proof. We will denote by C > 0 a generic constant uniform in ω which is not necessarily the same for all the inequalities which
follow.

First of all, Lemma 6 allows one to rewrite b1,ω(r) in terms of two integrals without the factor 1 – π
ω in the denominators, and

Lemma 5 leads us directly to the estimate√
1 –

π

ω

∥∥∥b1,ω sin
π

ω
θ
∥∥∥

H1(Ωω)
≤ C ∥f1,ω∥L2(Ωω) . (33)

Second, looking at the expression of λ2,1 given by (30), one concludes by Cauchy-Schwartz inequality that∣∣λ2,1
∣∣ ≤ C√

1 – π
ω

∥f1,ω∥L2(Ωω) , (34)

which implies that √
1 –

π

ω

∥∥∥λ2,1r2+ π
ω sin

π

ω
θ
∥∥∥

L2(Ωω)
≤ C ∥f1,ω∥L2(Ωω) . (35)

Now, since the weak solution

U1,ω(r, θ) =
(
b1,ω(r) + a1,ω(r)

)
sin

π

ω
θ =

(
b1,ω(r) + λ1,1r2– π

ω + λ2,1r2+ π
ω

)
sin

π

ω
θ
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is uniformly bounded in H2 hence in L2 , i.e.,

∥U1,ω∥L2(Ωω) ≤ C ∥f1,ω∥L2(Ωω) . (36)

then one concludes that∥∥∥λ1,1r2– π
ω sin

π

ω
θ
∥∥∥

L2(Ωω)
≤
(
∥U1,ω∥L2(Ωω) +

∥∥∥b1,ω sin
π

ω
θ
∥∥∥

L2(Ωω)
+
∥∥∥λ2,1r2+ π

ω sin
π

ω
θ
∥∥∥

L2(Ωω)

)
,

henceforth, inequalities (33), (35) and (36) imply that√
1 –

π

ω

∥∥∥λ1,1r2– π
ω sin

π

ω
θ
∥∥∥

L2(Ωω)
≤ C ∥f1,ω∥L2(Ωω) ,

thus √
1 –

π

ω

∣∣λ1,1
∣∣ ≤ C ∥f1,ω∥L2(Ωω) . (37)

Therefore, we have in hand the following estimate:√
1 –

π

ω

(∣∣λ1,1
∣∣ +
∣∣λ2,1

∣∣ +
∥∥∥b1,ω sin

π

ω
θ
∥∥∥

H1(Ωω)

)
≤ C ∥f1,ω∥L2(Ωω) . (38)

Hence, to complete the proof, it then remains for us to prove the uniform estimates of derivatives of order 2, 3 and 4.
So, if we calculate the hessian ∇2

(
b1,ω sin

π

ω
θ
)

, we obtain a function in H2(Ωω) which vanishes at θ = 0 or θ = ω, then,

Poincare’s inequality allows us to go directly to the estimation of the third differential ∇3
(

b1,ω sin
π

ω
θ
)

, since one has∥∥∥∇2
(

b1,ω sin
π

ω
θ
)∥∥∥

L2(Ωω)
≤ C

∥∥∥∇3
(

b1,ω sin
π

ω
θ
)∥∥∥

L2(Ωω)
. (39)

By definition of Sobolev’s semi-norms via Fourier coefficients, as given by Lemma 2:

∥∥∥∇3
(

b1,ω sin
π

ω
θ
)∥∥∥2

L2(Ωω)
=
ω

2

∫ 1

0

∣∣∣b′′′

1,ω

∣∣∣2 + 3
(π
ω

)2
∣∣∣∣∣b

′′

1,ω

r
–

2b
′

1,ω

r2 +
2b1,ω

r3

∣∣∣∣∣
2

+ 3

∣∣∣∣∣b
′′

1,ω

r
–
(

1 +
(π
ω

)2
)

b
′

1,ω

r2 + 2
(π
ω

)2 b1,ω

r3

∣∣∣∣∣
2

+
(π
ω

)2
∣∣∣∣∣3b

′

1,ω

r2 –
(

2 +
(π
ω

)2
)

b1,ω

r3

∣∣∣∣∣
2
 rdr,

where, after some calculus and simplifications,

b
′′′

1,ω(r) =
1
8

(
2 –

π

ω

)
r

–1–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds (40)

+
1
8

(
2 +

π

ω

)
r

–1+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

+
1
8

(
2 –

π

ω

)
r

–3+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

+
1
8

(
2 +

π

ω

)
r

–3–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds,
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b
′′

1,ω

r
–

2b
′

1,ω

r2 +
2b1,ω

r3 =
1
8

r
–1–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds (41)

+
1
8

r
–1+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

+
1
8

(
2ω
π

– 1
)

r
–3+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

–
1
8

(
1 +

2ω
π

)
r

–3–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds,

b
′′

1,ω

r
–
(

1 +
(π
ω

)2
)

b
′

1,ω

r2 + 2
(π
ω

)2 b1,ω

r3 =
1
8

(
2 +

π

ω

)
r

–1–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds (42)

+
1
8

(
2 –

π

ω

)
r

–1+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

+
1
8

(π
ω

– 2
)

r
–3+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

–
1
8

(π
ω

+ 2
)

r
–3–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds,

3b
′

1,ω

r2 –
(

2 +
(π
ω

)2
)

b1,ω

r3 = –
1
8

(
1 +

4ω
π

)
r

–1–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds (43)

–
1
8

(
1 –

4ω
π

)
r

–1+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

+
1
8

(
1 –

2ω
π

)
r

–3+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

+
1
8

(
1 +

2ω
π

)
r

–3–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds,

so that all the right hand sides of (40)...(43) are linear combinations of integrals of type Iα,β
c1,ω

(r) as defined by Lemma 3 with

α + β = 0, thus those with β = 1 –
π

ω
will induce the estimate√

1 –
π

ω

∥∥∥∇3
(

b1,ω sin
π

ω
θ
)∥∥∥

L2(Ωω)
≤ C ∥f1,ω∥L2(Ωω) . (44)

Hence, combining this last estimate with other estimations (39) and (38), we have just proven the inequality√
1 –

π

ω

(∣∣λ1,1
∣∣ +
∣∣λ2,1

∣∣ +
∥∥∥b1,ω sin

π

ω
θ
∥∥∥

H3(Ωω)

)
≤ C ∥f1,ω∥L2(Ωω) . (45)
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All we are left with now is the estimate of the fourth order differential ∇4
(

b1,ω sin
π

ω
θ
)

. So, by definition of Sobolev’s
semi-norms via Fourier coefficients given by Lemma 2, one has

∥∥∥∇4
(

b1,ω sin
π

ω
θ
)∥∥∥2

L2(Ωω)
=
ω

2

∫ 1

0

∣∣∣b(4)
1,ω

∣∣∣2 + 4
(π
ω

)2
∣∣∣∣∣b

′′′

1,ω

r
–

3b
′′

1,ω

r2 +
6b

′

1,ω

r3 –
6b1,ω

r4

∣∣∣∣∣
2

+ 6

∣∣∣∣∣b
′′′

1,ω

r
–
(

2 +
(π
ω

)2
)

b
′′

1,ω

r2 +
(

2 + 4
(π
ω

)2
)

b
′

1,ω

r3 – 6
(π
ω

)2 b1,ω

r4

∣∣∣∣∣
2

+ 4
(π
ω

)2
∣∣∣∣∣3b

′′

1,ω

r2 –
(

8 +
(π
ω

)2
)

b
′

1,ω

r3 +
(

6 + 3
(π
ω

)2
)

b1,ω

r4

∣∣∣∣∣
2

+

∣∣∣∣∣3b
′′

1,ω

r2 –
(

3 + 6
(π
ω

)2
)

b
′

1,ω

r3 +
(π
ω

)2
(

8 +
(π
ω

)2
)

b1,ω

r4

∣∣∣∣∣
2
 rdr

and, after some calculus and simplifications, one obtains

b(4)
1,ω(r) =

1
8

(π
ω

+ 1
)(π

ω
– 2
)

r
–2–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds (46)

+
1
8

(π
ω

– 1
)(π

ω
+ 2
)

r
–2+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

–
1
8

(π
ω

– 2
)(π

ω
– 3
)

r
–4+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

–
1
8

(π
ω

+ 2
)(π

ω
+ 3
)

r
–4–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds

+ c1,ω(r)

b
′′′

1,ω

r
–

3b
′′

1,ω

r2 +
6b

′

1,ω

r3 –
6b1,ω

r4 (47)

= –
1
8

(π
ω

+ 1
)

r
–2–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds

+
1
8

(π
ω

– 1
)

r
–2+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

–
1
8
ω

π

(π
ω

– 2
)(π

ω
– 3
)

r
–4+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

+
1
8
ω

π

(π
ω

+ 2
)(π

ω
+ 3
)

r
–4–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds
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b
′′′

1,ω

r
–
(

2 +
(π
ω

)2
)

b
′′

1,ω

r2 +
(

2 + 4
(π
ω

)2
)

b
′

1,ω

r3 – 6
(π
ω

)2 b1,ω

r4 (48)

= –
1
8

(π
ω

+ 1
)(π

ω
+ 2
)

r
–2–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds

–
1
8

(π
ω

– 1
)(π

ω
– 2
)

r
–2+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

+
1
8

(π
ω

– 3
)(π

ω
– 2
)

r
–4+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

+
1
8

(π
ω

+ 3
)(π

ω
+ 2
)

r
–4–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds

3
b

′′

1,ω

r2 –
(

8 +
(π
ω

)2
)

b
′

1,ω

r3 +
(

6 + 3
(π
ω

)2
)

b1,ω

r4 (49)

=
1
8
ω

π

(π
ω

+ 1
)(π

ω
+ 4
)

r
–2–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds

–
1
8
ω

π

(π
ω

– 1
)(π

ω
– 4
)

r
–2+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

+
1
8
ω

π

(π
ω

– 2
)(π

ω
– 3
)

r
–4+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

+
1
8
ω

π

(π
ω

+ 2
)(π

ω
+ 3
)

r
–4–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds

3
b

′′

1,ω

r2 –
(

3 + 6
(π
ω

)2
)

b
′

1,ω

r3 +
(π
ω

)2
(

8 +
(π
ω

)2
)

b1,ω

r4 (50)

=
1
8

(π
ω

+ 1
)(π

ω
+ 6
)

r
–2–
π

ω

∫ r

0
c1,ω(s)s

1+
π

ω ds

+
1
8

(π
ω

– 1
)(π

ω
– 6
)

r
–2+
π

ω

∫ r

0
c1,ω(s)s

1–
π

ω ds

–
1
8

(π
ω

– 2
)(π

ω
– 3
)

r
–4+
π

ω

∫ r

0
c1,ω(s)s

3–
π

ω ds

–
1
8

(π
ω

+ 2
)(π

ω
+ 3
)

r
–4–
π

ω

∫ r

0
c1,ω(s)s

3+
π

ω ds

so that all the right hand sides of (46)...(50) are linear combinations of integrals of type Iα,β
c1,ω

(r) as defined by Lemma 3 with

α + β = –1. However, those with the bad power β = 1 –
π

ω
are compensated by the same coefficient such that they will induce

the uniform estimate ∥∥∥∇4
(

b1,ω sin
π

ω
θ
)∥∥∥

L2(Ωω)
≤ C ∥f1,ω∥L2(Ωω) . (51)

Combining this last estimate with (38), we obtain the inequality (31).
Proof of sharpness of estimate (31): Since π

ω < 1, one can find, for example, a r.h.s such as

f1,ω(r, θ) =
2
ω

√
ω – πr– π

ω sin
(π
ω
θ
)

,

∥f1,ω∥L2(Ωω) = 1, ∀ω ∈ (π, 2π),

c1,ω(r) =
2
ω

√
ω – πr– π

ω ,
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which gives after computation of b1,ω(r),λ1,1,λ2,1 from their expressions given respectively by (27), (29) and (30),

b1,ω(r) =
ωr4– π

ω

16(2ω – π)
√
ω – π

,

λ1,1 =
ω(ω – 2π)

√
ω – π

16π2(π – 2ω)
,

λ2,1 =
ω(3ω – π)

32π(π – 2ω)
√
ω – π

,

the asymptotic relation (32). The proof of the theorem is ended.

3.2 Second frequency term k = 2 and determination of λ3,2

According to Remark 2, and the fact that 3
4 < π

ω < 1, thus 1 – 2π
ω < 0, and all the powers β ̸= 1 – 2π

ω in the other integrals in
expression of b2,ω(r) given by (26) have positive sign, hence the integral’s limits are such that a = c = d = 0 and b = 1, i.e.

b2,ω(r) = r2– 2π
ω

∫ r

0

c2,ω(s)s1+ 2π
ω

8
(( 2π

ω

)2
– 2π

ω

)ds + r2+ 2π
ω

∫ r

1

c2,ω(s)s1– 2π
ω

8
(( 2π

ω

)2
+ 2π

ω

)ds (52)

– r
2π
ω

∫ r

0

c2,ω(s)s3– 2π
ω

8
(( 2π

ω

)2
– 2π

ω

)ds – r– 2π
ω

∫ r

0

c2,ω(s)s3+ 2π
ω

8
(( 2π

ω

)2
+ 2π

ω

)ds.

It follows that the second term U2,ω(r, θ) in the Fourier series of the global solution is obtained by (recall that a2,ω(r) = λ3,2r
2π
ω

is the second Fourier coefficient of the singular part uω,s):

U2,ω(r, θ) =
(
b2,ω(r) + a2,ω(r)

)
sin

2π
ω
θ =

r2– 2π
ω

∫ r

0

c2,ω(s)s1+ 2π
ω

8
(( 2π

ω

)2
– 2π

ω

)ds + r2+ 2π
ω

∫ r

1

c2,ω(s)s1– 2π
ω

8
(( 2π

ω

)2
+ 2π

ω

)ds

–r
2π
ω

λ3,2 +
∫ r

0

c2,ω(s)s3– 2π
ω

8
(( 2π

ω

)2
– 2π

ω

)ds

 – r– 2π
ω

∫ r

0

c2,ω(s)s3+ 2π
ω

8
(( 2π

ω

)2
+ 2π

ω

)ds

 sin
2π
ω
θ (53)

hence applying the boundary conditions, U2,ω = ∆U2,ω = 0 at r = 1, one obtains

λ3,2 =
∫ 1

0

c2,ω(s)s1+ 2π
ω

8
(( 2π

ω

)2
– 2π

ω

)ds –
∫ 1

0

c2,ω(s)s3+ 2π
ω

8
(( 2π

ω

)2
+ 2π

ω

)ds –
∫ 1

0

c2,ω(s)s3– 2π
ω

8
(( 2π

ω

)2
– 2π

ω

)ds. (54)

Theorem 4. U2,ω(r, θ) given by (53) is solution of (1) with r.h.s f2,ω(r, θ) = c2,ω(r) sin 2π
ω θ. Moreover, there exists C > 0 uniform

in ω ∈ (π, 4π/3), such that: ∣∣λ3,2
∣∣ +
∥∥∥∥b2,ω sin

2π
ω
θ

∥∥∥∥
H4(Ωω)

≤ C ∥f2,ω∥L2(Ωω) (55)

Proof. As in the previous section, let us denote by C > 0 a generic constant uniform in ω which is not necessarily the same for
all the inequalities which follow.

First, looking at the expression of λ3,2 given by (54), one concludes directly by Cauchy-Schwartz inequality that∣∣λ3,2
∣∣ ≤ C ∥f2,ω∥L2(Ωω) , (56)

which implies also that ∥∥∥∥λ3,2r
2π
ω sin

2π
ω
θ

∥∥∥∥
H2(Ωω)

≤ C ∥f2,ω∥L2(Ωω) . (57)

But, since the variational solution

U2,ω(r, θ) =
(
b2,ω(r) + a2,ω(r)

)
sin

2π
ω
θ =

(
b2,ω(r) + λ3,2r

2π
ω

)
sin

2π
ω
θ
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is uniformly bounded in H2, i.e.,
∥U2,ω∥H2(Ωω) ≤ C ∥f2,ω∥L2(Ωω) . (58)

then, by a triangular inequality, one has∥∥∥∥b2,ω sin
2π
ω
θ

∥∥∥∥
L2(Ωω)

≤

(
∥U2,ω∥H2(Ωω) +

∥∥∥∥λ3,2r
2π
ω sin

2π
ω
θ

∥∥∥∥
H2(Ωω)

)
,

henceforth, we obtain in hand the following estimate (in H2):∣∣λ3,2
∣∣ +
∥∥∥∥b2,ω sin

2π
ω
θ

∥∥∥∥
H2(Ωω)

≤ C ∥f2,ω∥L2(Ωω) (59)

Hence, to complete the proof, it then remains for us to prove the uniform estimates of derivatives of order 3 and 4.
By definition of Sobolev’s semi-norms via Fourier coefficients, as given by Lemma 2, one has:

∥∥∥∥∇3
(

b2,ω sin
2π
ω
θ

)∥∥∥∥2

L2(Ωω)
=
ω

2

∫ 1

0

∣∣∣b′′′

2,ω

∣∣∣2 + 3
(

2π
ω

)2
∣∣∣∣∣b

′′

2,ω

r
–

2b
′

2,ω

r2 +
2b2,ω

r3

∣∣∣∣∣
2

+ 3

∣∣∣∣∣b
′′

2,ω

r
–

(
1 +
(

2π
ω

)2
)

b
′

2,ω

r2 + 2
(

2π
ω

)2 b2,ω

r3

∣∣∣∣∣
2

+
(

2π
ω

)2
∣∣∣∣∣3b

′

2,ω

r2 –

(
2 +
(

2π
ω

)2
)

b2,ω

r3

∣∣∣∣∣
2
 rdr,

where, after some calculus and simplifications,

b
′′′

2,ω =
1
8

(
2 –

2π
ω

)
r

–1–
2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds (60)

+
1
8

(
2 +

2π
ω

)
r

–1+
2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

+
1
8

(
2 –

2π
ω

)
r

–3+
2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

+
1
8

(
2 +

2π
ω

)
r

–3–
2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds

b
′′

2,ω

r
–

2b
′

2,ω

r2 +
2b2,ω

r3 = (61)

1
8

r
–1–

2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds

+
1
8

r
–1+

2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

+
1
8

(
2ω
2π

– 1
)

r
–3+

2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

–
1
8

(
1 +

2ω
2π

)
r

–3–
2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds
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b
′′

2,ω

r
–

(
1 +
(

2π
ω

)2
)

b
′

2,ω

r2 + 2
(

2π
ω

)2 b2,ω

r3 = (62)

1
8

(
2 +

2π
ω

)
r

–1–
2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds

+
1
8

(
2 –

2π
ω

)
r

–1+
2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

+
1
8

(
2π
ω

– 2
)

r
–3+

2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

–
1
8

(
2π
ω

+ 2
)

r
–3–

2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds

3b
′

2,ω

r2 –

(
2 +
(

2π
ω

)2
)

b2,ω

r3 = (63)

–
1
8

(
1 +

4ω
2π

)
r

–1–
2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds

–
1
8

(
1 –

4ω
2π

)
r

–1+
2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

+
1
8

(
1 –

2ω
2π

)
r

–3+
2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

+
1
8

(
1 +

2ω
2π

)
r

–3–
2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds

so that all the right hand sides of (60)...(63) are linear combinations of integrals of type Iα,β
c2,ω

(r) as defined by Lemma 3 or Jα,β
c2,ω

(r)
as defined by Lemma 9, with α + β = 0, thus the following estimate holds:∥∥∥∥∇3

(
b2,ω sin

2π
ω
θ

)∥∥∥∥
L2(Ωω)

≤ C ∥f2,ω∥L2(Ωω) . (64)

Similarly, with the help of Lemma 2, one has

∥∥∥∥∇4
(

b2,ω sin
2π
ω
θ

)∥∥∥∥2

L2(Ωω)
=
ω

2

∫ 1

0

∣∣∣b(4)
2,ω

∣∣∣2 + 4
(

2π
ω

)2
∣∣∣∣∣b

′′′

2,ω

r
–

3b
′′

2,ω

r2 +
6b

′

2,ω

r3 –
6b2,ω

r4

∣∣∣∣∣
2

+ 6

∣∣∣∣∣b
′′′

2,ω

r
–

(
2 +
(

2π
ω

)2
)

b
′′

2,ω

r2 +

(
2 + 4

(
2π
ω

)2
)

b
′

2,ω

r3 – 6
(

2π
ω

)2 b2,ω

r4

∣∣∣∣∣
2

+ 4
(

2π
ω

)2
∣∣∣∣∣3b

′′

2,ω

r2 –

(
8 +
(

2π
ω

)2
)

b
′

2,ω

r3 +

(
6 + 3

(
2π
ω

)2
)

b2,ω

r4

∣∣∣∣∣
2

+

∣∣∣∣∣3b
′′

2,ω

r2 –

(
3 + 6

(
2π
ω

)2
)

b
′

2,ω

r3 +
(

2π
ω

)2
(

8 +
(

2π
ω

)2
)

b2,ω

r4

∣∣∣∣∣
2
 rdr
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and, after some calculus and simplifications, one obtains

b(4)
2,ω =

1
8

(
2π
ω

+ 1
)(

2π
ω

– 2
)

r
–2–

2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds (65)

+
1
8

(
2π
ω

– 1
)(

2π
ω

+ 2
)

r
–2+

2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

–
1
8

(
2π
ω

– 2
)(

2π
ω

– 3
)

r
–4+

2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

–
1
8

(
2π
ω

+ 2
)(

2π
ω

+ 3
)

r
–4–

2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds

+ c2,ω(r)

b
′′′

2,ω

r
–

3b
′′

2,ω

r2 +
6b

′

2,ω

r3 –
6b2,ω

r4 = (66)

–
1
8

(
2π
ω

+ 1
)

r
–2–

2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds

+
1
8

(
2π
ω

– 1
)

r
–2+

2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

–
1
8
ω

2π

(
2π
ω

+ 1
)(

2π
ω

– 6
)

r
–4+

2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

+
1
8
ω

2π

(
2π
ω

+ 2
)(

2π
ω

+ 3
)

r
–4–

2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds

b
′′′

2,ω

r
–

(
2 +
(

2π
ω

)2
)

b
′′

2,ω

r2 +

(
2 + 4

(
2π
ω

)2
)

b
′

2,ω

r3 – 6
(

2π
ω

)2 b2,ω

r4 = (67)

–
1
8

(
2π
ω

+ 1
)(

2π
ω

+ 2
)

r
–2–

2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds

–
1
8

(
2π
ω

– 1
)(

2π
ω

– 2
)

r
–2+

2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

+
1
8

(
2π
ω

– 3
)(

2π
ω

– 2
)

r
–4+

2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

+
1
8

(
2π
ω

+ 3
)(

2π
ω

+ 2
)

r
–4–

2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds
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3
b

′′

2,ω

r2 –

(
8 +
(

2π
ω

)2
)

b
′

2,ω

r3 +

(
6 + 3

(
2π
ω

)2
)

b2,ω

r4 = (68)

+
1
8

(
2π
ω

+ 1
)(

2π
ω

+ 6
)

r
–2–

2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds

+
1
8

(
2π
ω

– 1
)(

2π
ω

– 6
)

r
–2+

2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

+
1
8

(
2π
ω

– 3
)(

2π
ω

– 2
)

r
–4+

2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

–
1
8

(
2π
ω

+ 2
)(

2π
ω

+ 3
)

r
–4–

2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds

3
b

′′

2,ω

r2 –

(
3 + 6

(
2π
ω

)2
)

b
′

2,ω

r3 +
(

2π
ω

)2
(

8 +
(

2π
ω

)2
)

b2,ω

r4 = (69)

+
1
8
ω

2π

(
2π
ω

+ 1
)(

2π
ω

+ 4
)

r
–2–

2π
ω

∫ r

0
c2,ω(s)s

1+
2π
ω ds

+
1
8
ω

2π

(
2π
ω

– 1
)(

2π
ω

– 4
)

r
–2+

2π
ω

∫ r

1
c2,ω(s)s

1–
2π
ω ds

–
1
8

(
2π
ω

– 3
)(

2π
ω

– 2
)

r
–4+

2π
ω

∫ r

0
c2,ω(s)s

3–
2π
ω ds

–
1
8
ω

2π

(
2π
ω

+ 2
)(

2π
ω

+ 3
)

r
–4–

2π
ω

∫ r

0
c2,ω(s)s

3+
2π
ω ds

so that all the right hand sides of (65)...(69) are linear combinations of c2,ω and of integrals of type Iα,β
c2,ω

(r) as defined by Lemma
3 or Jα,β

c2,ω
(r) as defined by Lemma 9, with α + β = –1, thus the following estimate holds:∥∥∥∥∇4

(
b2,ω sin

2π
ω
θ

)∥∥∥∥
L2(Ωω)

≤ C ∥f2,ω∥L2(Ωω) . (70)

Finally, combining this last estimate with (64) and (59), we obtain the inequality (55). The proof of the theorem is achieved.

Remark 3. Note that here we could have the same problem in the neighborhood of 2π as that encountered in the neighborhood
of π in the case k = 1. However, as we assumed that ω is in (π, 4π/3) then the problem does not arise.

3.3 Third frequency term k = 3 and determination of λ3,3

According to Remark 2, and the fact that 3
4 < π

ω < 1, thus 1 – 3π
ω < 0, and all the powers β ̸= 1 – 3π

ω in the other integrals
in expression of b3,ω(r) given by (26) have positive sign, hence the integral’s limits are the same as in the case k = 2, i.e.,
a = c = d = 0 and b = 1, and we have

b3,ω(r) = r2– 3π
ω

∫ r

0

c3,ω(s)s1+ 3π
ω

8
(( 3π

ω

)2
– 3π

ω

)ds + r2+ 3π
ω

∫ r

1

c3,ω(s)s1– 3π
ω

8
(( 3π

ω

)2
+ 3π

ω

)ds (71)

– r
3π
ω

∫ r

0

c3,ω(s)s3– 3π
ω

8
(( 3π

ω

)2
– 3π

ω

)ds – r– 3π
ω

∫ r

0

c3,ω(s)s3+ 3π
ω

8
(( 3π

ω

)2
+ 3π

ω

)ds.
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It follows that the third term U3,ω(r, θ) in the Fourier series of the global solution is obtained by (recall that a3,ω(r) = λ3,3r
3π
ω is

the third Fourier coefficient of the singular part uω,s):

U3,ω(r, θ) =
(
b3,ω(r) + a3,ω(r)

)
sin

3π
ω
θ =

r2– 3π
ω

∫ r

0

c3,ω(s)s1+ 3π
ω

8
(( 3π

ω

)2
– 3π

ω

)ds + r2+ 3π
ω

∫ r

1

c3,ω(s)s1– 3π
ω

8
(( 3π

ω

)2
+ 3π

ω

)ds

–r
3π
ω

λ3,3 +
∫ r

0

c3,ω(s)s3– 3π
ω

8
(( 3π

ω

)2
– 3π

ω

)ds

 – r– 3π
ω

∫ r

0

c3,ω(s)s3+ 3π
ω

8
(( 3π

ω

)2
+ 3π

ω

)ds

 sin
3π
ω
θ (72)

hence applying the boundary conditions, U3,ω = ∆U3,ω = 0 at r = 1, one obtains

λ3,3 =
∫ 1

0

c3,ω(s)s1+ 3π
ω

8
(( 3π

ω

)2
– 3π

ω

)ds –
∫ 1

0

c3,ω(s)s3+ 3π
ω

8
(( 3π

ω

)2
+ 3π

ω

)ds –
∫ 1

0

c3,ω(s)s3– 3π
ω

8
(( 3π

ω

)2
– 3π

ω

)ds. (73)

Theorem 5. U3,ω(r, θ) given by (72) is solution of (1) with r.h.s f3,ω(r, θ) = c3,ω(r) sin 3π
ω θ. Moreover, there exists C > 0 uniform

in ω ∈ (π, 4π/3), such that: ∣∣λ3,3
∣∣ +
∥∥∥∥b3,ω sin

3π
ω
θ

∥∥∥∥
H4(Ωω)

≤ C ∥f3,ω∥L2(Ωω) . (74)

Proof. Similar to the proof Theorem 4.

3.4 Regular frequency terms k ≥ 4 and determination of Ak,ωand Bk,ω

According to Remark 2, and the fact that 3
4 < π

ω < 1 and k ≥ 4, there are now two negative powers β = 1 – kπ
ω and β = 3 – kπ

ω ,
and the two other powers in the expression of bk,ω(r) given by (26) have positive sign. Hence, the integral’s limits defining bk,ω

are such that a = d = 0 and b = c = 1, and we have

bk,ω(r) = r2– kπ
ω

∫ r

0

ck,ω(s)s1+ kπ
ω

8
(( kπ

ω

)2
– kπ

ω

)ds + r2+ kπ
ω

∫ r

1

ck,ω(s)s1– kπ
ω

8
(( kπ

ω

)2
+ kπ

ω

)ds (75)

– r
kπ
ω

∫ r

1

ck,ω(s)s3– kπ
ω

8
(( kπ

ω

)2
– kπ

ω

)ds – r– kπ
ω

∫ r

0

ck,ω(s)s3+ kπ
ω

8
(( kπ

ω

)2
+ kπ

ω

)ds.

It follows that the kth– term Uk,ω(r, θ) in the Fourier series of the global solution can be written as follows,

Uk,ω(r, θ) =
(

bk,ω(r) + Ak,ωr2+ kπ
ω + Bk,ωr

kπ
ω

)
sin

kπ
ω
θ (76)

where the constants Ak,ω and Bk,ω are determined by the Dirichlet conditions Uk,ω = ∆Uk,ω = 0 at r = 1. Solving these two
equations, one obtains: 

Ak,ω =
kπ – ω
kπ + ω

∫ 1
0

ck,ω(s)s1+ kπ
ω

8
(( kπ

ω

)2
– kπ

ω

)ds,

Bk,ω =
∫ 1

0
ck,ω(s)s3+ kπ

ω

8
(( kπ

ω

)2
+ kπ

ω

)ds –
2kπ

kπ + ω
∫ 1

0
ck,ω(s)s1+ kπ

ω

8
(( kπ

ω

)2
– kπ

ω

)ds.
(77)

Instead of being singularity coefficients as in the previous cases, we recall here that the coefficients Ak,ω and Bk,ω participate
rather in the regular part as coefficients of r power 2 + kπ

ω and kπ
ω which are both greater than 3 .

Theorem 6. For any integer k ≥ 4, Uk,ω(r, θ) given by (76) is solution of (1) with r.h.s fk,ω(r, θ) = ck,ω(r) sin kπ
ω θ. Moreover,

there exists Ck > 0 uniform in ω ∈ (π, 4π/3) such that:

∥Uk,ω∥H4(Ωω) ≤ Ck ∥fk,ω∥L2(Ωω) . (78)
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As a result, the single Fourier coefficient of Uk,ω which is defined by

dk,ω(r) := bk,ω(r) + Ak,ωr2+ kπ
ω + Bk,ωr

kπ
ω

can be obtained recursively as follows:

gk,ω(r) =
ω

2kπ

(
r

kπ
ω

(∫ r

1
ck,ω(s)s1– kπ

ω ds +
∫ 1

0
ck,ω(s)s1+ kπ

ω ds

)
– r– kπ

ω

∫ r

0
ck,ω(s)s1+ kπ

ω ds

)
, (79)

where

dk,ω(r) =
ω

2kπ

(
r

kπ
ω

(∫ r

1
gk,ω(s)s1– kπ

ω ds +
∫ 1

0
gk,ω(s)s1+ kπ

ω ds

)
– r– kπ

ω

∫ r

0
gk,ω(s)s1+ kπ

ω ds

)
. (80)

Proof. Using the fact that

Uk,ω(r, θ) = bk,ω(r) sin
kπ
ω
θ +
(

Ak,ωr2+ kπ
ω + Bk,ωr

kπ
ω

)
sin

kπ
ω
θ, (81)

one can already prove, following the same argument as in the proof of Theorem 4 by using properly lemmas 3 and 4, that∥∥∥∥bk,ω(r) sin
kπ
ω
θ

∥∥∥∥
H4(Ωω)

≤ C
′

k ∥fk,ω∥L2(Ωω) .

In addition, since powers 2 + kπ
ω and kπ

ω are both greater than 3 , it is straightforward that the same estimate holds for the right
term in the r.h.s of (81), i.e., ∥∥∥∥(Ak,ωr2+ kπ

ω + Bk,ωr
kπ
ω

)
sin

kπ
ω
θ

∥∥∥∥
H4(Ωω)

≤ C
′′

k ∥fk,ω∥L2(Ωω) .

Henceforth, putting Ck = max(C
′

k, C
′′

k ), we obtain Inequality (78).
Next, one can check by a simple calculus that gk,ω(r) is nothing but the single Fourier coefficient of Vk,ω = ∆Uk,ω the laplacian

of Uk,ω . Henceforth, Vk,ω ∈ H2(Ωω) and consequently on can use integration by parts to obtain the recursive formula (79)-(80)
and the proof of the theorem is ended.

Remark 4. The proof of the recursive formula (79)-(80) in the previous theorem can also be obtained by solving, in polar
coordinates, the boundary value problem Vk,ω = ∆Uk,ω in Ωω with Uk,ω = 0 on the boundary ∂Ωω, which leads to a second
order differential equation in terms of Fourier coefficients:

d
′′

k,ω(r) +
1
r

d
′

k,ω(r) –
k2π2

ω2

dk,ω(r)
r2 = gk,ω(r),

whose general solution is given by

dk,ω(r) =
ω

2kπ

(
r

kπ
ω

∫ r

1
gk,ω(s)s1– kπ

ω ds – r– kπ
ω

∫ r

0
gk,ω(s)s1+ kπ

ω ds
)

+ C1r
kπ
ω + C2r– kπ

ω ,

where C2 must be equal 0 since dk,ω is at least L2(rdr). The constant C1 is found by the boundary condition at r = 1, dk,ω(1) = 0.
We find thus exactly the formula(79).

Lemma 7. Let vω ∈ H2(Ωω) a periodic distribution such that vω(., 0) = vω(.,ω) = 0 and let vk,ω(r) its kth– partial Fourier
coefficient w.r.t θ. There exist a constant C > 0 independent of ω ∈ (π, 2π) and of vω such that:

∑
k≥4

∥∥∥v
′′

k,ω

∥∥∥
L2(rdr)

+ k

∥∥∥∥∥v
′

k,ω

r

∥∥∥∥∥
L2(rdr)

+ k2
∥∥∥vk,ω

r2

∥∥∥
L2(rdr)

 ≤ C||∇2vω ||L2(Ωω).

Proof. A direct consequence of the the following straightforward identities (since kπ/ω ̸= 1 for k ≥ 4)

v′k,ω

r
=

(
V′

k,ω
r –

( kπ
ω

)2 Vk,ω
r2

)
–
( kπ

ω

)2
(

V′
k,ω
r – Vk,ω

r2

)
1 –
( kπ

ω

)2 ,
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vk,ω

r2 =

(
V′

k,ω
r –

( kπ
ω

)2 Vk,ω
r2

)
–
(

V′
k,ω
r – Vk,ω

r2

)
1 –
( kπ

ω

)2 ,

and the expression of the semi-norm ||∇2vω ||L2(Ωω) as given by Lemma 2, lead to:

∑
k≥4

∫ 1

0

∣∣∣v′′

k,ω(r)
∣∣∣2 rdr + k2

∫ 1

0

∣∣∣∣∣v
′

k,ω(r)
r

∣∣∣∣∣
2

rdr + k4
∫ 1

0

∣∣∣∣vk,ω(r)
r2

∣∣∣∣2 rdr

 ≤ C||∇2vω ||2L2(Ωω),

with a constant C > 0 independent of ω ∈ (π, 2π), which allows one to conclude the proof.

We have now the main theorem for this section which gives normal convergence in H4 of the series
∑

k≥4 Uk,ω(r, θ):

Theorem 7. Let ω ∈ (π, 4π/3). For any integer k ≥ 4, let Uk,ω(r, θ) defined as in Theorem 6. Then the series

Uω(r, θ) :=
∑
k≥4

Uk,ω(r, θ)

is solution of (1) with r.h.s

fω(r, θ) :=
∑
k≥4

ck,ω(r) sin
kπ
ω
θ

Moreover, there exists C > 0 uniform in ω ∈ (π, 4π/3) such that:

∥Uω∥H4(Ωω) ≤ C ∥fω∥L2(Ωω) .

Proof. By Theorem 6, we know that for any k ≥ 4, Uk,ω ∈ H4(Ωω) and is a weak solution of Problem (1) with r.h.s
fk,ω(r, θ) = ck,ω(r) sin kπ

ω θ. Thus, one has already, by Theorem 1, the uniform estimate (C independent of k ≥ 4),

∥Uk,ω∥H2(Ωω) ≤ C ∥fk,ω∥L2(Ωω) ,

which implies, by taking the series (over k ≥ 4), that:

∥Uω∥H2(Ωω) ≤ C ∥fω∥L2(Ωω) . (82)

We then have to show this last estimate in H4 norm. So it is enough to show it for the two semi-norms ||∇3Uω ||L2(Ωω) and
||∇4Uω ||L2(Ωω). More precisely, it will be sufficient to do it only for each Fourier series term Uk,ω but with a uniform constant
independent of k ≥ 4. Furthermore, and without restriction, we will demonstrate this only for derivatives of order 4 w.r.t r.
Derivatives of order 3 are simpler to treat and the other derivatives defining ∇3 and ∇4 can be treated in a similar manner.
Thanks to Theorem 6, let gk,ω(r) and dk,ω(r) the single Fourier coefficients of Uk,ω and Vk,ω = ∆Uk,ω , respectively, as defined by
the recursive formula (79)-(80). Thus, one has on the one hand:

d(4)
k,ω(r) =

1
2ω3

{
(kπ – 3ω)(kπ – 2ω)(kπ – ω)r–4+ kπ

ω

(∫ r

1
gk,ω(s)s1– kπ

ω ds +
∫ 1

0
gk,ω(s)s1+ kπ

ω ds

)

– (kπ + 3ω)(kπ + 2ω)(kπ + ω)r–4– kπ
ω

∫ r

0
gk,ω(s)s1+ kπ

ω ds +2ω

(
ω2

(
g
′′

k,ω(r) –
g
′

k,ω(r)
r

)
+

gk,ω(r)
r2

(
π2k2 + 3ω2))} ,

(83)

where, we can see that (using the notations given by the two fundamental lemmas 3 and 4):

r–4+ kπ
ω

∫ r

1
gk,ω(s)s1– kπ

ω ds = r–4+ kπ
ω

∫ r

1

gk,ω(s)
s2 s3– kπ

ω ds = J–4+ kπ
ω ,3– kπ

ω(
gk,ω

r2

)

=⇒
∥∥∥∥r–4+ kπ

ω

∫ r

1
gk,ω(s)s1– kπ

ω ds
∥∥∥∥

L2(rdr)
≤ ω

kπ – 3ω

∥∥∥gk,ω

r2

∥∥∥
L2(rdr)

,

r–4– kπ
ω

∫ r

0
gk,ω(s)s1+ kπ

ω ds = r–4– kπ
ω

∫ r

0

gk,ω(s)
s2 s3+ kπ

ω ds = I–4– kπ
ω ,3+ kπ

ω(
gk,ω

r2

)
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=⇒
∥∥∥∥r–4– kπ

ω

∫ r

0
gk,ω(s)s1+ kπ

ω ds
∥∥∥∥

L2(rdr)
≤ ω

kπ + 3ω

∥∥∥gk,ω

r2

∥∥∥
L2(rdr)

,

and, since 3
4 < π

ω < 1 and k ≥ 4, thus 3 < kπ
ω < k which implies that r 7→ r–4+ kπ

ω is L2(rdr), and one obtains, with the help of
Cauchy-Schwarz inequality:∥∥∥∥∥r–4+ kπ

ω

∫ 1

0
gk,ω(s)s1+ kπ

ω ds

∥∥∥∥∥
2

L2(rdr)

=

(∫ 1

0

(
gk,ω(s)s

1
2

)
s

1
2 + kπ

ω ds

)2
ω

2 (kπ – 3ω)
,

≤ ∥gk,ω∥2
L2(rdr)

(∫ 1

0
s1+ 2kπ

ω ds

)2
ω

2 (kπ – 3ω)
,

≤ ω2

4
(
k2π2 – 9ω2

) ∥gk,ω∥2
L2(rdr) .

≤ ω2

4
(
k2π2 – 9ω2

) ∥∥∥gk,ω

r2

∥∥∥2

L2(rdr)
,

since r ∈ (0, 1). So, using the expression of d(4)
k,ω(r) given by (83), we arrived at the following estimate:∥∥∥d(4)

k,ω

∥∥∥
L2(rdr)

≤ 1
2ω3

{
(kπ – 3ω)(kπ – 2ω)(kπ – ω)

(
ω

kπ – 3ω
+

ω

2
√

k2π2 – 9ω2

)∥∥∥gk,ω

r2

∥∥∥
L2(rdr)

+ (kπ + 3ω)(kπ + 2ω)(kπ + ω)
ω

kπ + 3ω

∥∥∥gk,ω

r2

∥∥∥
L2(rdr)

+2ω

ω2

∥∥∥g
′′

k,ω

∥∥∥
L2(rdr)

+

∥∥∥∥∥g
′

k,ω

r

∥∥∥∥∥
L2(rdr)

 +
∥∥∥gk,ω

r2

∥∥∥
L2(rdr)

(
π2k2 + 3ω2) ,

which, for k sufficiently large (k ≥ k0 ≥ 4), becomes

∥∥∥d(4)
k,ω

∥∥∥
L2(rdr)

≤ C

∥∥∥g
′′

k,ω

∥∥∥
L2(rdr)

+

∥∥∥∥∥g
′

k,ω

r

∥∥∥∥∥
L2(rdr)

+ k2
∥∥∥gk,ω

r2

∥∥∥
L2(rdr)

 ,

and which implies, with the help of Lemma (7), that

∑
k≥k0

∥∥∥d(4)
k,ω

∥∥∥
L2(rdr)

≤
∑
k≥k0

∥∥∥g
′′

k,ω

∥∥∥
L2(rdr)

+ k

∥∥∥∥∥g
′

k,ω

r

∥∥∥∥∥
L2(rdr)

+ k2
∥∥∥gk,ω

r2

∥∥∥
L2(rdr)


≤ C|||∇2Vω |||L2(Ωω), (84)

here we recall that gk,ω is the kth- Fourier series coefficient of

Vω(r, θ) =
∑
k≥1

gk,ω(r) sin
kπ
ω
θ =

∑
k≥1

Vk,ω(r, θ).

Now, and on the other hand, since Vk,ω ∈ H2(Ωω)∩H1
0(Ωω), one can check that ∆Vk,ω = fk,ω (the kth- Fourier series coefficient of

fω) then by the “second fundamental inequality”, cf. (20, Corollary 2.3.6 p.31), see also the proof of Theorem 1, which states that

|||∇2Vk,ω |||L2(Ωω) ≤ |||∆Vk,ω |||L2(Ωω) = ||fk,ω ||L2(Ωω),

we conclude that
|||∇2Vω |||L2(Ωω) ≤

∑
k≥4

|||∇2Vk,ω |||L2(Ωω) ≤
∑
k≥4

||fk,ω ||L2(Ωω)

and, consequently, by (84), one obtains ∑
k≥k0

∥∥∥d(4)
k,ω

∥∥∥
L2(rdr)

≤
∑
k≥4

||fk,ω ||L2(Ωω).
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Henceforth, ∥∥∥∥∥∥
∑
k≥k0

d(4)
k,ω(r) sin

kπ
ω
θ

∥∥∥∥∥∥
L2(Ωω)

≤
√
ω

2

∑
k≥k0

∥∥∥d(4)
k,ω

∥∥∥
L2(rdr)

≤
√
ω

2

∑
k≥4

||fk,ω ||L2(Ωω) ≤ C||fω ||L2(Ωω).

Thus, we obtained ∥∥U(4,0)
ω

∥∥
L2(Ωω) ≤ C||fω ||L2(Ωω).

For the other derivatives to complete the ∇4, the arguments are similar. Finally, the proof of the theorem is achieved.

4 PROOF OF THE MAIN RESULT

In this section, we present the proof of the main Theorem 2 stated in Section 2.

Proof of Theorem 2. The proof now is direct as a consequence of theorems 3, 4, 5 and 7, and the former Fourier series analysis.
In order to lighten the length of the manuscript, a rough outline can be written as follows:

We use four problems: we write the Fourier series expansion of fω separating the singular frequencies k = 1, 2, 3 from the
regular ones k ≥ 4, as follows:

fω = f1,ω + f2,ω + f3,ω +
∑
k≥4

fk,ω

where
fj,ω(r, θ) = cj,ω(r) sin

jπ
ω
θ, j ≥ 1. (85)

By Theorem 3, (
λ1,1r2– π

ω + λ2,1r2+ π
ω

)
sin

π

ω
θ + b1,ω(r) sin

π

ω
θ

is the solution of Problem (1) with r.h.s f1,ω corresponding to the singular frequency k = 1. Thus u(1)
ω,r(r, θ) = b1,ω(r) sin

π

ω
θ

belongs to H4(Ωω), and the estimate (18) follows from (31).
By Theorem 4, and Theorem 5,

λ3,jr
jπ
ω sin

jπ
ω
θ + bj,ω(r) sin

jπ
ω
θ

for j = 2, 3, is the solution of Problem (1) with r.h.s fj,ω corresponding to a superposition of the singular frequencies j = 2 and 3.

Therefore, u(j)
ω,r(r, θ) = bj,ω(r) sin

jπ
ω
θ belongs to H4(Ωω).

Next, by Theorem 7, the Fourier series of solution of Problem 1 with r.h.s
∑

k≥4 fk,ω corresponding to a superposition of all
regular frequency k ≥ 4 is given by∑

k≥4

(
bk,ω(r) + Ak,ωr2+ kπ

ω + Bk,ωr
kπ
ω

)
sin

kπ
ω
θ =

∑
k≥4

Uk,ω(r, θ),

and the uniform estimate (19) follows from the three theorems 4,5 and 7 corresponding to the two singular frequencies k = 2, 3
and the regular ones k ≥ 4 respectively.

Now, as discussed in the beginning of Section 3, a power function of r, (r, θ) 7→ rαk sin kπ
ω θ, αk non-integer, belongs to the

Sobolev space H2+σ(Ωω) for all σ < αk – 1. Thus, the regularity H2+σ of the singular part(
λ1,1r2– π

ω + λ2,1r2+ π
ω

)
sin

π

ω
θ + +λ3,2r

2π
ω sin

2π
ω
θ + λ3,3r

3π
ω sin

3π
ω
θ,

is achieved for all σ such that
σ < 2 –

π

ω
– 1 = 1 –

π

ω
.

So, uω ∈ H2+σ(Ωω) ∩ H1
0(Ωω) and the decomposition (14) follows with their explicit expressions as given in Section 3.
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Finally, the sharpness Estimate (18) follows directly from theorems 3 - Inequality (31) and the three theorems 4,5 and 7
corresponding to the two singular frequencies k = 2, 3 and the regular ones k ≥ 4 respectively. The proof of the theorem is
achieved.

5 CONCLUSION AND OUTLOOK

Throughout this paper, we have given explicit extraction formulas via Fourier analysis of the coefficients of singularity and
regular part of the solutions of a family of bi-harmonic equations with Navier’s boundary conditions on a family of open non-
convex planar sectors with opening angle ω ∈ (π, 4π/3). We have shown that explicit and sharp estimates can be obtained by
highlighting the decomposition of the solution into regular/singular parts whose behavior in the vicinity of the critical angle
ω = π is as follows:

• The regular part associated the the first Fourier frequency k = 1 is unstable in H4 norm in the vicinity of π. Two coefficients
of singularity λ1,1 and λ2,1 both are unbounded for ω close to π+.

• The second and third frequencies k = 2, 3 produce bounded coefficients of singularity λ3,2 and λ3,3 w.r.t ω in the vicinity of π.
• A stable regular part in the norm H4 corresponding to all frequencies higher than 1.
• The global solution remains stable in the H2 norm from standard uniform estimates of the weak variational solution. This

problem is actually quite similar to that of Babuška, cf.15, when additional regularity on the source term fω is assumed at
the origin. To the authors knowledge, question of existence of stable H4 decomposition near a concave corner was never
addressed in the literature and still an open problem.

• Possible extension of the results herein are envisaged for boundary value problems with general (mixed) boundary conditions.
• Another possible and open question is: Can we approach a nearly flat boundary by another completely flat one in the case of

a non-convex opening angle? This will be of great interest in numerical approximation for fourth order elliptic problems
when the error depends on the finite elements, the mesh used, and the regularity of the solutions.
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