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Abstract

Several factors influence the degree of gene reuse during repeated adaptation, offering insights into how evolution is constrained

at the genomic level. Although numerous studies have identified signatures of genomic repeatability in adaptive evolution,

there is a lack of synthesis regarding the statistical tests used to quantify gene reuse across lineages. In this review, we survey

published studies to (i) compile a comprehensive list of statistical indices available for quantifying gene reuse during adaptation

and (ii) compare patterns of the degree of gene reuse across 120 taxa and four trait categories. Our analysis reveals that

currently gene reuse studies are biased in focal species and traits commonly studied. Importantly, relatively few genomic loci

contribute to repeatability and this variability is context dependent. By summarizing currently available indices to quantify gene

reuse, we propose a straightforward methodological framework for designing studies that quantify gene reuse during repeated

adaptation. While this review advances our understanding of the degree of gene reuse, we emphasize the need for broader and

more inclusive research to uncover the factors driving variability in gene reuse during adaptive evolution.
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ABSTRACT 18 

Several factors influence the degree of gene reuse during repeated adaptation, offering 19 
insights into how evolution is constrained at the genomic level. Although numerous studies 20 
have identified signatures of genomic repeatability in adaptive evolution, there is a lack of 21 
synthesis regarding the statistical tests used to quantify gene reuse across lineages. In this 22 
review, we survey published studies to (i) compile a comprehensive list of statistical indices 23 
available for quantifying gene reuse during adaptation and (ii) compare patterns of the degree 24 
of gene reuse across 120 taxa and four trait categories. Our analysis reveals that currently 25 
gene reuse studies are biased in focal species and traits commonly studied. Importantly, 26 
relatively few genomic loci contribute to repeatability and this variability is context dependent. 27 
By summarizing currently available indices to quantify gene reuse, we propose a 28 
straightforward methodological framework for designing studies that quantify gene reuse 29 
during repeated adaptation. While this review advances our understanding of the degree of 30 
gene reuse, we emphasize the need for broader and more inclusive research to uncover the 31 
factors driving variability in gene reuse during adaptive evolution. 32 
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In nature, different lineages often adapt to similar environmental pressures by reusing the 34 
same genes, though not necessarily the same mutations—a phenomenon termed as repeated 35 
adaptation (Arendt and Reznick 2008; Conte et al. 2012; Martin and Orgogozo 2013; 36 
Bohutínská and Peichel 2024). Also referred to as replicated, parallel, or convergent 37 
adaptation (Arendt and Reznick 2008), this process emphasizes the reuse of genes (hereafter 38 
referred to as “gene reuse”) across lineages (see definition in (Bohutínská and Peichel 2024) 39 
facing comparable environmental conditions (Martin and Orgogozo 2013). Also identified as 40 
genetic parallelism (Rosenblum, Parent, and Brandt 2014), significant progress has been 41 
made in understanding the factors influencing the probability of gene reuse during repeated 42 
phenotypic evolution. However, there remains a gap in our knowledge about the factors 43 
governing the degree of gene reuse or extent of genomic repeatability. Identifying these factors 44 
is crucial to elucidate how genomic constraints shape evolutionary processes and affect the 45 
predictability of adaptation (Speed and Arbuckle 2017; Yeaman et al. 2018; Pearless and 46 
Freed 2024). By exploring the variability in the degree of gene reuse underlying repeated 47 
evolution of different traits across various taxa, we can better understand the rules determining 48 
repeatable patterns of evolution across the diversity of life. 49 

Reverse genetic methods can be used to investigate gene reuse across different lineages 50 
facing similar environmental challenges by using a genome scan approach to identify 51 
candidate genes in populations subjected to contrasting environmental conditions (Bomblies 52 
and Peichel 2022; Bohutínská and Peichel 2024). Additionally, experimental evolution studies 53 
have successfully revealed the nature of parallel evolution in microbial systems (Speed and 54 
Arbuckle 2017). In this review, we leverage published studies to discuss the key factors 55 
influencing degree of gene reuse, examine current indices used to quantify genomic 56 
parallelism, survey current literature to identify patterns of variation in degree of gene reuse, 57 
and propose a conceptual framework to guide future research. Through this synthesis, we aim 58 
to provide a comprehensive foundation for advancing the study of genomic basis of repeated 59 
adaptation, offering insights into both its variability and broader implications for evolutionary 60 
predictability. 61 

Factors affecting the probability and degree of gene reuse underlying repeated 62 
adaptation 63 

The probability of parallelism—the likelihood of parallel genetic changes occurring at the 64 
molecular level—is shaped by a variety of biological and ecological factors. In the most 65 
preliminary model, which used extreme value theory, Orr (2005) explored the probability of 66 
fixation of the same mutation in two independent populations and found the probability of 67 
parallelism at the nucleotide level is greater under a model including natural selection 68 
compared with a purely neutral model (Orr 2005). Since then, several studies have identified 69 
various factors which can affect the probability of genetic parallelism (see (Rosenblum, Parent, 70 
and Brandt 2014) for review of studies). In population genetics, three factors - the mutation 71 
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rate of the locus, the probability that mutations at the locus are net beneficial and the average 72 
magnitude of the fitness change caused by these mutational effects, are factors that predict if a 73 
mutation will contribute to parallel evolution (Stern 2013). 74 

Indeed theoretical studies have shown that the predictability of parallel evolution in natural 75 
populations is influenced by factors like standing genetic variation (SGV) and gene flow (Elmer 76 
and Meyer 2011; Conte et al. 2012; Ralph and Coop 2015; Hoban et al. 2016; Bomblies and 77 
Peichel 2022). Beneficial alleles present in SGV or transferred via gene flow before selection 78 
events can elevate the likelihood of parallel evolution, as supported by modeling studies. For 79 
instance, Lee and Coop (2017) highlighted the role of shared selective sweeps under strong, 80 
recent selection pressures (Lee and Coop 2017), while MacPherson and Nuismer (2017) 81 
demonstrated that the probability of parallel genetic evolution increases with stronger selection 82 
and larger effective population sizes, particularly for genes with significant phenotypic effects 83 
(MacPherson and Nuismer 2017). Similarly, Chevin et al. (2010) showed that mutation 84 
heterogeneity across loci favors parallel evolution, especially when pleiotropy is low or 85 
variance in pleiotropy and fitness effects is high (Chevin, Martin, and Lenormand 2010). Gene 86 
reuse is more probable when populations originate from a shared ancestor compared to when 87 
they arise from distinct, divergent ancestors which has been now established using several 88 
empirical studies (Conte et al. 2012; Bohutínská and Peichel 2024).  89 

The factors limiting the probability of genetic parallelism can in theory also cause variability in 90 
the degree of gene reuse. The probability of gene reuse depends on the beneficial nature of a 91 
mutation such that the mutation should increase net fitness where the deleterious effects are 92 
minimal. Thus, it can be predicted that the mutations that cause large phenotypic effects, such 93 
as many null mutations, may not be favored by natural selection because pleiotropic effects on 94 
traits have antagonistic effects on fitness (Stern 2013). But this inference of magnitude gets at 95 
the fitness effect of mutations not the extent of reuse of mutations. Moreover, the probability of 96 
gene reuse can be decoupled from the degree of gene reuse where similar factors such as 97 
SGV or completely different factors can affect degree of gene reuse. Indeed, divergence time 98 
between lineages is a key determinant, with gene reuse decreasing as divergence increases. 99 
However, a comprehensive review of all possible factors which can drive this variability is 100 
lacking and requires a timely assessment.  101 

How do we quantify gene reuse currently? 102 

Both non-parametric and parametric statistical tests have been used to quantify the degree of 103 
gene reuse during repeated adaptation. An important distinction when using these indices is in 104 
their consideration of the genetic architecture of the trait which has been essentially missing 105 
until now. Borrowing from ecological studies (Connor and Simberloff 1979), similarity indices   106 
have been extended to identify repeated phenotypic evolution with the caveat that these 107 
indices are often not rooted in probability-based frameworks. These indices essentially indicate 108 
if the observed number of genes underlying repeatability exceed null expectations. The 109 
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conclusions about the causes of the degree of gene reuse is made after the significance 110 
testing. We highlight a few such indices below. 111 

Bailey, Rodrigue, and Kassen (2015) studied parallel evolution in bacterial populations and 112 
used Jaccard similarity indices (J) to estimate the probability of genetic parallelism where J 113 
describes that likelihood that the same gene is mutated in two independent lineages (Bailey, 114 
Rodrigue, and Kassen 2015). They compared degree of parallelism across different biological 115 
hierarchical levels by comparing gene overlap between lineages. Their results showed that 116 
degree of parallelism followed a decreasing order with the highest J index value associated 117 
with fitness and lowest to phenotype. 118 

The hypergeometric test is frequently applied to calculate similarity in ecological contexts 119 
(Connor and Simberloff 1979), but its extension to genomic datasets presents additional 120 
complexity. To address this, Plaisier et al. (2010) introduced a modified version of this test 121 
called the Rank–Rank Hypergeometric Overlap (RRHO), a threshold-free algorithm. RRHO 122 
evaluates gene set overlap in differential expression datasets by iteratively comparing two 123 
gene lists ranked by their differential expression levels across profiling experiments, calculating 124 
the statistical significance of overlapping genes at each step (Plaisier et al. 2010). Subsequent 125 
studies have adapted this approach to assess genic overlap among lineages, thereby 126 
quantifying gene reuse in response to environmental changes. For instance, Cheng et al. 127 
(2021) employed pairwise hypergeometric tests using the R function dhyper to show that East 128 
Asian songbirds exhibit parallel functional responses to extreme elevation, despite relying on 129 
different genes (Cheng et al. 2021). Their results revealed that on average, any two pairs of 130 
bird lineages shared 10.9 candidate genes, with no single gene found in all comparisons. 131 
Similarly, Wang et al. applied comparable methods to uncover substantial evidence of parallel 132 
adaptation at the SNP, gene, and pathway levels in four highland maize populations (Wang et 133 
al. 2021).  134 

Wilcoxon-signed rank tests can also be used to quantify similarity of genes between 135 
lineages. Yeaman et al. (2016) used the null-W method to detect repeated gene reuse in 136 
cases of convergent adaptation to environmental variables in two distantly related species, 137 
lodgepole pine and interior spruce (Yeaman et al. 2016). Briefly, they used a Wilcoxon-signed 138 
rank test to compare ρ² values of non-top-candidate genes and top-candidate orthologs to a 139 
background set of 10,000 SNPs. Null distributions of W statistics were transformed into Z-140 
scores and empirical p-values were calculated by comparing these scores to the null 141 
distribution. This approach accounts for the role of linkage disequilibrium in creating regions 142 
with high association signals by chance. They quantified similarities in the signatures of 143 
association underlying convergent adaptation by comparing the strength of association for 144 
SNPs within top-candidate orthologs to a null distribution derived from non-top-candidate 145 
orthologs. Their analysis suggested that around 10-18% of locally adapted genes were 146 
evolving convergently.  147 
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Chaturvedi et al. (2018) utilized an X-fold enrichment metric to evaluate and quantify the 148 
excess overlap of SNPs associated with host plant use in Melissa blue butterflies (Chaturvedi 149 
et al. 2018). The reported X-fold enrichment values served as indicators of predictability in the 150 
context of parallel genetic changes underlying host use in multiple lineages. For instance, an 151 
X-fold enrichment of 2.0 implies that twice as many SNPs are associated with host plant use in 152 
repeated colonization events as would be expected by chance. This result indicates that 153 
patterns of genomic change can be anticipated at twice the rate of random expectations. While 154 
most SNPs were strongly associated with host use in none or only one lineage, the study 155 
identified an approximate twofold excess of SNPs associated with host use across both 156 
lineages. Chaturvedi et al. (2023) applied the same X-fold enrichment metric to explore 157 
repeated gene reuse during adaptation to climatic variables in eight species of Timema stick 158 
insects. Their findings underscored the collective influence of shared ecological factors and 159 
genomic backgrounds on the degree of genomic parallelism (Chaturvedi et al. 2022). Their 160 
analysis revealed a two- to fourfold excess of genomic parallelism for various climate variables 161 
across species. Furthermore, the results demonstrated a predictable decline in genomic 162 
parallelism with greater divergence times between species (also see (Rêgo et al. 2020) for 163 
experimental evolution application). 164 

While these indices are useful, they cannot always differentiate between the level of 165 
repeatability and the proportion of genes available for adaptation by considering the genomic 166 
architecture of the trait in question. Yeaman et al. (2018) introduced the C-score index, a 167 
novel metric to quantify constraints driving the observed levels of repeated adaptation 168 
(Yeaman et al. 2018). The C-scores are derived from the hypergeometric distribution and 169 
allows for simultaneous analysis across multiple lineages. Their test produces three indices 170 
Chyper, Cchisq (collectively called C-scores) and Pa,lik. Here the C-scores quantify the probability 171 
of repeatability given the level of contraints (constraint is used here to indicate the number of 172 
loci available for repeatability).  Pa,lik  quantifies the proportion of genes available for 173 
adaptation. Thus, if multiple genes are contributing to a trait, the Pa,lik  index will be high and 174 
the C-scores will be low due to low level of constraints. Conversely, if only a single large effect 175 
gene is contributing to a trait and is being repeated, the Pa,lik  index will be low and the C-176 
scores will be high due to high level of constraints. In this way, the three indices together 177 
enable comparisons across species and trait types and provides a framework to estimate the 178 
effective proportion of adaptation-capable genes within a genome. This builds on models 179 
which identify the mode of convergent evolution wherein standing genetic variation or gene 180 
flow before the selection episode could lead to different probabilities of genetic changes. 181 

Finally, Yeaman, and Whitlock (2023) developed PicMin, a statistical approach which 182 
estimates the significance of repeated molecular evolution for individual genes by leveraging 183 
genome scan results (Booker, Yeaman, and Whitlock 2023). Importantly, the model is 184 
adaptable to any number of lineages, with its statistical power increasing as more lineages 185 
exhibit signals of repeated adaptation at a given gene. When applying PicMin to compare two 186 
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lineages, the p-value for each gene is calculated as the cumulative probability density for the 187 
larger of the two p-values. The expected number of false positives is determined by 188 
considering the number of orthologs being compared. The number of genes showing signals of 189 
repeated adaptation can then be estimated by subtracting the expected false positives from 190 
the total number of genes with a p-value below a given threshold. A binomial test is 191 
subsequently used to determine the significance of the excess number of genes relative to the 192 
null expectation. 193 

Together these indices present a solid start towards recognizing a standard set of methods to 194 
cross-validate the observed degree of gene reuse in repeated adaptation studies. 195 

Quantitative Comparison of Degree of Gene Reuse from published studies   196 

To objectively investigate the degree of gene reuse underlying repeated adaptation, we 197 
conducted a quantitative review of published studies spanning diverse taxa and traits. Our goal 198 
was to visualize patterns of variability and assess the consistency of genome-wide parallelism 199 
across lineages while ensuring studies shared comparable sequencing methodologies, 200 
analytical frameworks, and study designs. We briefly describe our methods here, please refer 201 
to supplementary methods for details. We also discuss the major details of our analyses here 202 
but have provided additional details from the studies in the supplementary table which can be 203 
used by readers for future work. 204 

Literature Search Criteria and Data Collection   205 

Using comprehensive literature search criteria, we compiled data from 104 studies 206 
investigating repeated genomic adaptation across two or more lineages. These studies 207 
included mostly studies using reverse-genetics approach to identify genomic regions 208 
associated with repeated adaptation. We also included studies from microbial systems which 209 
included experimental evolution to include microbial taxa in our list of species. From these 210 
studies, we extracted key information including the trait category, types of genomic loci 211 
analyzed, the total number of loci tested, and the proportion of loci shared across lineages 212 
(among others, see Supplementary methods). Traits were categorized as morphological, 213 
physiological, life-history, or behavioral, resulting in 97 unique traits (see Supplementary Table 214 
1).  We identified the types of loci used to test for parallel adaptation, which included single 215 
nucleotide variants (SNVs), quantitative trait loci (QTLs), mutations, structural variants (SVs), 216 
genes or orthologues, and differentially expressed genes (DEGs). For studies with variation in 217 
the number of loci associated with a trait across lineages, we used an average to approximate 218 
the number of loci. Additionally, we noted whether studies applied formal significance testing to 219 
check if the observed number of parallel or repeated loci were more than expected under 220 
random chance. Genome size for each focal species was recorded from the original 221 
manuscript or NCBI-SRA. Lastly, we summarized patterns of variation in shared loci based on 222 
species or phylum, trait category, genomic locus type, and genome size.   223 
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What does the data tell us about studies on genomic basis of repeated adaptation? 224 

Our final dataset spanned 13 phyla and approximately 97 unique species (Figure 2). Chordata 225 
was the most represented phylum, particularly fishes (N = 42), followed by Tracheophyta (N = 226 
17) and Arthropoda (N = 17). Across all four trait categories, physiological traits dominated (N 227 
= 86), while behavioral traits were the least represented (N = 6) (Figure 3A). Only 20 out of 107 228 
studies focused on oligogenic traits, whereas most studies investigated traits with polygenic 229 
genetic architectures and most of our selected studies were focused on multi-locus traits which 230 
was essential for our comparison (Figure 3A). 231 

Most studies in our dataset utilized SNVs to identify parallel genomic changes (N = 56, Figure 232 
2). To address genome coverage limitations, many studies employed a window-based 233 
approach or aggregated SNVs to the gene level, treating "genes" as the loci for comparison. 234 
We observed that genome size significantly influenced the number of shared loci across 235 
lineages, with clear variation linked to taxonomic classification (Figure 3B, R2 = 0.016; p-value 236 
= <0.005).  237 

We summarized how many genetic variants contribute to repeatability across studies by 238 
calculating the proportion of trait-associated loci identified as "shared loci" within each study. 239 
On average, 15.85% of SNVs were shared in SNV-based datasets (N = 28 studies), 14% of 240 
genes in gene-based datasets (N = 21), 17.6% of mutations in mutation-based datasets (N = 241 
10), 22% of QTLs in QTL-based datasets (N = 5), and only 0.64% of differentially expressed 242 
genes in expression-based datasets (N = 5). However, this comparison was limited due to 243 
inconsistencies in how gene reuse numbers were reported across studies. To address this, we 244 
selected 20 SNP-based and 14 gene-based studies where comparisons were clearly defined. 245 
Among these, we found that, on average, only 13.2% of total SNVs in a dataset were trait-246 
associated, of which 20.3% were shared across lineages. In contrast, 89.5% of total genes 247 
were trait-associated, but only 14% were shared. This analysis highlights that relatively few 248 
genomic loci contribute to repeatability, with gene reuse being least detected in gene 249 
expression studies. 250 

Several methods were employed to identify outlier loci, including genotype-by-environment 251 
association analyses, Fst outlier tests, parametric and non-parametric tests, QTL analyses, and 252 
linear mixed models. Several statistical tests were applied to identify if the observed number of 253 
shared loci were more than expected under chance. These included Jaccard Similarity Index 254 
(J) (5 studies), Hyper-Geometric tests (5 studies), False Discovery Rate (FDR) statistics and 255 
Fisher Exact Test (12 studies), and permutation tests or X-fold enrichment tests or Null-W (12 256 
studies) (Supplementary Table 1). 257 

Based on an analysis of 104 published studies spanning 120 taxa, three key themes emerged 258 
about the current state of studies on gene reuse during adaptation (Figure 2). First, most 259 
studies focus on specific traits, predominantly morphological or life-history traits. Behavioral 260 



 8 

traits are grossly underrepresented. This can be fixed as we have made considerable 261 
advances in studying the genetics of behavioral traits (Hoekstra and Robinson 2022). Second, 262 
measures of degree of gene reuse vary widely across species, traits, evolutionary scales, and 263 
genetic levels, including loci and chromosomal rearrangements. Importantly, relatively few 264 
genomic loci contribute to repeatability which could support the idea that only major genes 265 
contribute to adaptation due to constraints of genetic architecture. Third, the methodologies to 266 
quantify gene reuse are many and a more standardized framework could be useful for making 267 
more meaningful comparisons about degree of gene reuse across several scales and levels. 268 
Currently, non-parametric tests still dominate quantification of gene reuse. However, these 269 
approaches can be problematic and can identify false positives due to linkage disequilibrium or 270 
overlooked features of genomic data. Permutation-based approaches can overcome these 271 
limitations and can address the need for additional cross-validation in genotype-environment 272 
association studies (Yeaman et al. 2018; Chaturvedi et al. 2022). 273 

Conclusion 274 

In the 18th century, Laplace’s demon symbolized the idea of perfect knowledge, capable of 275 
predicting the universe's every detail across time. Similarly, in evolution, understanding 276 
predictability is key to uncovering whether the challenges faced by diverse species can be 277 
resolved by a limited set of reliable, reusable solutions. While we may never achieve complete 278 
knowledge, patterns of predictable evolutionary change offer hope. Our review highlights the 279 
high variability in the degree of gene reuse during adaptation and shows that this variability is 280 
context dependent. We emphasize the need for broader taxonomic and trait representation, 281 
suggest relevant indices, as well as standardized frameworks for quantifying gene reuse. 282 
Though we may not yet fully understand gene reuse, the groundwork is firmly in place to refine 283 
analyses and advance our understanding of its role in evolution. 284 
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FIGURES 380 

Figure 1 [BOX 1]: A standardized framework to design studies focused on quantifying gene reuse during 381 
repeated adaptation using reverse genetics approaches. Researchers can follow the following three step 382 
procedure to design studies which can aim to quantify degree of gene reuse during repeated adaptation. 383 
This protocol is based on using reverse-genetics approach to study natural populations but can be 384 
extended to experimental evolution studies. Here we define lineages genetically distinguishable unit that 385 
can encompass populations, species, or even different kingdoms, representing a branch in the tree of 386 
life. In step 2, each point represents a genomic locus (see categories in Supplementary Table 1).  387 

 388 
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Figure 2: A circular representation showing genetic variants found in different species. The bars are 389 
arranged in three rings, where the inner ring shows shared variants (dark bars), middle ring shows 390 
trait-associated variants (medium opacity bars), and outer ring shows total variants (light bars) for 391 
each species. Different colors represent different types of variants: SNPs or SNVs (blue), QTLs 392 
(green), genes (orange), transcripts (red), mutations (purple), and structural variants (brown). 393 
Species names are colored based on their phylum grouping. Black symbols at the bottom of each 394 
bar depicts the trait type studied: physiology (circle), morphology (square), behavior (triangle), and 395 
life history (diamond). All values are shown in log10 scale with original values written on the bars. 396 

 397 

 398 
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Figure 3: Analysis of trait categories, genetic architecture, study type, phylum distribution, and genetic 399 
variants patterns. (a) Bar plots showing distribution of studies across trait categories (behavior, life 400 
history, morphology, and physiology), genetic architecture (oligogenic vs polygenic), study approach 401 
(single-locus vs multi-locus), and phylum distribution across the surveyed literature. Numbers at the end 402 
of each bar indicate total count of studies. (b) Scatter plot showing the relationship between genome size 403 
(Mb, log10) and repeatability (log10). Different shapes represent variant types (SNP, QTL, gene, transcript, 404 
mutation, and SV) and colors indicate different phyla. A linear regression line is shown (R² = 0.016). Both 405 
axes are in log10 scale. Each point represents data from an individual study. 406 

 407 

  408 
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SUPPLEMENTARY METHODS 409 

Selection of papers 410 

We conducted an objective survey of the published literature for studies that tested genomic 411 
basis of repeated adaptation. To obtain a set of representative articles, we searched the online 412 
Semantic Scholar database for all studies in the subject area of evolutionary biology (spanning 413 
2010-2024) that included the topic repeated evolution* parallel adaptation* genome* (a ‘*’ at 414 
the end of a search term includes all words beginning with the preceding letters). We reasoned 415 
that these search terms would detect many studies that had tested and quantified the genomic 416 
basis of parallel or convergent evolution regardless of outcome. In total, the search yielded 159 417 
publications, of which 83 met further criteria for inclusion in the study. To be included, we 418 
required that a study addressed the genomic basis of repeated evolution between two different 419 
lineages generating data that includes at least one of the genomic entities mentioned earlier in 420 
the text.  We included only studies with original data, rather than reviews. It was also 421 
necessary that the studies included to quantify the shared loci using proper tests since we are 422 
trying to design a framework to examine repeated adaptation. However, we did notice that the 423 
search missed several papers which had explicit quantification of degree of parallel genetic 424 
changes. We conducted an additional search on Google Scholar by using the keywords 425 
“quantifying genomic basis of parallel adaptation” and shortlisted 40 additional papers which 426 
met our criteria and had explicitly quantified degree of parallelism in their methods.  While 427 
parsing data for our analysis, we excluded papers that lacked sufficient information about 428 
genetic variants or reported only phenotypic data without corresponding genomic evidence, 429 
resulting in a final dataset of 107 papers. We acknowledge that perhaps we missed some 430 
papers in our search, but our final set of papers provided a good representation across taxa 431 
and traits, something which was crucial for our review. 432 

Final table 433 

We summarized the specific information from the final set of papers which we expected to 434 
influence the degree of genomic parallelism. We created broad categories for some 435 
information. These categories align with the column names in our final spreadsheet 436 
(Supplementary Table 1). We describe these below: 437 

1. Title – The title of the published paper. 438 
2. Author – First author information of the paper. 439 
3. Journal – Journal in which the paper was published. 440 
4. Year of publication 441 
5. Species - Focal study species was identified from each paper. We ended up with 442 

approximately 120 unique species from the final set of papers. 443 
6. Phylum – Phylum classification of the focal species of study. 444 
7. Kingdom – Kingdom classification of the focal species of study. 445 
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8. Genome size – Estimated genome size of the focal study species. We identified the 446 
genome size of the reference genome used in the study. Some studies provided this 447 
information in their paper. For others, we searched the genome size on NCBI Sequence 448 
Archive. We report genome sizes in Megabases (Mb). 449 

9. Divergence_level – We classify the divergence level between the focal lineages used to 450 
compare gene reuse in the study. We classify them in three categories: (i) population; 451 
meaning populations belonging to same species were compared (ii) species; meaning 452 
multiple species of the same genus were compared, and (iii) genus; multiple genus 453 
including different species were compared. 454 

10. Num_Lineages - We follow Bohutínská & Peichel 2024 and define lineages as a 455 
genetically distinguishable unit that can encompass populations, species, or even 456 
different kingdoms, representing a branch in the tree of life. We identified the total 457 
number of lineages used to test for genomic parallelism. 458 

11. Trait – Specific trait studied in the paper which has repeated evolved in the test 459 
lineages. 460 

12. Trait_category – Traits were broadly classified into four categories: (i) morphological (ii) 461 
physiological (iii) life-history (iv) behavior. 462 

13. Data – Test genomic data was classified into six categories based on the genomic 463 
entities used to test for repeated gene reuse: (i) Single nucleotide variants (SNVs) (ii) 464 
Quantitative trait loci (QTLs) (iii) Genes or orthologues (iv) Transcripts (v) Mutations (vi) 465 
Structural variants (SVs). 466 

14. Total_loci – Total number of genetic loci included in the study. 467 
15. Trait_loci – Subset of the total genetic loci which were found associated with the trait 468 

being studied. 469 
16. Shared_loci – Final number of genetic loci associated with gene reuse or shared 470 

between given set of lineages. 471 
17. Percent_trait – Percentage of loci associated with trait out of the total loci used in the 472 

study. 473 
18. Percent_shared – Percentage of loci shared between lineages out of the trait 474 

associated loci identified using outlier analysis. 475 
19. Notes_on_data – Notes on categories of data used to identify shared loci. 476 
20. Trait_type – Focal study trait was multilocus or single-locus. 477 
21. Genetic architecture – The genetic architecture of the studied trait could be (i) 478 

oligogenic or (ii) polygenic. 479 
22. Indices – Indices used to validate that the observed loci underlying repeated adaptation 480 

and more than expected under a null hypothesis. Not standardized, not available for all 481 
studies. 482 

 483 

 484 
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