Thermal habitat shifts, but does not always widen, between embryonic and larval stages of fish

Sarah Weisberg¹, Brianna Brookes², Mariah King³, Kailey Charles⁴, Hannah Karkout⁴, Sky Hadjiargyrou⁴, Molly Rubin⁴, Olivia Bonilla⁵, Jason Marte⁴, Samara Hayes⁴, Ailyn Vasquez Taveras⁴, David Richardson¹, and Janet Nye⁶

January 05, 2025

Abstract

Temperature tolerance can vary greatly between ontogenetic stages of the same species and quantifying stage-specific thermal niches is critical for projecting climate impacts. For fish, 'thermal bottleneck' theory posits that temperature ranges are narrower for embryos than for larvae. However, this theory has not been fully validated with in situ evidence, in part due to lack of data on fish embryos, whose morphological similarities belie visual identification. Here, we used DNA barcoding to estimate thermal ranges of embryos and compare with those of larvae, for five species. None of the species we studied align with the predictions of thermal bottleneck theory. Instead, some species of embryos showed wider tolerances than their respective larvae, and all embryos had lower in situ thermal minima than conspecific larvae. Together, our results suggest that fish move through sliding windows, rather than bottlenecks, of thermal habitat as they progress from embryonic to larval stages.

Hosted file

Weisberg_Ecology_Letters.docx available at https://authorea.com/users/877130/articles/1256642-thermal-habitat-shifts-but-does-not-always-widen-between-embryonic-and-larval-stages-of-fish

¹NOAA Fisheries Northeast Fisheries Science Center

²City College of the City University of New York

³Gettysburg College

⁴Stony Brook University

⁵State University of New York at Oswego

⁶The University of North Carolina at Chapel Hill