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Introduction

Climate variability and change is impacting marine ecosystems and the services they provide to the communi-
ties, businesses, and fisheries that rely on them (Doney et al. 2012, Scheffers et al. 2016, Bryndum-Buchholz
et al. 2019). Globally, oceans are experiencing gradual climate trends (e.g., long-term warming) as well
as climate-induced extreme events (e.g., heatwaves, cold snaps) that can push ecosystems into novel envi-
ronmental states, straining social-ecological systems (Samhouri et al. 2021, Schlegel et al. 2021, Free et
al. 2023). Over the past decade, episodic ocean warming events, known as marine heatwaves (MHWs),
have increased in frequency, intensity, and size compared to a historical baseline (Oliver et al. 2018, 2021),
leading to significant ecological, socio-economic, and human health impacts globally (Smith et al. 2021).
Recent work has focused on characterizing the spatial and temporal redistribution of species in response to
MHWSs (Welch et al. 2023); however, species’ responses to each MHW event can vary significantly (Welch et
al. 2023, Farchadi et al. 2024), challenging traditional ocean management and spatial planning approaches
(Samhouri et al. 2021, Welch et al. 2024).

Species distribution models (SDMs) are a popular tool to understand and predict how species’ spatiotemporal
distributions or abundances change in response to environmental conditions (Hazen et al. 2018, Milanesi et
al. 2020, Barnes et al. 2022, Braun et al. 2023a). Recent studies have used SDMs to evaluate MHW-driven
redistribution of marine predators (Welch et al. 2023) and pelagic fishing fleets (Farchadi et al. 2024),
providing critical insights into the ecological and socioeconomic impacts of MHWSs. Despite the utility of
SDMs in supporting ocean management and conservation efforts (Robinson et al. 2017, Hazen et al. 2018),
their performance can decline under extreme climate events (Muhling et al. 2020, Karp et al. 2023, Allyn
et al. 2024), a challenge that is exacerbated by the increasing prevalence of novel environmental conditions
(Smith et al. 2022). Model performance often depends on how well the training data captures the full
gradient of a species’ environmental preferences and whether novel conditions created by extreme events
generate new areas of suitable habitat (Thuiller et al. 2004, Yates et al. 2018). Model inaccuracies may
also stem from inherent biases in the training data, such as sampling process, observer bias, and analytical
errors, which, if ignored, can generate misleading species-environmental relationships and lead to erroneous
predictions of species distributions (Fletcher et al. 2016, 2019).

In marine fisheries, SDMs have largely relied on single data type approaches, typically derived from either



a fishery-independent source, such as standardized survey efforts and electronic tags (Kleisner et al. 2017,
Lezama-Ochoa et al. 2023), or fishery-dependent data, like vessel catch logbooks and observer programs
(Crear et al. 2021, Karp et al. 2023). Although fishery-independent data is generally considered a less biased
representation of a species’ distribution (Braun et al. 2023b), associated high costs and logistical challenges
often limit the spatiotemporal coverage of these datasets (Dennis et al. 2015). Fishery-independent data
can be particularly sparse in a given area for highly migratory pelagic species, which tend to have extensive
and dynamic ranges (Block et al. 2011) and spend considerable time at depth (Braun et al. 2023c). In
contrast, fishery-dependent data can provide greater spatial and temporal coverage and is common for many
important fishery species. Fishery-dependent data have been used to predict how species may interact with a
fishery (Crear et al. 2021), identify target and bycatch hotspots (Hazen et al. 2018), assess climate-induced
fleet displacements (Farchadi et al. 2024), and analyze spatiotemporal dynamics of catch-per-unit-effort
(Mubhling et al. 2019). However, these data can be biased due to preferential sampling by fishers, which can
mask underlying drivers of species distributions and are more prone to reporting errors (Karp et al. 2023).

Fisheries-independent and -dependent data together may offer complementary information on species distri-
butions. Recent studies have shown that integrated SDMs (iSDMs), which simultaneously model different
data sources while explicitly accounting for the differences in the sampling processes (Isaac et al. 2020), can
yield more accurate predictions of species distributions (Paradinas et al. 2023) with greater predictive skill
compared to models fitted to a single data source (Simmonds et al. 2020, Ahmad Suhaimi et al. 2021).
While various approaches to combine data types have been shown to yield robust SDMs, most studies have
assessed these methods under constant environmental conditions (e.g., k-fold cross-validation; Simmonds et
al. 2020, Ahmad Suhaimi et al. 2021, Braun et al. 2023b). Thus, it remains unknown whether leveraging
diverse data types enhances model performance under novel environmental conditions such as during MHWs.

There is an increasing body of literature examining the performance of SDMs under climate change and
variability (Muhling et al. 2020, Barnes et al. 2022, Brodie et al. 2022, Karp et al. 2023). As marine systems
continue to face increasingly novel and uncertain conditions, quantitative comparisons of model forecasting
performance are crucial to provide accurate and forward-looking information for marine conservation and
management (Thorson 2018). Here, we compare three modeling approaches that vary in their approaches to
leverage multiple data types and spatial dependence treatments for an important fishery species, albacore
tuna (Thunnus alalunga ), during a period of unprecedented MHWSs in the northeast Pacific Ocean (NEP)
to assess each model’s capacity to accurately forecast albacore distributions under MHW conditions. We
discuss our results in the context of current SDM techniques, highlighting how to combine diverse data
sources to advance species distribution modelling in a changing climate.

Methods
Summary

To compare SDM approaches, we modeled albacore tuna habitat suitability in the NEP using two fishery-
dependent (vessel logbook data) and independent (electronic archival tags) albacore occurrence datasets
spanning from 1995 - 2019. We compared three models that varied both in their approaches to how they
leverage diverse data types and account for spatial dependence (Table 1). These models included two dynamic
environmental variables, monthly mean sea surface temperature (SST) and mixed layer depth (MLD), that
were sourced from a high-resolution, data-assimilating ocean model and one static variable representing
bathymetry (Supporting Information). We compared the performance of each model under novel conditions
(i.e., MHWSs) across two dimensions:predictive skill and ecological realism . Models were fit to training data
from 1995 - 2013 and retrospectively forecasted at monthly timesteps from 2014 - 2019, a time period when
the NEP experienced multiple large and intense MHWs.

Albacore Occurrence Data

We used two previously published occurrence datasets for albacore tuna in the NEP (Figure 1): fishery-
dependent vessel logbook records and fishery-independent archival tags. Vessel loghook data were obtained
from U.S. pole-and-line and troll fisheries, which target juvenile albacore throughout the NEP (Muhling et



al. 2019; Figure 1). The logbook program has been in place since the early 1970s, providing daily, set-level
catch information for albacore within the spatial extent of the fishery (Frawley et al. 2020). To account
for varying degrees of accuracy in occurrence locations reported, data was filtered to remove duplicates,
points on land, points outside the NEP, and locations reported in whole degrees, assuming that these were
approximations (Muhling et al. 2019). To align with the temporal extent at which environmental data were
available, vessel logbook records were filtered to retain records between 1995 - 2019. While the proportion
of active fishing vessels participating in the logbook program has varied over time, the composition of the
fleet and the distribution of effort has remained relatively consistent since the 1990s, which falls within the
temporal extent of this study (Frawley et al. 2020).

Fishery-independent data consisted of archival tags deployed on 25 individual juvenile albacore across the
NEP from 2003 to 2016 (Figure 1). This dataset was generated by the Albacore Archival Tagging Program,
which is a collaborative effort between the National Marine Fisheries Service and the American Fishermen’s
Research Foundation to tag albacore in the NEP (Childers et al. 2011, Snyder et al. 2017). Albacore were
fitted with one of three models of archival tags (Lotek LTD2310, LotekLAT2810, and Wildlife Computers
MK9). To construct the most probable tracks from archival tagged albacore, we used a hidden Markov
model (HMMoce R package; Braun et al. 2018), that compares tag-based observations against oceanographic
measurements to provide daily location estimates and the associated uncertainty for each tagged individual
(see additional details in Arostegui et al. 2023). To reduce the autocorrelation structure, both datasets were
independently filtered to remove records with duplicate environmental conditions for each month (Varela et
al. 2014). Lastly, data were filtered to include the spatial extent of 180°W - 100°W and 10°N- 57°N to focus
the analysis on the NEP, as this is where the majority of logbook and tagging data were located (Figure 1)
and where MHW intensities have been greatest (Welch et al. 2023).

Species Distribution Models

Albacore habitat suitability was modeled in relation to environmental variables using three distinct binomial
generalized additive models (GAMs), each differing in their methods to combine data and treatment of
spatial dependence (Table 1): a data pooled habitat-envelope model, a data pooled Gaussian field model,
and a joint-likelihood Gaussian field model. All models used a logit link and were fitted with the Integrated
Nested Laplace Approximation (INLA) framework (Rue et al. 2009), which offers a computationally efficient
alternative to other methods of Bayesian inference (i.e., Markov chain Monte Carlo) while also enabling
smoothing approaches akin to frequentist GAMs (e.g., as implemented in the mgev R package; Lezama-
Ochoa et al. 2020). Each model included three environmental covariates: sea surface temperature (SST),
mixed layer depth (MLD), and bathymetry, which previously have shown to be important drivers of habitat
use for juvenile albacore tuna (Muhling et al. 2019, Farchadi et al. 2024). Here, we outline the design of each
SDM with further details on model parameterization and structure provided in the Supporting Information.

The first model employed a spatially implicit approach, often referred to as a “habitat-envelope” model
(hereafter HE; Brodie et al. 2020), which relies on species-environmental relationships to explain the variation
in species distributions without considering the spatial arrangement of habitats and species occurrences. This
approach is consistent with many traditional applications of SDMs and has been widely adopted to model
highly migratory marine species including albacore tuna (Muhling et al. 2019). To combine the albacore
loghook and tag data in this model, we applied data-pooling methods to combine the two datasets into a
single aggregated dataset for modeling. These methods have been shown to enhance model performance in
similarly designed HE SDMSs by mitigating biases inherent in individual datasets, offering a robust framework
for applications in species distribution modeling (Braun et al. 2023b).

Building upon the HE model, the second model introduced Gaussian fields (GF) to account for spatial
dependence while retaining the data-pooling approach. Unlike the inherent spatially implicit nature of
the HE model, this second model (hereafter termed “GF”) used a geostatistical framework that explicitly
incorporates spatial information through random spatial fields, which capture unmeasured spatial processes
across the study domain (Stock et al. 2020). In INLA, random spatial fields are approximated as discrete
Gaussian Markov random fields (GMRFs) using the stochastic partial differential equation approach with



a Matérn covariance structure (Lindgren et al. 2011), which serves as a smoother based on the assumption
that nearby locations are more similar than distant ones (Krainski et al. 2018). To account for temporally
varying spatial autocorrelation in the training dataset, the GF model was fitted with season-specific GMRFs,
formulated as a cyclic first-order autoregressive spatiotemporal structure, where neighboring seasons (e.g.,
winter and fall) being more closely correlated than those farther apart (e.g., winter and summer).

The third model extended the GF model by employing joint-likelihood methods to explicitly integrate the
two disparate data sources within a single iSDM framework. This model used two separate linear predictors,
with each data source directly informing albacore habitat suitability through shared parameters in a jointly
estimated likelihood. Both sub-models incorporated shared effects for three environmental covariates and
the random spatial fields (Table 1). However, unlike the data pooled GF model, the iSDM included two sets
of random spatial fields: (A) seasonal random spatial fields describing the spatiotemporal autocorrelation
for the tag data and shared with the logbook linear predictor (Barber et al. 2021), and (B) a climatological
spatial field, informed only by the logbook data, to account for any residual autocorrelation not explained
by either the shared seasonal spatial fields or environmental covariates (Simmonds et al. 2020). The decision
to share the archival tag-estimated spatial fields across the linear predictors was informed by prior studies
that used iISDMs to investigate predator-prey interactions (Barber et al. 2021), akin to fisheries systems
where prey spatial dynamics (i.e. albacore tuna) influence predator distributions (i.e. the fishery). With
this structure, we assume that the spatial patterns influencing albacore tuna distributions, as indicated
by fishery-independent archival tag data, directly correspond to the patterns explaining albacore catch in
the fishery-dependent dataset. The second spatial field was modeled without a temporal component (i.e.,
climatology) as the distribution of U.S. pole-and-line and troll fishery varies minimally during the fishing
season (May — November; Figure S2).

Since the data sources only include positive observations of occurrence, models were constructed following
dynamic SDM techniques that use simulated data to represent where individuals were likely absent (i.e.
“pseudo-absences”) as described in Farchadi et al. (in revision ). These methods have been shown to capture
dynamic habitat use at daily temporal scales (Hazen et al. 2018). Briefly, background sampling of pseudo-
absences was generated from the monthly spatial extent of each dataset at a 1:1 ratio for the two datasets
(Barbet-Massin et al. 2012) as has been shown effective for other pelagic species (Hazen et al. 2021, Braun et
al. 2023b). Model outputs from each modeling approach describe albacore “habitat suitability” as continuous
values ranging from 0 (low habitat suitability) to 1 (high habitat suitability).

Model Performance and Environmental Novelty Analysis

We evaluated each model’s forecasting ability during a period of multiple MHWSs in the NEP by training
each model on the full datasets from 1995 - 2013 and testing their performance at monthly time steps on the
held-out data from 2014 - 2019 (Figure 2). Model performance was assessed across two different dimensions:
predictive skill andecological realism . Predictive skill denotes the model’s ability to accurately classify loca-
tions where species were present from those where a species was absent on independent occurrence data. We
quantified predictive skill using two metrics: the Area Under the receiver-operating Curve (AUC) and Mean
Absolute Error (MAE). Using AUC and MAE has been recommended for assessing SDMs, as they provide
complementary insights on model performance while addressing shortcomings inherent in each metric’s ass-
umptions (Konowalik and Nosol 2021). In addition to predictive skill, we evaluated ecological realism , which
considers a model’s capacity to estimate biologically plausible species-environment relationships and predict
spatiotemporal patterns consistent with observed ecological processes. This was assessed qualitatively by 1)
comparing spatial predictions for a forecasted month to the known distribution of albacore during a MHW
and 2) analyzing partial response curves to determine whether they aligned with observed environmental
covariate distributions during the training (1995-2013) and forecasting (2014-2019) periods.

Beyond assessing overall model performance, we evaluated how effectively each model type handled envi-
ronmental novelty using Hellinger Distance (Legendre and Legendre 2012, Johnson and Watson 2021, Karp
et al. 2023), which measures the difference between two probability distributions (see Karp et al. 2023 for
formulas). We calculated Hellinger Distance for both dynamic environmental covariates (SST and MLD) of



each month-year in the test data relative to the climatological conditions of the same month in the training
data. Hellinger Distance quantifies the extent of extrapolation required by the fitted SDM when making
predictions and ranges from 0 to 1, where a value of 0 indicates that the two distributions share the same
information (e.g., complete data overlap), while values of >0.5 indicate greater dissimilarity than similarity
between the two distributions (Johnson and Watson 2021). Finally, we assessed the impact of environmental
novelty on forecast skill by comparing the relationship between AUC and MAE with Hellinger Distance
across the different models.
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Figure 1. Presence locations of albacore tuna from (a) the U.S. pole-and-line and troll fishery logbook
program (1995 - 2019) and (b) fishery-independent electronic archival tags (2003 - 2016). Note that to
protect confidentiality, grid cells for the fishery observer data that contained < 3 vessels were removed.
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Figure 2. Yearly average sea surface temperature anomaly (SSTa) by latitude across the NEP throughout
the training (1995 - 2013) and forecasting (2014 - 2019) periods. Latitudes with novel conditions in the
forecasting period, SSTa exceeding the 90th percentile of the training period, are highlighted with black
borders.



Model Data Combination Approach Environmental Covariates Spatial Fields

HE Data Pooling SST + MLD + Bathymetry NA
GF Data Pooling SST + MLD + Bathymetry Seasonal
iSDM Joint likelihood SST + MLD + Bathymetry Seasonal + climatological

Table 1. Details on forecasting models used in this study, including their approach to combine data, what
environmental covariates were used, and inclusion of spatial fields. Model acronyms refer to habitat envelope
(HE), Gaussian field (GF), integration species distribution model (iISDM). See section Species Distribution
Models in the methods for more detail on model design.

not-yet-known not-yet-known
not-yet-known

unknown

Results

Forecasting Trends

Predictive skill varied among the three models across the forecasting period. The majority of the data
(797%) during this period consisted of logbook records (Figure 3), reflecting the seasonality of the albacore
fishery in the California Current, which operates primarily between May — November (Xu et al. 2017).
Among the models, predictive skill varied primarily based on spatial dependence treatments (i.e., spatially
implicit or explicit). GF and iSDM exhibited similar trends, performing best on average in 2014 and 2019,
with their poorest performance in 2016 (Figure 3a,b). HE followed similar patterns, but consistently showed
lower performance, with its poorest performance in the beginning of the forecasting period (Figure 3a,b).
Furthermore, the degree of novelty for each variable was correlated with the patterns of AUC (r = -0.62
and -0.58 for MLD and SST, respectively) and MAE (r = 0.7 and 0.55 for MLD and SST, respectively),
equating to poorer predictive skill as conditions became increasingly novel relative to the training period
(Figure 3c). For example, months experiencing the highest degree of novelty in MLD and/or SST (e.g.,
May 2018, April 2016, and January 2016) exhibited the poorest model performance, particularly for the HE
model (Figure 3). Trends in novelty for MLD and SST were similar across all years, with small differences
in Hellinger Distance between MLD and SST (Figure 3c), suggesting both variables exhibited comparable
levels of novelty and variability during the forecasting period relative to the training period.

Predictive Skill and Environmental Novelty

All three models demonstrated high predictive skill under the forecasting period, accurately predicting
albacore distributions most months (AUC > 0.8, MAE < 0.3; Figures 3, 4). However, predictive skill for
all models declined as environmental novelty increased for both MLD and SST (Figure 4). Between the
two environmental variables, greater SST novelty led to more pronounced declines in performance for all
models, particularly for HE (Table S1). Despite all modeling approaches demonstrating similar relationships
between predictive skill and environmental novelty, the iSDM consistently outperformed the other models
as novelty increased (Figure 4), with higher average predictive skill under highly novel conditions (AUC =
0.69, MAE = 0.391 for novelty [?] 0.3). Notably, the HE model showed the greatest decline in predictive
skill with increasing novelty (mean AUC 0.47, MAE 0.46) and demonstrated the least predictive skill overall
under these conditions.

Ecological Realism

Similar to their predictive skill, all models’ ability to generate ecologically realistic environmental relation-
ships and spatial predictions varied primarily by spatial dependence treatments. Response curves indicated
that each model captured similar relationships between albacore presence observations and the environmen-
tal variables. However, spatially explicit models (i.e., GF and iSDM) demonstrated a broader relationship



with MLD compared to the HE model. For example, the HE model response curves suggested albacore
suitability was highest at shallow MLDs (7 < 10 meters; Figure 5). This relationship closely resembled the
underlying MLD distributions of the logbook data (Figure S1), which suggested significantly deeper MLDs
relative to the archival tag data (mean MLD: 32.7 4+ 21.9 and 13 + 4.03 for archival tag and logbook data,
respectively). In contrast, the GF and iISDM models suggested high albacore habitat suitability for shallow
MLDs to “100 meters before declining with depth (Figure 5). Additionally, all models showed that response
curves (i.e., from the training period) fully covered the conditions during the forecasting period, though the
distributions for each environmental variable narrowed during this time (Figure 5). Despite this coverage,
the distributions of environmental values differed between the training and forecasting periods. For exam-
ple, SST was warmer, bathymetry shallower, and MLD nearer to the surface during the forecasting period,
indicating that albacore inhabited warmer, shallower waters during MHW conditions (Figure 5).

Spatial predictions were also assessed for ecological realism. During the forecast period under MHW conditi-
ons, the models generally exhibited similar spatial patterns in predicted habitat suitability, though regional
differences were apparent (Figure 6). All models identified coastal waters—particularly off the coasts of Wa-
shington, Oregon, and northern Baja California—and the North Pacific Transition Zone as highly suitable
habitat. However, the HE model produced the least ecologically realistic predictions, as it forecasted higher
habitat suitability across the study area compared to the spatially explicit models. Notably, the HE model
predicted extensive areas of suitable habitat for albacore tuna in areas characterized by warm (positive) SST
anomalies offshore of southern California, whereas the GF and iSDM models demonstrated a discernible
discontinuity in suitability within this highly anomalous region (Figure 6). This overestimation in the HE
model is further reflected in the distribution of predicted suitability values, where it overpredicted habitat
suitability at pseudo-absence locations. In contrast, the GF and iSDM model predictions more accurately
differentiated between presences and pseudoabsences, resulting in a more balanced, and likely realistic, distri-
bution of suitability values (Figure 6). The primary differences between the spatially explicit models were in
the iSDM predictions being more closely aligned with albacore occurrences in coastal Canada and absences
off central California, whereas these regions were connected by a coastal band of apparent high suitability
in the GF predictions. In addition, while both GF and iSDMs identified the waters off Baja California as
suitable, the degree of predicted suitability was significantly higher for the GF model in this region.
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Figure 3. Time series of model performance metrics (a, b) and environmental novelty (c) during the
forecasting period (2014 - 2019). Panels show (a) AUC, (b) MAE, and (c) Hellinger Distance relative to
the training period (1995 - 2013). In (a) and (b), circles and lines are colored by model type, with lines
representing smoothed monthly averages for each metric. In (c), line types differentiate between MLD
and SST novelty. Model acronyms denote habitat envelope (HE), Gaussian field (GF), integrated species
distribution model (iSDM). Circle sizes represent the count of data predicted by the models for each month.
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Figure 6. Forecasted habitat suitability (from 0 = low [in blue] to 1 = high [in yellow]) for each model during
an example month when the NEP experienced a MHW (September 2015). Pink and white contours are the
90th percentile kernel densities for albacore presences and pseudo-absences, respectively, during the month
across the two datasets. Density plots show the distribution of predicted suitability values at presences and
pseudo-absences from each model. Color scale for mapped sea surface temperature anomaly (SSTa; °C)
represents warmer (red) or colder (blue) than the climatological average (SST; 1993 - 2019).

Discussion

Approaches for leveraging diverse data in SDMs have advanced over the last decade, showing great potential
to enhance our understanding of species distributions and improving the accuracy of predictive models
(Fletcher et al. 2019, Isaac et al. 2020, Braun et al. 2023b). Digital and technological advancements have
greatly expanded data availability which has increased efforts to mobilize more diverse data types, opening
new opportunities to leverage multiple data sources for developing robust SDMs (Isaac et al. 2020). Our
exploration of modelling approaches builds on these advances by considering how to maintain skillful SDM
predictions under novel environmental conditions, pointing to promising paths to characterize and predict
the impact of changing ocean ecosystems. Our findings affirm previous research that demonstrates that SDM
performance declines as environmental novelty increases (Muhling et al. 2020, Brodie et al. 2022, Allyn et
al. 2024). However, our results also highlight how spatially explicit joint likelihood approaches maintained
greater predictive skill and ecological realism under novel environmental conditions than traditional spatially
implicit data pooling models. These results emphasize the importance of model-based data integration as a
tool to leverage multiple data sources to make robust predictions under novel conditions. The approaches can
support marine conservation and management applications under uncertain and variable future conditions.

The Power of Integrated Models

Leveraging multiple data types, whether through pooling or explicit integration such as via joint likelihood
approaches, has been shown to generally improve SDM performance by estimating more precise and accurate
environmental relationships (Fletcher et al. 2019, Paradinas et al. 2023, Braun et al. 2023b). Although
recent research has highlighted the application of combining various data for SDMs (Bedrinana-Romano et
al. 2018, Rufener et al. 2021, Paradinas et al. 2023, Braun et al. 2023b), few studies have demonstrated their
capacity to forecast and project potential distributional shifts under novel environmental conditions (Cheva-
lier et al. 2021). Our study suggests that while all model approaches used here perform well during periods
of normal environmental conditions, joint likelihood approaches that explicitly account for the biases in each
data source (i.e., iISDMs) maintain robust and ecologically realistic forecasts as environmental conditions
become increasingly novel. We demonstrate that iSDMs effectively mitigate issues that are broadly attribu-
ted to a model’s forecast skill. Our findings confirm that explicit integration of diverse datasets represents a
promising approach to overcome the potential biases inherent in a single data source, as it enables harnessing
the strength of various data types to facilitate more accurate inferences about a species’ distribution (Isaac
et al. 2020). The models we tested all exhibited high predictive skill (average AUC > 0.83, MAE < 0.25)
and strong ecological realism. This can be particularly beneficial for highly migratory pelagic species, such
as albacore, as using a single data source may only capture a portion of their range, such as that represented
by a fishery, which could lead to mischaracterizing a species’ realized niche (Paradinas et al. 2023, Braun
et al. 2023b). However, our results also suggest that predictive skill may be higher for fishery-dependent
data compared to fishery-independent sources, as seen in the deviations observed in early 2016 (Figure 3).
This aligns with previous findings (Braun et al. 2023b; Farchadi et al. in revision ), where models were
more effective at predicting the fishery’s interaction with a species rather than broader habitat suitability.
These differences underscore the need to carefully consider the representativeness of each data source when
interpreting forecasted distributions.

The improved predictive performance of iSDMs under increasing environmental novelty may stem from
differences in the fitted species-environmental response curves (Thuiller et al. 2004) and their ability to
account for spatiotemporal variation (Muhling et al. 2019, Simmonds et al. 2020). Previous studies evaluating
SDM forecasting performance, whether in the near-term (Muhling et al. 2020, Barnes et al. 2022) or long-
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term (Thuiller et al. 2004, Karp et al. 2023), have emphasized that biased or limited species-environmental
response curves can lead to erroneous predictions. This limitation is often an inherent bias in training
data, such as in fishery catch data that only captures a portion of the species’ preferred habitat conditions
due to sampling bias (e.g., clustering, gear selectivity, limited spatial and/or temporal coverage), resulting
in truncated species-environmental response curves (Chevalier et al. 2021, Barnes et al. 2022, Paradinas
et al. 2023). Our results indicate that leveraging diverse data types can help capture the full range of
environmental conditions a species occupies, but the species response curves depend on how the model
framework combines data types. For example, more generalized species-environmental relationships were
estimated for both spatially explicit models (i.e. GF, iSDM) which performed better than the spatially
implicit model. This is likely due, at least in part, to HE response curves that exhibited greater overfitting
and were heavily biased towards distributions of the more data-rich vessel logbook records, particularly for
MLD (Figure 5). Notably, the GF and iSDM response curves for MLD closely matched the known diving
behavior of juvenile albacore tuna, which regularly dive to approximately 100 meters (Frawley et al. 2024)
but are often vertically-limited by colder temperatures below the mixed layer (Graham and Dickson 1981). In
contrast, the HE model suggested albacore suitability declined with deeper MLDs, particularly > 10 meters,
a pattern that mirrors the environmental conditions targeted by the pole-and-line and troll fisheries along
the U.S. West Coast (Figure S1). This demonstrates that the inclusion of GMRFs in the spatially explicit
models helped account for unmeasured variation in albacore distribution. By modeling the spatial structure
separately, these models provided more reliable estimates of environmental relationships, reducing the risk
of response curves being artifacts of sampling biases in the fishery data.

Our results also highlight how approaches to spatial dependence and combining disparate data sources can
influence an SDM’s capacity to accurately forecast species distributions under novel environmental condi-
tions. Consistent with previous studies, we found that habitat envelope models produce narrower response
curves than spatially explicit frameworks, likely due to their inability to capture residual variability (Thorson
2018, Simmonds et al. 2020). Consequently, tightly fit response curves may fail to account for non-stationary
species-environment relationships under novel conditions. In contrast, the broader, more generalized response
curves generated by iISDMs better capture these dynamics over time (Yates et al. 2018, Muhling et al. 2020;
Figure 5). Additionally, the strong performance of spatially explicit models may stem from their ability to in-
corporate variation across multiple temporal scales. Consistent with prior findings, our analysis suggests that
including GMRFs—analogous to seasonal or climatological covariates—enhances forecast skill, particularly
in the near term (Barnes et al. 2022). Furthermore, differences between the two spatially explicit models,
GF and iSDM, highlight the influence of data integration methods. While the GF model pools data sources,
potentially masking differences in sampling design (Fletcher et al. 2019), iISDMs estimate data-specific spatial
fields, allowing for improved handling of spatiotemporal variation and biases while also balancing dispropor-
tionate sample sizes). This, in turn, can lead to more accurate representation of the underlying ecology of
the species. Given the challenges of identifying and addressing bias in different data sources, ongoing evalua-
tion of integration methods remains essential for optimizing predictive performance in species distribution
modeling.

Implications for Conservation & Management

Accurate predictions of species distributions across multiple time scales, i.e. nowcasts to long term projecti-
ons, are vital to support climate-ready and -resilient conservation and resource management (Lindgren et al.
2011, Crear et al. 2021). Prolonged MHWs in the NEP have been linked to widespread ecosystem changes
that have exacerbated human-wildlife conflicts (e.g. whale entanglements and sea turtle bycatch; Santora
et al. 2020) and intensified socio-economic stress on fishing communities (e.g., decreased catch or shifting
fishing grounds; (Fisher et al. 2020, Smith et al. 2021, Free et al. 2023, Farchadi et al. 2024). With increased
uncertainty about how future, extreme climate events will affect the displacement of species and fisheries,
the ability to quickly adapt to such novel conditions poses considerable challenges for marine conservation
and management (Fisher et al. 2020, Samhouri et al. 2021). Therefore, there is a critical need for skillful eco-
logical forecasts that provide advanced warnings on relevant timescales for decision-making, enabling a more
proactive management framework capable of keeping pace with MHWSs (Brodie et al. 2023). For example, in
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the case of transboundary fisheries like albacore tuna, which have exhibited cross-jurisdictional shifts under
MHWSs (Welch et al. 2023), the ability to leverage data across geographical and political regions can yield
more accurate predictions of how albacore may redistribute during future extreme climate events. Here, we
demonstrate the utility of model-based data integration in ecological forecasting and offer insights on best
practices for integrating diverse data sources when predicting into uncertain and variable future conditions.
Although extremely novel environmental conditions may always pose challenges (Pinsky and Mantua 2014,
Pinsky et al. 2021), iSDMs are well-positioned to readily integrate disparate sources in a way that retains
the strengths of each and can better inform potential ecological impacts of extreme events (Isaac et al. 2020,
Chevalier et al. 2021).

Our study adds to the growing body of literature that indicates the utility of iSDMs (Isaac et al. 2020)
and echoes calls to continue exploring their performance under different applications through retrospective
skill testing (Thorson 2018, Barnes et al. 2022). For example, operational forecasts of SST in the California
Current, when configured for specific management applications, have demonstrated skillful predictions up
to 12 months in advance (Brodie et al. 2023). Incorporating such forecasting tools into an iSDM framework
could enhance near-term seasonal forecasts of species distributions, though further studies are needed to
evaluate their contribution and determine at what lead times do forecasts remain skillful (Thorson 2018,
Brodie et al. 2023).Furthermore, while our study demonstrated that broader species-environment response
curves may help buffer prediction skill against environmental novelty, previous studies have suggested that
non-stationarity could impact model performance (Yates et al. 2018, Ward et al. 2022) — highlighting the need
for additional research to understand how non-stationarity in environmental relationships can be accounted
for when forecasting (Yates et al. 2018). As our social-ecological systems face increasingly novel conditions
under climate change, enhancing our capacity to leverage growing, diverse datasets will be essential for
developing robust models that support conservation and management decisions
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