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Abstract

This study focuses on unraveling the microphysical origins of the nonlinear elastic effects, which are pervasive in the Earth’s

crust. Here, we examine the influence of grain shape and relative humidity (RH) on the elastic nonlinearity of granular

assemblies made of spherical glass beads and angular sand particles. We find that their elastic nonlinearity is of the same order

of magnitude. However, while the elastic nonlinearity of glass beads increases with RH, that of sand particles is rather RH

independent. We attribute this difference to the angularity of sand particles; absorbed water on the spherical grains weakens

the junctions making them more nonlinear, while no such effect occurs in sand due to grain interlocking. Additionally, for one

of the nonlinear parameters that likely arises from shearing/partial slip of the grain junctions, we observe a sharp amplitude

threshold in sand which is not observed in glass beads.
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Key Points: 7 

• The elastic nonlinearity of spherical particles increases with relative humidity increase, 8 
while it is rather constant in angular particles. 9 

• We attribute this RH independence in sand to grain interlocking that prevents adsorbed 10 
water from weakening the grain junctions.  11 

• For angular particles, we observe an amplitude threshold above which grain junctions 12 
start to unlock and where sliding/partial slip occurs. 13 

  14 
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Abstract 15 

This study focuses on unraveling the microphysical origins of the nonlinear elastic effects, which 16 
are pervasive in the Earth’s crust. Here, we examine the influence of grain shape and relative 17 
humidity (RH) on the elastic nonlinearity of granular assemblies made of spherical glass beads 18 
and angular sand particles. We find that their elastic nonlinearity is of the same order of 19 
magnitude. However, while the elastic nonlinearity of glass beads increases with RH, that of 20 
sand particles is rather RH independent. We attribute this difference to the angularity of sand 21 
particles; absorbed water on the spherical grains weakens the junctions making them more 22 
nonlinear, while no such effect occurs in sand due to grain interlocking. Additionally, for one of 23 
the nonlinear parameters that likely arises from shearing/partial slip of the grain junctions, we 24 
observe a sharp amplitude threshold in sand which is not observed in glass beads.  25 

 26 
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1 Introduction 27 

Nonlinear elastic effects arise in solids due to the presence of imperfections at the 28 
micro/mesoscopic scale, such as cracks or dislocations (Ostrovsky & Johnson, 2001). 29 
Understanding the origins of these nonlinear elastic effects is critical to numerous fields, from 30 
geophysics (Abeele et al., 2002; Delorey et al., 2021; Feng et al., 2018, 2022; Guyer & Johnson, 31 
2009; Hillers et al., 2015; P. Johnson & Sutin, 2005; Manogharan et al., 2021; McCall & Guyer, 32 
1994; Shokouhi et al., 2020; Tadavani et al., 2020; TenCate et al., 1996, 1996, 2016) and civil 33 
engineering (Abeele & De Visscher, 2000; Astorga et al., 2018; Bittner & Popovics, 2022; G. 34 
Kim et al., 2017; Lacouture et al., 2003; Payan et al., 2014; Shokouhi et al., 2017) to the non-35 
destructive evaluation of materials (Breazeale & Ford, 1965; Buck et al., 1978; Jin et al., 2020; 36 
J.-Y. Kim et al., 2006; Matlack et al., 2015; Williams et al., 2022). Elastic nonlinearity is 37 
particularly large in poorly consolidated or unconsolidated materials, where it arises from weak 38 
junctions between grains (Brunet et al., 2008; Guyer & Johnson, 1999, 2009; Jia et al., 2011; P. 39 
A. Johnson & Jia, 2005; Langlois & Jia, 2014; Renaud et al., 2012; Rivière et al., 2015).  40 

Previous work suggests that the nonlinear elastic response of consolidated granular media like 41 
rocks arises from two distinct mechanisms, one that might be related to the opening/closing of 42 
grain contacts, and the other one related to the shearing of grain junctions (Renaud et al., 2012; 43 
Rivière et al., 2015). To confirm this hypothesis and better understand the underlying physics, 44 
we seek to investigate the nonlinear elastic response of materials simpler than rocks, both in 45 
terms of composition and microstructural features. In our previous work (Gao et al., 2022), we 46 
studied the influence of relative humidity (RH) on the nonlinear elastic properties of glass bead 47 
samples. We found that all extracted nonlinear parameters increase with RH. If indeed both 48 
mechanisms exist, this suggests that they are affected similarly in glass beads and cannot be 49 
distinguished using changes in RH. In this study, we further attempt to distinguish both 50 
mechanisms, by investigating the role of grain shape on the nonlinear elastic properties of 51 
granular media. To do so, we use a technique called Dynamic Acousto-Elastic Testing (DAET), 52 
a pump-probe approach that allows one to retrieve the full nonlinear elastodynamic response of 53 
materials including hysteresis and transient weakening (Renaud et al., 2009, 2011). We carry out 54 
DAET measurements on samples of spherical glass beads and angular sand at various RH 55 
conditions, and hypothesize that shearing of grain junctions in samples composed of angular 56 
grains is more hindered than in samples made of spherical grains.  57 

 58 

2 Materials and Methods 59 

We prepare samples of spherical soda-lime glass beads (diameter 100-140µm, Mo-Sci 60 
Corporation, Rolla, Missouri) and angular, fine quartz sand (diameter 50-150µm, 99.8% SiO2 61 
with minor amounts of Fe2O3, Al2O3, <0.1% each, U.S. Silica Company) using a setup identical 62 
to our previous study (Gao et al., 2022). We place a 4.5 mm thick pack of granular media (i.e., 63 
glass beads or sand) on top of a steel block of area 10*10 cm2. The sample is left overnight in a 64 
sealed bag with either desiccant or a 100% RH humid environment, for dry (~10% RH) and 65 
humid (100% RH) samples, respectively. The sample is then quickly taken out of the sealed bag 66 
and a second steel block of identical size is placed on top of the granular layer. The sides are 67 
sealed using multiple layers of tape. Two P-wave sensors with a central frequency of 1 MHz 68 
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cross-correlation to calculate the wave velocity c throughout the experiment (Gao et al., 2022). 97 
Next, we compute the relative wave velocity change 𝛥𝑐 𝑐⁄  for each oscillation using 𝛥𝑐 𝑐⁄ =98 (𝑐 − 𝑐 ) 𝑐⁄ , where 𝑐  represents the pre-oscillation wave velocity, and 𝑐  represents the 99 
wave velocity during the oscillation (Fig. S2). We can then generate the so-called nonlinear 100 
signatures by plotting relative velocity change 𝛥𝑐 𝑐⁄  as a function of dynamic stress (Fig. 1b).  101 

To help us quantify the amount and type of elastic nonlinearity, we project the 𝛥𝑐 𝑐⁄  vs time 102 
signals onto a basis of sine and cosine functions at multiples (0, 1, 2) of the oscillation frequency 103 
(10 Hz). We then extract the magnitude of the harmonics 𝑅  where 𝑛 = 0, 1, 2. Using 𝑛 up to 2 104 
is shown to be sufficient to capture the complexity of the nonlinear signatures (Gao et al., 2022). 105 
The parameter 𝑅  characterizes the transient, average weakening occurring during the dynamic 106 
disturbance, while parameters 𝑅  and 𝑅  correspond approximately to the slope and curvature of 107 
the nonlinear signatures, respectively (Fig. S3). After obtaining the coefficients 𝑅 , the dynamic 108 
stress dependence can be considered using the general formulation:  109 𝑅 = 𝑎 𝜎         (1) 110 

where, for a fixed 𝑛 , a particular 𝜈-value represents a particular type of nonlinearity (and 111 
associated physical mechanism), and the variable 𝑎 represents how much of this mechanism or 112 
nonlinearity type is present in the sample. Taking logarithm (base 10) on both sides, Eq. 1 can be 113 
written as: 114 log(𝑅 ) =  𝜈 log(𝜎) + log (𝑎 )                                           (2) 115 

Plotting log(𝑅 ) vs. log(𝜎), the slope 𝜈  tells us about the nonlinearity type, and the y-intercept 116 
(log(𝑎 )) indicates how much nonlinearity is present.  117 

 118 

4 Results and Discussion 119 

Typical nonlinear signatures at four dynamic stress amplitudes are shown in Fig. 1b. Similar 120 
plots for the 22 samples are shown in Figs. S4-5. They all exhibit a similar positive correlation 121 
between wave velocity and dynamic stress, where as expected, the wave velocity is larger when 122 
dynamic stress is positive (compression phase), and smaller when dynamic stress is negative 123 
(dilation phase). We also observe that the slopes of the signature (𝑅  component) dominate 124 
compared to the offset (𝑅  component ) and curvature (𝑅  component), which is typical when 125 
pump and probe are aligned (vertical direction here, see Fig. 1a) (Renaud et al., 2013). Some 126 
rather large hysteresis can be observed for some of the samples, irrespective of RH level or grain 127 
shape. The reason behind the variability in hysteresis size is not clear and additional work would 128 
be required. Finally, we observe that for some samples, the slope appears larger during the 129 
dilation phase than during compression, suggesting that during the compression phase, the grain 130 
junctions are more tightly closed, producing smaller velocity changes (Figs. S4-5).  131 

To obtain a quantitative assessment of the effect of grain shape and RH, we extract the harmonic 132 
content of all signatures. We calculate the Fourier series coefficients from the 𝛥𝑐 𝑐⁄  vs time 133 
signals at frequencies 𝑛𝑓  where 𝑓  is the pump frequency (10 Hz) and 𝑛 = 0, 1, 2 . These 134 
coefficients, called 𝑅  and representing the harmonic content, are shown in Fig. 2. The 135 
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harmonics are shown as a function of peak dynamic stress amplitude for both glass bead and 136 
sand samples, and under dry (~10%), humid (100%) as well as room humidity (~60%) 137 
conditions. On these log-log plots, following Eq. 2, the slope 𝜈  informs us about the 138 
nonlinearity type and the y-intercept (log(𝑎 )) indicates how much nonlinearity is present. We 139 
see that in glass beads, the 𝑅  values are larger in fully humid samples than in drier samples, 140 
while in sand, all the curves seem to overlap, that is, the nonlinearity level seems rather 141 
independent of RH. For both sample types, the 𝑅  and 𝑅  values fit roughly linearly (𝜈 ≈ 1, 142 𝜈 ≈ 1) with dynamic stress amplitude. Such scalings for 𝑅  and 𝑅  suggest that the y-intercepts 143 
on these plots correspond to the hysteretic and quadratic nonlinear parameters 𝛼  and 𝛽 , 144 
respectively. As for the 𝑅  values, they scale roughly quadratically (𝜈 ≈ 2), which suggest that 145 
the y-intercept correspond to the cubic nonlinear parameter 𝛿. Note that for sand, 𝑅  is rather 146 
stress-independent at low stress and starts to increase quadratically only above ~0.1-0.2 MPa (as 147 
indicated by the small vertical arrow in Fig. 2f). Based on these scalings, we overlay parallel 148 
lines to indicate the value of each nonlinear parameter for a given y-intercept. The three 149 
nonlinear parameters 𝛼 , 𝛽  and 𝛿  dictate the strain-dependence of the elastic modulus 𝑀  (or 150 
equivalently the wave velocity 𝑐) according to: 151 ∆𝑀𝑀 = 2 ∆𝑐𝑐 = 𝛽𝜀 + 𝛿𝜀 + 𝛼(𝜀 + sign(𝜀)𝜀) 

where 𝜀  is the dynamic strain, 𝜀  is the strain rate, and 𝜀  is the dynamic strain amplitude. 152 
Because our controlling variable is stress rather than strain, we convert from strain to stress 153 
assuming that the nonlinearity is small, i.e., 𝜎 = 𝑀 𝜀, where 𝑀 = 1 GPa which corresponds to 154 
an average linear elastic modulus for all samples. This allows us to compare the nonlinear 155 
parameters with values found in the existing literature where, most of the time, the controlling 156 
variable is strain (Guyer & Johnson, 2009).   157 

Harmonic amplitude plots, sorted per samples rather than 𝑅  values, are also included in the 158 
supplementary materials (Figs. S6-7). For both sample types, at a given dynamic stress 159 
amplitude, we find that 𝑅  is larger than 𝑅  and 𝑅 , which is consistent with our previous 160 
observation that the slope dominates the nonlinear signatures compared to the offset and the 161 
curvature.  162 
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expected both 𝑅  and 𝑅  to exhibit an amplitude threshold. This is the not the case and further 224 
work would be needed to investigate this discrepancy. 225 

 226 

5 Conclusions 227 

In this study, we investigate the effect of grain shape and relative humidity on the nonlinear 228 
elastic properties of granular media by conducting experiments on spherical glass beads and 229 
angular quartz sand. We found that, compared to glass beads, the elastic nonlinearity of angular 230 
sand does not increase significantly with RH, but is rather independent of RH, which we attribute 231 
to grain interlocking that prevents adsorbed water from weakening the grain junctions. 232 
Furthermore, for one of the nonlinear parameters ( 𝛿/𝑅 ) which has been attributed to 233 
sliding/partial slip of grain junctions, we observe a sharp amplitude threshold in sand but not in 234 
glass beads. This seems to confirm that this nonlinear parameter (𝛿/𝑅 ) is indeed related to 235 
sliding/partial slip of the grain junctions. Below the amplitude threshold, i.e., at low dynamic 236 
stress oscillations, the angular grains of sand are locked, and no sliding/partial slip can occur. 237 
This mechanism seems to get activated only at larger stress oscillations when the grain junctions 238 
unlock. 239 
 240 
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