Controls on Ice Cliff Formation, Distribution and Characteristics on Debris-Covered Glaciers

Marin Kneib¹, Catriona Lousie Fyffe², Evan Stewart Miles³, Shayna Lindemann⁴, Thomas E. Shaw¹, Pascal Buri¹, Michael McCarthy¹, Boris Ouvry⁵, Andreas Vieli⁶, Yota Sato⁷, Philip D. A. Kraaijenbrink⁸, Chuanxi Zhao⁹, Peter Molnar¹⁰, Francesca Pellicciotti¹⁰, Peter Moore¹¹, Martin Kirkbride¹², Philip Deline¹³, Owen King¹⁴, Doug Benn¹⁵, and Neil Glasser¹⁶

¹Swiss Federal Institute for Forest, Snow and Landscape Research ²Northumbria University ³Swiss Federal Research Institute WSL ⁴High Mountain Glaciers and Hydrology Group, Swiss Federal Institute, WSL, Birmensdorf, Switzerland. ⁵Institute of Geography, University of Zurich ⁶University of Zurich ⁷Graduate School of Environmental Studies, Nagova University ⁸Utrecht University ⁹Institute of Tibetan Plateau Research, Chinese Academy of Sciences ¹⁰ETH Zurich ¹¹Iowa State University ¹²University of Dundee ¹³Laboratoire Edytem ¹⁴University of St Andrews ¹⁵Department of Geography and Sustainable Development, University of St Andrews ¹⁶Aberystwyth University

December 8, 2022

Abstract

Ice cliff distribution plays a major role in determining the melt of debris-covered glaciers but its controls are largely unknown. We assembled a dataset of 37537 ice cliffs and determined their characteristics across 86 debris-covered glaciers within High Mountain Asia (HMA). We complemented this dataset with the analysis of 202 cliff formation events from multi-temporal UAV observations for a subset of glaciers. We find that 38.9% of the cliffs are stream-influenced, 19.5% pond-influenced and 19.7% are crevasses. Surface velocity is the main predictor of cliff distribution at both local and glacier scale, indicating its dependence on the dynamic state and hence evolution stage of debris-covered glacier tongues. Supraglacial ponds contribute to maintaining cliffs in areas of thicker debris, but this is only possible if water accumulates at the surface. Overall, total cliff density decreases exponentially with debris thickness as soon as debris gets thicker than 10 cm.

Controls on Ice Cliff Formation, Distribution and Characteristics on Debris-Covered Glaciers 3

- M. Kneib^{1, 2}, Catriona Fyffe³, Evan S. Miles¹, Shayna Lindemann¹, Thomas E. Shaw¹, 4
- Pascal Buri¹, Michael McCarthy¹, Boris Ouvry⁴, Andreas Vieli⁴, Yota Sato⁵, Philip D.A 5
- Kraaijenbrink⁶, Chuanxi Zhao^{7,8}, Peter Molnar², Francesca Pellicciotti^{1,3} 6
- ¹ High Mountain Glaciers and Hydrology Group, Swiss Federal Institute, WSL, Birmensdorf, 7 Switzerland. 8
- ² Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland 9
- ³ Department of Geography and Environmental Sciences, Northumbria University, Newcastle 10 upon Tyne, UK 11
- ⁴ Department of Geography, University of Zurich, 8057 Zurich, Switzerland 12
- ⁵ Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan 13
- ⁶ Utrecht University, Department of Physical Geography, PO Box 80115, 3508 TC, Utrecht, The 14 Netherlands. 15
- ⁷ College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China 16
- ⁸ State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), 17
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences 18
- 19
- Corresponding author: Marin Kneib (marin.kneib@gmail.com) 20

21 **Key Points:**

- We derived an unprecedented dataset of 37537 ice cliffs and their characteristics across 22 86 debris-covered glaciers in High Mountain Asia 23
- We find that 38.9% of the cliffs are stream-influenced, 19.5% pond-influenced and 24 25 19.7% are crevasses
- Ice cliff distribution can be predicted by velocity as an indicator of both the dynamics and 26 state of evolution of debris-covered glaciers 27

29 Abstract

30

Ice cliff distribution plays a major role in determining the melt of debris-covered glaciers but its 31 32 controls are largely unknown. We assembled a dataset of 37537 ice cliffs and determined their characteristics across 86 debris-covered glaciers within High Mountain Asia (HMA). We 33 complemented this dataset with the analysis of 202 cliff formation events from multi-temporal 34 UAV observations for a subset of glaciers. We find that 38.9% of the cliffs are stream-35 36 influenced, 19.5% pond-influenced and 19.7% are crevasses. Surface velocity is the main predictor of cliff distribution at both local and glacier scale, indicating its dependence on the 37 38 dynamic state and hence evolution stage of debris-covered glacier tongues. Supraglacial ponds contribute to maintaining cliffs in areas of thicker debris, but this is only possible if water 39 40 accumulates at the surface. Overall, total cliff density decreases exponentially with debris thickness as soon as debris gets thicker than 10 cm. 41

42

43 Plain Language Summary

44

Debris-covered glaciers are common throughout the world's mountain ranges and are 45 characterised by the presence of steep ice cliffs among the debris-covered ice. It is well-known 46 47 that the cliffs are responsible for a large portion of the melt of these glaciers but the way they form, and as a result the controls on their development and distribution across glaciers remains 48 poorly understood. Novel mapping approaches combined with high-resolution satellite and drone 49 products enabled us to disentangle some of these controls and to show that the ice cliffs are 50 generally formed and maintained by the surface hydrology (ponds or streams) or by the opening 51 of crevasses. As a result, they depend both at the local and glacier scale on the dynamic state of 52

the glaciers as well as the evolution stage of their debris cover. This provides a pathway to better represent their contribution to glacier melt in predictive glacier models.

55

56 1 Introduction

Debris-covered glaciers are found in all mountain ranges (Scherler et al., 2018), and 57 supraglacial debris extents and thickness are expected to increase in a warming climate 58 (Compagno et al., 2022; Herreid & Pellicciotti, 2020; Stokes et al., 2007). However, despite 59 considerable recent advances, modelling the mass balances of these glaciers remains challenging 60 (Rounce et al., 2021). This is partly due to the presence of supraglacial ice cliffs, which melt up 61 to 20 times faster than the surrounding debris-covered ice, therefore compensating for the 62 relatively well constrained debris insulating effect (Anderson, Armstrong, Anderson, & Buri, 63 2021; Brun et al., 2018; E. S. Miles, Willis, et al., 2018; Reid & Brock, 2014; Sakai et al., 1998, 64 2002). In one catchment in High Mountain Asia (HMA) ice cliffs were shown to contribute 17+/-65 66 4% of the melt of the debris-covered ice (Buri et al., 2021). This has major implications for the mass balance of debris-covered glaciers (Pellicciotti et al., 2015) and their long-term evolution 67 68 (Ferguson & Vieli, 2021; Racoviteanu et al., 2022).

69

70 While models accurately simulate the energy and mass balance contribution of individual 71 ice cliffs (Buri et al., 2016; Kneib et al., 2022), their application at large spatial scales is limited by our understanding of the controls of ice cliff distribution. Indeed, estimates of ice cliff density 72 are difficult to make (Anderson, Armstrong, Anderson, & Buri, 2021; Herreid & Pellicciotti, 73 2018; Kneib et al., 2020) and vary widely in time and space, between 1 and 15% of the debris-74 75 covered area (e.g. Falaschi et al., 2021; Kneib et al., 2021; Loriaux & Ruiz, 2021; Sato et al., 2021; Steiner et al., 2019; Watson et al., 2017). Remote sensing studies have shown that cliffs 76 are often associated with ponds (Steiner et al., 2019; Watson, Quincey, Carrivick, et al., 2017), 77 78 hinting at a preferential location of ice cliffs where lower glacier longitudinal gradient and surface velocities promote surface ponding (Bolch et al., 2008; Quincey et al., 2007; Quincey & 79 Glasser, 2009; Racoviteanu et al., 2021; Reynolds, 2000; Sakai & Fujita, 2010; Salerno et al., 80 2012). Other limited observations indicate that ice cliffs preferentially develop at the confluence 81

of glacial tributaries, in locations of high compressive strain rates, and areas of thinner debris

83 (Anderson, Armstrong, Anderson, & Buri, 2021; Anderson, Armstrong, Anderson, Scherler, et

al., 2021; Benn et al., 2012; Kraaijenbrink et al., 2016; Steiner et al., 2019; Watson, Quincey,

85 Carrivick, et al., 2017). However, the lack of consistent observations of cliff distribution makes it

86 difficult to include ice cliffs in predictive glacier models in a way that accounts for their spatial

- 87 distribution and temporal evolution.
- 88

Ice cliff survival is inherently linked to debris stability, which is a function of local slope, 89 debris thickness and water content, as well as undercutting by streams or ponds (Moore, 2018). 90 91 The local slope can change in relatively short time scales with differential melt caused by heterogeneous debris thicknesses (Moore, 2021; Nicholson et al., 2018; Sharp, 1949), which 92 93 results in the surface of debris-covered glaciers being particularly hummocky where the debris gets thicker than 20-30 cm (Bartlett et al., 2020; King et al., 2020). Slope undercutting and 94 destabilisation by streams or ponds is expected to be one of the main triggers for ice cliff 95 formation (Mölg et al., 2019; Röhl, 2006, 2008; Sakai & Takeuchi, 2000) and survival (Benn et 96 97 al., 2001, 2012; Brun et al., 2016; Kneib et al., 2022; Sato et al., 2021; Watson, Quincey, Smith, 98 et al., 2017). Other hypothesised cliff formation mechanisms include crevasse opening (Reid & Brock, 2014; Steiner et al., 2019) or the collapse of englacial conduits (Egli et al., 2021; Gulley 99 et al., 2009; Immerzeel et al., 2014; E. S. Miles, Watson, et al., 2018; K. E. Miles et al., 2020; 100 101 Sakai & Takeuchi, 2000), but these hypotheses have never been tested in a quantitative way.

102

In this study, we therefore 1) map ice cliffs across 86 glaciers in HMA, 2) determine their physical characteristics, 3) attribute their distribution to potential local and glacier-wide controlling factors. The findings are further corroborated by complementary observations on ice cliff formation from high-resolution, multi-temporal Unoccupied Aerial Vehicle (UAV) data at five of the studied glaciers (Text S1).

109 2 Data and Methods

110

We used 14 Pléiades stereo-images acquired between 2017 and 2021 to derive 2m-111 resolution multi-spectral images and Digital Elevation Models (DEMs) covering 86 debris-112 covered glaciers across HMA (Berthier et al., 2014; Shean et al., 2016; Fig. 1; Table S2), 70 of 113 which had more than 65% of their debris-covered area that could be classified after removal of 114 clouds, shadows and fresh-snow (Table S3). The DEMs were used to derive surface slope and 115 aspect, the glacier 'hummockiness', which we defined as the percentage of area for which the 116 Statistical Measure of Relief (SMR) calculated over a 8 m window was greater than 50 m (King 117 et al., 2020), as well as supraglacial channels (Schwanghart & Scherler, 2014; Text S2). The 118 multi-spectral images were used to manually update the glacier and debris outlines of the RGI 119 6.0 (Pfeffer et al., 2014; Scherler et al., 2018; Table S3). Glacier longitudinal gradient was 120 121 computed using the 30m resolution AW3D DEM (Dehecq et al., 2019; Tadono et al., 2014) and combined with glacier ice thicknesses (Farinotti et al., 2019) to estimate driving stress over a 122 distance of two ice thicknesses. Distributed glacier velocity, compressive and tensile strain rates 123 were obtained from the global 50m resolution composite by Millan et al. (2022). We additionally 124 used the distributed debris thickness dataset of McCarthy et al. (2022) for all glaciers larger than 125 2 km² (64 glaciers, 47 of which have more than 65% of their debris-covered area that could be 126 classified). All these datasets were aggregated 1) in 500 m distance bins along the glacier 127 flowlines (Kienholz et al., 2014; King et al., 2020) and 2) for each glacier. Data gaps within the 128 bins were filled using a nearest neighbour interpolation. 129

130

In Ice cliffs and ponds were derived automatically in each Pléiades scene following the Spectral Curvature method for cliffs, which is based solely on spectral characteristics (Kneib et al., 2020), and the Normalized Difference Water Index (NDWI) for ponds (McFeeters, 1996; E. S. Miles et al., 2017; Watson et al., 2016, 2018; Text S2). The ice cliffs are then implicitly defined here as exposed ice in an otherwise debris-covered domain, therefore likely to undergo 'enhanced' melt locally. Some of these features were clearly identifiable as crevasses due to their elongated, straight or slightly curved shapes and these zones were outlined manually. Past 138 studies have only examined high-relief (several meters) ice cliffs, but here our interest is in all

139 exposed ice in the debris-covered area, so we include smaller features common for thin-debris

140 areas, such as crevasses, which similarly enhance surface ablation (Colgan et al., 2016).

141

Multi-temporal UAV data with a monitoring period longer than 2 years and with at least 3 high-resolution (<1 m) DEMs and orthoimages were available at five of the studied glaciers distributed across HMA. This complementary data was used to identify ice cliff formation events and derive the characteristics of newly formed ice cliffs (Text S1).

146

Figure 1: (a) Map of HMA with each triangle representing one of the 14 Pléiades scenes (some scenes are very close to each other) and the boxes to the side (c-m) showing a zoomed view of the glaciers in these areas. The background is the GTOPO 30 arc seconds (~1 km) DEM, and the glacierised areas are indicated in blue. The inset boxes show the glacier RGI 6.0 outlines in dark blue, the glaciers visible in the Pléiades images in turquoise and their debriscovered areas in brown. The pie charts are scaled to the absolute size of the debris-covered areas and show the relative proportion of ponds (dark blue) and cliffs (red) for each glacier for which more than 65% of their debris-covered area could be classified. (b) Cliff and pond density
of each of these glaciers. The bars show the uncertainties.

156

157 **3 Results**

158 159

3.1. Influence of supraglacial hydrology on ice cliff distribution

Cliffs are preferentially located in the vicinity of ponds and streams, as their density 160 strongly decreases with distance from these hydrological features (Fig. 2a, b), and a large 161 majority of the ponds are related to at least one neighbouring cliff (Fig. 2d). This is further 162 confirmed by field observations (Fig. 2e-g) and multitemporal UAV observations showing that 163 the presence of streams or ponds is responsible for more than 79% of the newly-formed cliff area 164 (Fig. S2). This leads us to define a 40m-buffer around ponds and streams within which we 165 classify the cliff pixels as pond-influenced or stream-influenced (Fig. 2h). With this definition, 166 pond-influenced cliffs account for 19.5% and stream-influenced cliffs for 38.9% of the total cliff 167 area (Fig. 2c). In addition, crevasses represent 19.7% of the cliff area across all glaciers. They 168 are mostly located in the upper extents of the debris-covered areas but also appear lower down 169 glacier, at shear margins, and in the vicinity of proglacial lakes or lateral streams entering the 170 glacier (Fig. S6). The remaining cliffs are qualified as undefined. The stream mapping 171 parameters and choice of buffer size have little influence on this classification (Fig. 2h, S12). 172 173

The slope and density of ice cliffs vary between categories, while this is less the case for aspect and size (Fig. S13). Crevasses are usually more densely distributed (15.2% of buffer area), followed by the pond-influenced (6.7%), stream-influenced (4.3%) and undefined cliffs (2.1% of remaining area, Fig. S13a). Despite a variety of glacier aspects (Table S3), there is a clear preferential cliff aspect distribution in the NNW direction for all categories (Fig. S13d), while the newly formed cliffs do not appear to have a preferential aspect (Sato et al., 2021; Fig. S4).

Figure 2: Cliff density for all glaciers as a function of (a) distance from ponds after 182 removal of the crevasses and (b) distance from streams, after removal of the pond-influenced 183 cliffs. The box plots indicate the median, 25th and 75th percentiles of the cliff density within each 184 10m bin for each glacier. The red dotted lines show the 40m buffers. (c) Area proportion of 185 undefined, pond- and stream-influenced cliffs and crevasses across all debris-covered glaciers. 186 (d) Pond density for all glaciers as a function of distance from cliffs. (h) Example of 187 classification of ice cliffs from Kyzylsu Glacier, Tajikistan: 1/ crevassed-areas, 2/ pond-188 influenced cliffs and 3/ stream-influenced cliffs, with the pictures (e-g) and Pléiades view (i-k) of 189 the corresponding zones. Image credit: Marin Kneib and Evan S. Miles. Background of (i-k) is 190 the Pléiades false-colour multispectral image (19/09/2021). Pléiades © CNES 2021, Distribution 191 192 AIRBUS DS.

3.2. Controls on ice cliff distribution

194

The variables associated with ice cliff distribution vary depending on the category of cliff 195 considered (Fig. 3, S15, Table S5). Stream-influenced and undefined cliffs follow a similar 196 distribution for all predictors (Fig. S15), which could indicate that a majority of the undefined 197 cliffs were formerly stream-influenced and backwasted away from the channels. 80% of stream-198 influenced cliffs are located in areas with debris estimated to be thinner than 33 cm, while 45% 199 of the pond-influenced cliffs are located in areas with thicker debris (Fig. S15). This results in 200 the total cliff density decreasing exponentially ($Y = 5.8e^{-\frac{X}{2}}$, $R^2 = 0.73$) when debris gets thicker 201 than 10 cm (Fig. 3a, S16). Furthermore, crevasses and pond-influenced cliffs have a clearly 202 203 contrasting response to the different controls investigated. Indeed, 80% of the crevasses are located in areas with surface velocities higher than the 13 m.yr⁻¹ threshold or in areas with debris 204 thinner than 20 cm (Fig. S15). Pond-influenced cliffs clearly depend on pond density, and are 205 thus preferentially located in non-dynamic areas with lower longitudinal gradient and velocity 206 207 and with thicker debris (Fig. 3, S15, S17).

Figure 3: Mean cliff density split by cliff category for all bins of all glaciers where more than

211 65% of the debris-covered area could be classified as a function of (a) debris thickness, (b)

212 surface velocity, (c) mean driving stress, (d) 'hummockiness', (e) stream sinuosity, (f)

- 213 longitudinal gradient, (g) absolute compressive strain rate, (h) tensile strain rate, (i) normalized
- 214 distance from terminus, (j) normalized elevation above terminus, (k) downstream slope to
- 215 *terminus and (l) pond density. The black line shows the area distribution of all the bins.*
- 216

3.2. Ice cliff dependence on glacier state

218

When aggregating the metrics per glacier, a clear relationship between mean surface 219 velocity across the debris-covered area and cliff density becomes apparent (Fig. 4, S18). The 220 influence of climatic variables seems instead to be limited (Fig. S19). Cliff density decreases 221 222 with decreasing velocity, up to a point where the trajectory seems to bifurcate. The debriscovered tongues with the highest cliff density and fastest velocity have a larger proportion of 223 crevasses (state 1, Fig. 4). At slower velocities (<10 m.yr⁻¹), two trajectories are apparent: 1) 224 glaciers with a large proportion (> $\frac{1}{3}$) of pond-influenced cliffs and higher cliff densities (state 225 3a, Fig 4), and 2) glaciers with a majority of stream-influenced cliffs, which tend to have lower 226 cliff densities (state 3b, Fig. 4). The majority of the glaciers are found at an intermediary stage 227 between these three end-members, with a decreasing proportion of crevasses and an increasing 228 proportion of stream- and pond-influenced cliffs as velocity decreases (state 2, Fig. 4). 229

Figure 4: Glacier-wide cliff density as a function of mean velocity in the debris-covered area for all glaciers where more than 65% of the debris-covered area could be classified. The proportion of undefined cliffs was not represented for readability. The boxes to the side show example maps of some of the glaciers with their surface classifications. Some additional reference glaciers are indicated in the main plot in black. The expression and R² of the black linear regression are indicated in the upper left corner. In light blue are shown four glacier clusters.

239 4 Discussion and conclusions

We have identified the presence of supraglacial streams and ponds, along with the opening of crevasses, to be the main mechanisms responsible for ice cliff formation and development. Newly-formed cliffs tend to be smaller in size and do not have any preferential aspect (Kneib et al., 2021; Fig. S4, S5). Cliffs get reburied when they backwaste away from these supraglacial features (Fig. 2a, b), with the strong control of solar radiation on cliff survival resulting in the preferentially poleward orientation of the total ice cliff population (Buri & Pellicciotti, 2018).

- 247
- 248

4.1. Ice cliff distribution and glacier state

249

Velocity stands out as the main control on ice cliff density both at the local and glacier 250 scale (Fig. 3, 4). Interlinkages with other variables means that the cliff density also responds to 251 other local controls, and debris thickness especially, although each category of cliffs responds 252 differently (Fig. 3). The distribution of ice cliffs therefore depends on the glacier dynamics and 253 state. A dynamic debris-covered glacier (mean surface velocity $> 10 \text{ m.yr}^{-1}$, Fig. 4, 5a, S20a) is 254 usually characterised by thin debris and crevasses which comprise the majority of exposed ice 255 and drain supraglacial streams. Glacier slow-down results in reduced strain rates and the 256 migration of crevasses to the upper sections of the debris-covered area and their eventual 257 disappearance (Fig. 3j, S20b), the extension of stream-influenced cliffs through debris 258 destabilisation and thermo-erosional undercutting (Moore, 2018; Fig. 3a) and possibly the 259 260 emergence of pond-influenced cliffs. Ponds maintain cliffs in more stagnant zones of thicker debris, also characterised by low longitudinal gradients and driving stress as well as increased 261 hummock prevalence (Benn et al., 2017; Steiner et al., 2019; Watson, Quincey, Carrivick, et al., 262 2017; Fig. 5c). Such evolution has been observed on other glaciers: on Zmutt Glacier, where it 263 264 was linked to the development of supraglacial valleys driven by stream incision (Mölg et al., 2020); and on Khumbu Glacier, where high relief zones characterised by growing cliffs and 265 ponds have developed as the glacier has slowed (King et al., 2020; Rowan et al., 2021). Our 266 large dataset enables us to show that this evolution holds across a large number of glaciers, and 267 to identify predictors of cliff type and distribution. The development of large pond-influenced 268

cliffs however requires the accumulation of water in surface depressions, which occurs for larger

- 270 glaciers with lower longitudinal gradients (Fig. 4, 5c, S17). Most HMA glaciers in this stage of
- evolution are located in the Central and Eastern Himalaya (Benn et al., 2012, 2017; Racoviteanu
- et al., 2021; Watson et al., 2016; Watson, Quincey, Carrivick, et al., 2017; Fig. 1). However,
- some glaciers do not develop such drainage systems due to their relative steepness and small
- size, resulting in lower ice cliff densities (Fig. 4, 5d, S20d).
- 275
- 276

277

Figure 5: The four glacier evolution states, with their ice cliff distributions. State 1: fast flowing glacier with thin debris and extensive crevassing. State 2: advanced debris cover, with

280 thicker debris and lower velocities enabling the development of supraglacial valleys and stream-

281 influenced cliffs in the non-crevassed areas. State 3a: large stagnating debris-covered tongues,

characterised by hummocks, thick debris and ponds maintaining cliffs in these zones. State 3b:

stagnating tongues with thick debris, but high enough longitudinal gradient or low enough

284 surface meltwater to prevent the formation of ponds and therefore the survival of cliffs. Figure

285 *credit: Martin Heynen.*

- 286
- 287 288

4.2. Implications for glacier mass balance

We have shown that ice cliff density and characteristics depend on the evolution state of the 289 debris-covered glacier (Fig. 5), which is controlled mainly by dynamics (velocity) and debris 290 thickness. Leveraging this new understanding of how glacier stage affects the presence of cliffs 291 on their surfaces, we have provided the distribution of each type of cliff on glaciers at different 292 stages of evolution (Fig. 3, 4, S20, Table S5). Future efforts should focus on testing the 293 framework developed here by substantially expanding the number of data points with particular 294 attention to include glaciers at distinct stages. Most of the debris-covered glaciers that have been 295 the object of detailed investigations belong to glacier states 2 and 3 and efforts should be made 296 297 to explore the whole range of evolution when targeting field studies. Already at this stage, however, the relationships detailed in this study outline a framework to estimate ice cliff 298 distribution based on glacier flow characteristics, that are usually available in prognostic flow 299 models, and debris thickness, without having to map the cliffs. Combined with cliff melt 300 enhancement factors (E. S. Miles et al., 2022), this would allow long term estimation of the 301 302 contribution of ice cliffs to debris-covered glacier mass balance - representing a key modelling advance. 303

304

Future work should also target the contribution of crevasses to glacier mass balance. Indeed, these features would likely enhance melt even more than traditional stream- and pond-influenced cliffs due to greater surface roughness at their location increasing turbulent fluxes, and additional reflected shortwave contributions from the opposite crevasse walls (Cathles et al., 2011; Colgan et al., 2016; W. T. Pfeffer & Bretherton, 1987; Purdie et al., 2022). Time-lapse images actually show the upper walls of crevasses backwasting as traditional ice cliffs would (Fig. S21). Furthermore, their longer-term evolution and influence on shaping the debris-covered glacier
surface remains unclear (Kirkbride & Deline, 2013).

313 314

315 Acknowledgments

This project has received funding from the European Research Council (ERC) under the

European Union's Horizon 2020 programme (grant agreement 772751) and from the Royal

Society via a Newton Advanced Fellowship award (NA170325). The majority of the Pléiades

319 stereo-pairs were provided by Etienne Berthier via the Pléiades Glacier Observatory (PGO)

initiative of the French Space Agency (CNES). The remaining images were acquired through the

321 CNES ISIS Programme. We thank the team of the Centre for Research on Glaciers at the

Academy of Sciences of Tajikistan who enabled our 2021 fieldwork on Kyzylsu Glacier.

323

324 **Open Research**

The glacier, debris, crevasse, cliff and pond outlines will be made available on Zenodo. Other

datasets used include surface velocity from Millan et al. (2022), climate data from ERA5-Land

327 (Muñoz Sabater, 2019), RGI 6.0. glacier outlines (https://nsidc.org/data/nsidc-0770/versions/6), the

AW3D 30m DEM (Tadono et al., 2014) and ice thicknesses (Farinotti et al., 2019). Atmospherically-

329 corrected Sentinel-2 images prior to 2019 were obtained from CNES through the PEPS platform

(Hagolle et al., 2015). From 2019 and later they were processed directly in Google Earth Engine.

331

332 **References**

333

334	Anderson, L. S.,	Armstrong, V	V. H., A	Anderson.	R. S., 6	& Buri. P.	(2021).	Debris c	cover and th	e
551	1 macroon, D. D.	, 1 11110110115, 1	••••••	macroom,	I . D., .	∞ Duil, I.	(2021)		lover und un	~

thinning of Kennicott Glacier, Alaska: In situ measurements, automated ice cliff delineation

and distributed melt estimates. *Cryosphere*, 15(1), 265–282. https://doi.org/10.5194/tc-15-

337 265-2021

Anderson, L. S., Armstrong, W. H., Anderson, R. S., Scherler, D., & Petersen, E. (2021). The

339 Causes of Debris-Covered Glacier Thinning: Evidence for the Importance of Ice Dynamics

- 340 From Kennicott Glacier, Alaska. *Frontiers in Earth Science*, 0, 723.
- 341 https://doi.org/10.3389/FEART.2021.680995
- 342 Bartlett, O. T., Ng, F. S. L., & Rowan, A. V. (2020). Morphology and evolution of supraglacial
- hummocks on debris-covered Himalayan glaciers. *Earth Surface Processes and Landforms*,
- 344 esp.5043. https://doi.org/10.1002/esp.5043
- Benn, D. I., Wiseman, S., & Hands, K. A. (2001). Growth and drainage of supraglacial lakes on
- debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal. Journal of Glaciology, 47(159),
- 347 626–638. https://doi.org/10.3189/172756501781831729
- Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., et al. (2012,
- August). Response of debris-covered glaciers in the Mount Everest region to recent
- 350 warming, and implications for outburst flood hazards. *Earth-Science Reviews*.
- 351 https://doi.org/10.1016/j.earscirev.2012.03.008
- Benn, Douglas I, Thompson, S., Gulley, J., Mertes, J., Luckman, A., & Nicholson, L. (2017).
- 353 Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and
- its relationship with patterns of mass loss. *The Cryosphere*, 11. https://doi.org/10.5194/tc-
- 355 11-2247-2017
- Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, Á. Þ., Pitte, P., Le Meur, E., et al.
- (2014). Glacier topography and elevation changes derived from Pléiades sub-meter stereo
 images. *The Cryosphere*, 8, 2275–2291. https://doi.org/10.5194/tc-8-2275-2014
- Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., & Bajracharya, S. (2008). Identification
- of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal
- using spaceborne imagery. *Natural Hazards and Earth System Sciences*, 8(6), 1329–1340.
- 362 https://doi.org/10.5194/nhess-8-1329-2008

363	Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E., et al. (2016). Quantifying
364	volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and
365	aerial photogrammetry. Journal of Glaciology. https://doi.org/10.1017/jog.2016.54
366	Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., et al.
367	(2018). Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal,
368	central Himalaya. The Cryosphere, 12(11), 3439-3457. https://doi.org/10.5194/tc-12-3439-
369	2018
370	Buri, P., & Pellicciotti, F. (2018). Aspect controls the survival of ice cliffs on debris-covered
371	glaciers. Proceedings of the National Academy of Sciences, 115(17), 4369–4374.
372	https://doi.org/10.1073/pnas.1713892115
373	Buri, P., Pellicciotti, F., Steiner, J. F., Miles, E. S., & Immerzeel, W. W. (2016). A grid-based
374	model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Annals of
375	Glaciology, 57(71), 199–211. https://doi.org/10.3189/2016AoG71A059
376	Buri, P., Miles, E. S., Steiner, J. F., Ragettli, S., & Pellicciotti, F. (2021). Supraglacial Ice Cliffs
377	Can Substantially Increase the Mass Loss of Debris-Covered Glaciers. Geophysical
378	Research Letters, 48(6). https://doi.org/10.1029/2020GL092150
379	Cathles, L. M., Abbot, D. S., Bassis, J. N., & MacAyeal, D. R. (2011). Modeling surface-
380	roughness/solar-ablation feedback: application to small-scale surface channels and
381	crevasses of the Greenland ice sheet. Annals of Glaciology, 52(59), 99-108.
382	https://doi.org/10.3189/172756411799096268
383	Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., &
384	Grigsby, S. (2016, March 1). Glacier crevasses: Observations, models, and mass balance
385	implications. Reviews of Geophysics. Blackwell Publishing Ltd.

386 https://doi.org/10.1002/2015RG000504

- Compagno, L., Huss, M., Miles, E. S., McCarthy, M. J., Zekollari, H., Dehecq, A., et al. (2022).
- 388 Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale:
- an application to High Mountain Asia. *The Cryosphere*, *16*(5), 1697–1718.
- 390 https://doi.org/10.5194/tc-16-1697-2022
- Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow, P. W., et al. (2019).
- Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. *Nature Geoscience*, 12(1), 22–27. https://doi.org/10.1038/s41561-018-0271-9
- Egli, P. E., Belotti, B., Ouvry, B., Irving, J., & Lane, S. N. (2021). Subglacial Channels, Climate
- Warming, and Increasing Frequency of Alpine Glacier Snout Collapse. *Geophysical Research Letters*, 48(21). https://doi.org/10.1029/2021GL096031
- ³⁹⁷ Falaschi, D., Rivera, A., Lo Vecchio Repetto, A., Moragues, S., Villalba, R., Rastner, P., et al.
- 398 (2021). Evolution of Surface Characteristics of Three Debris-Covered Glaciers in the
- 399 Patagonian Andes From 1958 to 2020. *Frontiers in Earth Science*, 9.
- 400 https://doi.org/10.3389/feart.2021.671854
- 401 Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A.
- 402 (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth.
- 403 *Nature Geoscience*, *12*(3), 168–173. https://doi.org/10.1038/s41561-019-0300-3
- 404 Ferguson, J. C., & Vieli, A. (2021). Modelling steady states and the transient response of debris-
- 405 covered glaciers. *The Cryosphere*, *15*(7), 3377–3399. https://doi.org/10.5194/tc-15-3377-
- 406 2021
- 407 Gulley, J. D., Benn, D. I., Screaton, E., & Martin, J. (2009). Mechanisms of englacial conduit
- 408 formation and their implications for subglacial recharge. *Quaternary Science Reviews*,

- 409 28(19–20), 1984–1999. https://doi.org/10.1016/j.quascirev.2009.04.002
- 410 Hagolle, O., Huc, M., Villa Pascual, D., & Dedieu, G. (2015). A Multi-Temporal and Multi-
- 411 Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric
- 412 Correction of FormoSat-2, LandSat, VENµS and Sentinel-2 Images. *Remote Sensing*, 7(3),
- 413 2668–2691. https://doi.org/10.3390/rs70302668
- Herreid, S., & Pellicciotti, F. (2018). Automated detection of ice cliffs within supraglacial debris
- 415 cover. *The Cryosphere*, *12*, 1811–1829. https://doi.org/10.5194/tc-12-1811-2018
- 416 Herreid, S., & Pellicciotti, F. (2020). The state of rock debris covering Earth's glaciers. *Nature*
- 417 *Geoscience*, 1–7. https://doi.org/10.1038/s41561-020-0615-0
- Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., Shrestha, A. B., Pellicciotti, F.,
- 419 Bierkens, M. F. P., & De Jong, S. M. (2014). High-resolution monitoring of Himalayan
- 420 glacier dynamics using unmanned aerial vehicles. *Remote Sensing of Environment*, 150, 93–
- 421 103. https://doi.org/10.1016/j.rse.2014.04.025
- 422 Kienholz, C., Rich, J. L., Arendt, A. A., & Hock, R. (2014). A new method for deriving glacier
- 423 centerlines applied to glaciers in Alaska and northwest Canada. *The Cryosphere*, 8(2), 503–
- 424 519. https://doi.org/10.5194/tc-8-503-2014
- 425 King, O., Turner, A. G. D., Quincey, D. J., & Carrivick, J. L. (2020). Morphometric evolution of
- 426 Everest region debris-covered glaciers. *Geomorphology*, *371*, 107422.
- 427 https://doi.org/10.1016/j.geomorph.2020.107422
- 428 Kirkbride, M. P., & Deline, P. (2013). The formation of supraglacial debris covers by primary
- dispersal from transverse englacial debris bands. *Earth Surface Processes and Landforms*,
- 430 *38*(15), 1779–1792. https://doi.org/10.1002/esp.3416
- 431 Kneib, M., Miles, E. S., Jola, S., Buri, P., Herreid, S., Bhattacharya, A., et al. (2020). Mapping

432	ice cliffs on debris-covered glaciers using multispectral satellite images. Remote Sensing of
433	Environment, 112201. https://doi.org/10.1016/j.rse.2020.112201
434	Kneib, M., Miles, E. S., Buri, P., Molnar, P., McCarthy, M., Fugger, S., & Pellicciotti, F. (2021).
435	Interannual Dynamics of Ice Cliff Populations on Debris-Covered Glaciers From Remote
436	Sensing Observations and Stochastic Modeling. Journal of Geophysical Research: Earth
437	Surface, 126(10). https://doi.org/10.1029/2021JF006179
438	Kneib, Marin, Miles, E. S., Buri, P., Fugger, S., McCarthy, M., Shaw, T. E., et al. (2022). Sub-
439	seasonal variability of supraglacial ice cliff melt rates and associated processes from time-
440	lapse photogrammetry. The Cryosphere, 16(11), 4701–4725. https://doi.org/10.5194/tc-16-
441	4701-2022
442	Kraaijenbrink, P. D. A., Shea, J. M., Pellicciotti, F., De Jong, S. M., & Immerzeel, W. W.
443	(2016). Object-based analysis of unmanned aerial vehicle imagery to map and characterise
444	surface features on a debris-covered glacier. Remote Sensing of Environment, 186, 581-595.
445	https://doi.org/10.1016/j.rse.2016.09.013
446	Loriaux, T., & Ruiz, L. (2021). Spatio-Temporal Distribution of Supra-Glacial Ponds and Ice
447	Cliffs on Verde Glacier, Chile. Frontiers in Earth Science, 9.
448	https://doi.org/10.3389/feart.2021.681071
449	McCarthy, M., Miles, E., Kneib, M., Buri, P., Fugger, S., & Pellicciotti, F. (2022). Supraglacial
450	debris thickness and supply rate in High-Mountain Asia. Communications Earth &
451	Environment, 3(1), 269. https://doi.org/10.1038/s43247-022-00588-2
452	McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the
453	delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-
454	1432. https://doi.org/10.1080/01431169608948714

- 455 Miles, E. S., Willis, I. C., Arnold, N. S., Steiner, J., & Pellicciotti, F. (2017). Spatial, seasonal
- and interannual variability of supraglacial ponds in the Langtang Valley of Nepal, 1999-
- 457 2013. https://doi.org/10.1017/jog.2016.120
- 458 Miles, E. S., Watson, C. S., Brun, F., Berthier, E., Esteves, M., Quincey, D. J., et al. (2018).
- 459 Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest
- region, Nepal Himalaya. *The Cryosphere*, *12*, 3891–3905. https://doi.org/10.5194/tc-123891-2018
- 462 Miles, E. S., Willis, I., Buri, P., Steiner, J. F., Arnold, N. S., & Pellicciotti, F. (2018). Surface
- 463 Pond Energy Absorption Across Four Himalayan Glaciers Accounts for 1/8 of Total
- 464 Catchment Ice Loss. *Geophysical Research Letters*, 45(19), 10,464-10,473.
- 465 https://doi.org/10.1029/2018GL079678
- Miles, E. S., Steiner, J. F., Buri, P., Immerzeel, W. W., & Pellicciotti, F. (2022). Controls on the
- 467 relative melt rates of debris-covered glacier surfaces. *Environmental Research Letters*,

468 *17*(6), 064004. https://doi.org/10.1088/1748-9326/ac6966

- 469 Miles, K. E., Hubbard, B., Irvine-Fynn, T. D. L., Miles, E., Quincey, D. J., & Rowan, A. V.
- 470 (2020, August 1). Hydrology of debris-covered glaciers in High Mountain Asia. *Earth*-
- 471 *Science Reviews*. Elsevier B.V. https://doi.org/10.1016/j.earscirev.2020.103212
- Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022). Ice velocity and thickness of the
 world's glaciers. *Nature Geoscience*, *15*(2), 124–129. https://doi.org/10.1038/s41561-021-

474 00885-z

- 475 Mölg, N., Bolch, T., Walter, A., & Vieli, A. (2019). Unravelling the evolution of Zmuttgletscher
- and its debris cover since the end of the Little Ice Age. *The Cryosphere*, *13*(7), 1889–1909.

477 https://doi.org/10.5194/tc-13-1889-2019

- 478 Mölg, N., Ferguson, J., Bolch, T., & Vieli, A. (2020). On the influence of debris cover on glacier
- 479 morphology: How high-relief structures evolve from smooth surfaces. *Geomorphology*,
- 480 357, 107092. https://doi.org/10.1016/j.geomorph.2020.107092
- 481 Moore, P. L. (2018). Stability of supraglacial debris. *Earth Surface Processes and Landforms*,
- 482 43(1), 285–297. https://doi.org/10.1002/esp.4244
- 483 Moore, P. L. (2021). Numerical Simulation of Supraglacial Debris Mobility: Implications for
- 484 Ablation and Landform Genesis. *Frontiers in Earth Science*, 9.
- 485 https://doi.org/10.3389/feart.2021.710131
- 486 Muñoz Sabater, J. (2019). ERA5-Land monthly averaged data from 1981 to present. *Copernicus*
- 487 *Climate Change Service (C3S) Climate Data Store (CDS).*
- 488 https://doi.org/10.24381/cds.68d2bb30
- 489 Nicholson, L. I., McCarthy, M., Pritchard, H. D., & Willis, I. (2018). Supraglacial debris
- 490 thickness variability: Impact on ablation and relation to terrain properties. *Cryosphere*,
- 491 *12*(12), 3719–3734. https://doi.org/10.5194/tc-12-3719-2018
- 492 Pellicciotti, F., Stephan, C., Miles, E. S., Herreid, S., Immerzeel, W. W., & Bolch, T. (2015).
- 493 Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from
- 494 1974 to 1999. *Journal of Glaciology*, *61*(226), 373–386.
- 495 https://doi.org/10.3189/2015JoG13J237
- Pfeffer, W. T., & Bretherton, C. S. (1987). The effect of crevasses on the solar heating of a
 glacier surface. *The Physical Basis of Ice Sheet Modelling*, *170*, 191–205.
- Pfeffer, W. Tad, Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., et al. (2014).
- 499 The randolph glacier inventory: A globally complete inventory of glaciers. *Journal of*
- 500 *Glaciology*, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176

- 501 Purdie, H., Zawar-Reza, P., Katurji, M., Schumacher, B., Kerr, T., & Bealing, P. (2022).
- Variability in the vertical temperature profile within crevasses at an alpine glacier. *Journal* of *Glaciology*, 1–15. https://doi.org/10.1017/jog.2022.73
- 504 Quincey, D. J., & Glasser, N. F. (2009). Morphological and ice-dynamical changes on the
- Tasman Glacier, New Zealand, 1990-2007. *Global and Planetary Change*, 68(3), 185–197.
 https://doi.org/10.1016/j.gloplacha.2009.05.003
- 507 Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J. M., Hambrey, M. J.,

⁵⁰⁸ & Glasser, N. F. (2007). Early recognition of glacial lake hazards in the Himalaya using

remote sensing datasets. *Global and Planetary Change*, 56(1–2), 137–152.

- 510 https://doi.org/10.1016/j.gloplacha.2006.07.013
- 511 Racoviteanu, A. E., Nicholson, L., & Glasser, N. F. (2021). Surface composition of debris-
- 512 covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI
- 513 imagery. The Cryosphere, 15, 4557–4588. https://doi.org/10.5194/tc-15-4557-2021
- 514 Racoviteanu, A. E., Glasser, N. F., Robson, B. A., Harrison, S., Millan, R., Kayastha, R. B., &
- 515 Kayastha, R. (2022). Recent Evolution of Glaciers in the Manaslu Region of Nepal From
- 516 Satellite Imagery and UAV Data (1970–2019). *Frontiers in Earth Science*, 9.
- 517 https://doi.org/10.3389/feart.2021.767317
- 518 Reid, T. D., & Brock, B. W. (2014). Assessing ice-cliff backwasting and its contribution to total
- ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. *Journal of Glaciology*.
- 520 https://doi.org/10.3189/2014JoG13J045
- 521 Reynolds, J. (2000). On the formation of supraglacial lakes on debris-covered glaciers. *IAHS*-
- 522 *AISH Publication*, 264, 153–161.
- 523 Röhl, K. (2006). Thermo-erosional notch development at fresh-water-calving Tasman Glacier,

- 524 New Zealand. *Journal of Glaciology*, 52(177), 203–213.
- 525 https://doi.org/10.3189/172756506781828773
- 526 Röhl, K. (2008). Characteristics and evolution of supraglacial ponds on debris-covered Tasman
- 527 Glacier, New Zealand. *Journal of Glaciology*.
- 528 https://doi.org/10.3189/002214308787779861
- 529 Rounce, D. R., Hock, R., McNabb, R. W., Millan, R., Sommer, C., Braun, M. H., et al. (2021).
- 530 Distributed global debris thickness estimates reveal debris significantly impacts glacier
- 531 mass balance. *Geophysical Research Letters*, e2020GL091311.
- 532 https://doi.org/10.1029/2020GL091311
- 533 Rowan, A. V., Egholm, D. L., Quincey, D. J., Hubbard, B., King, O., Miles, E. S., et al. (2021).
- 534 The Role of Differential Ablation and Dynamic Detachment in Driving Accelerating Mass
- 535 Loss From a Debris-Covered Himalayan Glacier. Journal of Geophysical Research: Earth

536 *Surface*, *126*(9), e2020JF005761. https://doi.org/10.1029/2020JF005761

- 537 Sakai, A., & Fujita, K. (2010). Formation conditions of supraglacial lakes on debriscovered
- glaciers in the Himalaya. *Journal of Glaciology*, *56*(195), 177–181.
- 539 https://doi.org/10.3189/002214310791190785
- 540 Sakai, A., & Takeuchi, N. (2000). Debris-Covered Glaciers. IAHS Publ.
- Sakai, A., Nakawo, M., & Fujita, K. (1998). Melt rate of ice cliffs on the Lirung Glacier, Nepal
 Himalayas, 1996. *Bulletin of Glacier Research*, *16*, 57–66.
- 543 Sakai, A., Nakawo, M., & Fujita, K. (2002). Distribution Characteristics and Energy Balance of
- 544 Ice Cliffs on Debris-covered Glaciers, Nepal Himalaya. *Arctic, Antarctic, and Alpine*
- 545 *Research*, 34(1), 12–19. https://doi.org/10.1080/15230430.2002.12003463
- 546 Salerno, F., Thakuri, S., D'Agata, C., Smiraglia, C., Manfredi, E. C., Viviano, G., & Tartari, G.

547	(2012). Glacial lake distribution in the Mount Everest region: Uncertainty of measurement
548	and conditions of formation. Global and Planetary Change, 92–93, 30–39.
549	https://doi.org/10.1016/j.gloplacha.2012.04.001
550	Sato, Y., Fujita, K., Inoue, H., Sunako, S., Sakai, A., Tsushima, A., et al. (2021). Ice Cliff
551	Dynamics of Debris-Covered Trakarding Glacier in the Rolwaling Region, Nepal Himalaya.
552	Frontiers in Earth Science, 9, 398. https://doi.org/10.3389/FEART.2021.623623/BIBTEX
553	Scherler, D., Wulf, H., & Gorelick, N. (2018). Global Assessment of Supraglacial Debris-Cover
554	Extents. Geophysical Research Letters. https://doi.org/10.1029/2018GL080158
555	Schwanghart, W., & Scherler, D. (2014). Short Communication: TopoToolbox 2 – MATLAB-
556	based software for topographic analysis and modeling in Earth surface sciences. Earth
557	Surface Dynamics, 2(1), 1-7. https://doi.org/10.5194/esurf-2-1-2014
558	Sharp, R. P. (1949). Studies of superglacial debris on valley glaciers. American Journal of
559	Science, 247(5), 289-315. https://doi.org/10.2475/ajs.247.5.289
560	Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R., Porter, C., & Morin,
561	P. (2016). An automated, open-source pipeline for mass production of digital elevation
562	models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS
563	Journal of Photogrammetry and Remote Sensing, 116, 101–117.
564	https://doi.org/10.1016/j.isprsjprs.2016.03.012
565	Steiner, J. F., Buri, P., Miles, E. S., Ragettli, S., & Pellicciotti, F. (2019). Supraglacial ice cliffs
566	and ponds on debris-covered glaciers: Spatio-temporal distribution and characteristics.
567	Journal of Glaciology, 65(252), 617-632. https://doi.org/10.1017/jog.2019.40
568	Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., & Shahgedanova, M. (2007). Recent
569	glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial

- 570 debris cover and supra-/proglacial lake development. In Annals of Glaciology (Vol. 46, pp.
- 571 195–203). https://doi.org/10.3189/172756407782871468
- Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2014). Precise Global
- 573 DEM Generation by ALOS PRISM. *ISPRS Annals of the Photogrammetry, Remote Sensing*
- *and Spatial Information Sciences*, II–4, 71–76. https://doi.org/10.5194/isprsannals-II-4-71-
- 575 2014
- 576 Watson, C. S., Quincey, D. J., Carrivick, J. L., & Smith, M. W. (2016). The dynamics of
- 577 supraglacial ponds in the Everest region, central Himalaya. *Global and Planetary Change*,
- 578 *142*, 14–27. https://doi.org/https://doi.org/10.1016/j.gloplacha.2016.04.008
- 579 Watson, C. S., Quincey, D. J., Carrivick, J. L., & Smith, M. W. (2017). Ice cliff dynamics in the
- 580 Everest region of the Central Himalaya. *Geomorphology*, 278, 238–251.
- 581 https://doi.org/10.1016/j.geomorph.2016.11.017
- Watson, C. S., Quincey, D. J., Smith, M. W., Carrivick, J. L., Rowan, A. V, & James, M. R.
- 583 (2017). Quantifying ice cliff evolution with multi-temporal point clouds on the debris-
- covered Khumbu Glacier, Nepal. https://doi.org/10.1017/jog.2017.47
- 585 Watson, C. S., King, O., Miles, E. S., & Quincey, D. J. (2018). Optimising NDWI supraglacial
- 586 pond classification on Himalayan debris-covered glaciers. *Remote Sensing of Environment*,
- 587 217, 414–425. https://doi.org/10.1016/j.rse.2018.08.020
- 588
- 589

590 Additional references in supporting information

- 591
- 592 Fugger, S., Fyffe, C.L., Fatichi, S., Miles, E., McCarthy, M., Shaw, T.E., Ding, B., Yang, W.,
- 593 Wagnon, P., Immerzeel, W., Liu, Q., Pellicciotti, F., 2022. Understanding monsoon controls

- on the energy and mass balance of glaciers in the Central and Eastern Himalaya. Cryosph.
- 595 16, 1631–1652. https://doi.org/10.5194/tc-16-1631-2022

597 598

Controls on Ice Cliff Formation, Distribution and Characteristics on Debris-Covered Glaciers 3

- M. Kneib^{1, 2}, Catriona Fyffe³, Evan S. Miles¹, Shayna Lindemann¹, Thomas E. Shaw¹, 4
- Pascal Buri¹, Michael McCarthy¹, Boris Ouvry⁴, Andreas Vieli⁴, Yota Sato⁵, Philip D.A 5
- Kraaijenbrink⁶, Chuanxi Zhao^{7,8}, Peter Molnar², Francesca Pellicciotti^{1,3} 6
- ¹ High Mountain Glaciers and Hydrology Group, Swiss Federal Institute, WSL, Birmensdorf, 7 Switzerland. 8
- ² Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland 9
- ³ Department of Geography and Environmental Sciences, Northumbria University, Newcastle 10 upon Tyne, UK 11
- ⁴ Department of Geography, University of Zurich, 8057 Zurich, Switzerland 12
- ⁵ Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan 13
- ⁶ Utrecht University, Department of Physical Geography, PO Box 80115, 3508 TC, Utrecht, The 14 Netherlands. 15
- ⁷ College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China 16
- ⁸ State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), 17
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences 18
- 19
- Corresponding author: Marin Kneib (marin.kneib@gmail.com) 20

21 **Key Points:**

- We derived an unprecedented dataset of 37537 ice cliffs and their characteristics across 22 86 debris-covered glaciers in High Mountain Asia 23
- We find that 38.9% of the cliffs are stream-influenced, 19.5% pond-influenced and 24 25 19.7% are crevasses
- Ice cliff distribution can be predicted by velocity as an indicator of both the dynamics and 26 state of evolution of debris-covered glaciers 27

29 Abstract

30

Ice cliff distribution plays a major role in determining the melt of debris-covered glaciers but its 31 32 controls are largely unknown. We assembled a dataset of 37537 ice cliffs and determined their characteristics across 86 debris-covered glaciers within High Mountain Asia (HMA). We 33 complemented this dataset with the analysis of 202 cliff formation events from multi-temporal 34 UAV observations for a subset of glaciers. We find that 38.9% of the cliffs are stream-35 36 influenced, 19.5% pond-influenced and 19.7% are crevasses. Surface velocity is the main predictor of cliff distribution at both local and glacier scale, indicating its dependence on the 37 38 dynamic state and hence evolution stage of debris-covered glacier tongues. Supraglacial ponds contribute to maintaining cliffs in areas of thicker debris, but this is only possible if water 39 40 accumulates at the surface. Overall, total cliff density decreases exponentially with debris thickness as soon as debris gets thicker than 10 cm. 41

42

43 Plain Language Summary

44

Debris-covered glaciers are common throughout the world's mountain ranges and are 45 characterised by the presence of steep ice cliffs among the debris-covered ice. It is well-known 46 47 that the cliffs are responsible for a large portion of the melt of these glaciers but the way they form, and as a result the controls on their development and distribution across glaciers remains 48 poorly understood. Novel mapping approaches combined with high-resolution satellite and drone 49 products enabled us to disentangle some of these controls and to show that the ice cliffs are 50 generally formed and maintained by the surface hydrology (ponds or streams) or by the opening 51 of crevasses. As a result, they depend both at the local and glacier scale on the dynamic state of 52

the glaciers as well as the evolution stage of their debris cover. This provides a pathway to better represent their contribution to glacier melt in predictive glacier models.

55

56 1 Introduction

Debris-covered glaciers are found in all mountain ranges (Scherler et al., 2018), and 57 supraglacial debris extents and thickness are expected to increase in a warming climate 58 (Compagno et al., 2022; Herreid & Pellicciotti, 2020; Stokes et al., 2007). However, despite 59 considerable recent advances, modelling the mass balances of these glaciers remains challenging 60 (Rounce et al., 2021). This is partly due to the presence of supraglacial ice cliffs, which melt up 61 to 20 times faster than the surrounding debris-covered ice, therefore compensating for the 62 relatively well constrained debris insulating effect (Anderson, Armstrong, Anderson, & Buri, 63 2021; Brun et al., 2018; E. S. Miles, Willis, et al., 2018; Reid & Brock, 2014; Sakai et al., 1998, 64 2002). In one catchment in High Mountain Asia (HMA) ice cliffs were shown to contribute 17+/-65 66 4% of the melt of the debris-covered ice (Buri et al., 2021). This has major implications for the mass balance of debris-covered glaciers (Pellicciotti et al., 2015) and their long-term evolution 67 68 (Ferguson & Vieli, 2021; Racoviteanu et al., 2022).

69

70 While models accurately simulate the energy and mass balance contribution of individual 71 ice cliffs (Buri et al., 2016; Kneib et al., 2022), their application at large spatial scales is limited by our understanding of the controls of ice cliff distribution. Indeed, estimates of ice cliff density 72 are difficult to make (Anderson, Armstrong, Anderson, & Buri, 2021; Herreid & Pellicciotti, 73 2018; Kneib et al., 2020) and vary widely in time and space, between 1 and 15% of the debris-74 75 covered area (e.g. Falaschi et al., 2021; Kneib et al., 2021; Loriaux & Ruiz, 2021; Sato et al., 2021; Steiner et al., 2019; Watson et al., 2017). Remote sensing studies have shown that cliffs 76 are often associated with ponds (Steiner et al., 2019; Watson, Quincey, Carrivick, et al., 2017), 77 78 hinting at a preferential location of ice cliffs where lower glacier longitudinal gradient and surface velocities promote surface ponding (Bolch et al., 2008; Quincey et al., 2007; Quincey & 79 Glasser, 2009; Racoviteanu et al., 2021; Reynolds, 2000; Sakai & Fujita, 2010; Salerno et al., 80 2012). Other limited observations indicate that ice cliffs preferentially develop at the confluence 81

of glacial tributaries, in locations of high compressive strain rates, and areas of thinner debris

83 (Anderson, Armstrong, Anderson, & Buri, 2021; Anderson, Armstrong, Anderson, Scherler, et

al., 2021; Benn et al., 2012; Kraaijenbrink et al., 2016; Steiner et al., 2019; Watson, Quincey,

85 Carrivick, et al., 2017). However, the lack of consistent observations of cliff distribution makes it

86 difficult to include ice cliffs in predictive glacier models in a way that accounts for their spatial

- 87 distribution and temporal evolution.
- 88

Ice cliff survival is inherently linked to debris stability, which is a function of local slope, 89 debris thickness and water content, as well as undercutting by streams or ponds (Moore, 2018). 90 91 The local slope can change in relatively short time scales with differential melt caused by heterogeneous debris thicknesses (Moore, 2021; Nicholson et al., 2018; Sharp, 1949), which 92 93 results in the surface of debris-covered glaciers being particularly hummocky where the debris gets thicker than 20-30 cm (Bartlett et al., 2020; King et al., 2020). Slope undercutting and 94 destabilisation by streams or ponds is expected to be one of the main triggers for ice cliff 95 formation (Mölg et al., 2019; Röhl, 2006, 2008; Sakai & Takeuchi, 2000) and survival (Benn et 96 97 al., 2001, 2012; Brun et al., 2016; Kneib et al., 2022; Sato et al., 2021; Watson, Quincey, Smith, 98 et al., 2017). Other hypothesised cliff formation mechanisms include crevasse opening (Reid & Brock, 2014; Steiner et al., 2019) or the collapse of englacial conduits (Egli et al., 2021; Gulley 99 et al., 2009; Immerzeel et al., 2014; E. S. Miles, Watson, et al., 2018; K. E. Miles et al., 2020; 100 101 Sakai & Takeuchi, 2000), but these hypotheses have never been tested in a quantitative way.

102

In this study, we therefore 1) map ice cliffs across 86 glaciers in HMA, 2) determine their physical characteristics, 3) attribute their distribution to potential local and glacier-wide controlling factors. The findings are further corroborated by complementary observations on ice cliff formation from high-resolution, multi-temporal Unoccupied Aerial Vehicle (UAV) data at five of the studied glaciers (Text S1).

109 2 Data and Methods

110

We used 14 Pléiades stereo-images acquired between 2017 and 2021 to derive 2m-111 resolution multi-spectral images and Digital Elevation Models (DEMs) covering 86 debris-112 covered glaciers across HMA (Berthier et al., 2014; Shean et al., 2016; Fig. 1; Table S2), 70 of 113 which had more than 65% of their debris-covered area that could be classified after removal of 114 clouds, shadows and fresh-snow (Table S3). The DEMs were used to derive surface slope and 115 aspect, the glacier 'hummockiness', which we defined as the percentage of area for which the 116 Statistical Measure of Relief (SMR) calculated over a 8 m window was greater than 50 m (King 117 et al., 2020), as well as supraglacial channels (Schwanghart & Scherler, 2014; Text S2). The 118 multi-spectral images were used to manually update the glacier and debris outlines of the RGI 119 6.0 (Pfeffer et al., 2014; Scherler et al., 2018; Table S3). Glacier longitudinal gradient was 120 121 computed using the 30m resolution AW3D DEM (Dehecq et al., 2019; Tadono et al., 2014) and combined with glacier ice thicknesses (Farinotti et al., 2019) to estimate driving stress over a 122 distance of two ice thicknesses. Distributed glacier velocity, compressive and tensile strain rates 123 were obtained from the global 50m resolution composite by Millan et al. (2022). We additionally 124 used the distributed debris thickness dataset of McCarthy et al. (2022) for all glaciers larger than 125 2 km² (64 glaciers, 47 of which have more than 65% of their debris-covered area that could be 126 classified). All these datasets were aggregated 1) in 500 m distance bins along the glacier 127 flowlines (Kienholz et al., 2014; King et al., 2020) and 2) for each glacier. Data gaps within the 128 bins were filled using a nearest neighbour interpolation. 129

130

In Ice cliffs and ponds were derived automatically in each Pléiades scene following the Spectral Curvature method for cliffs, which is based solely on spectral characteristics (Kneib et al., 2020), and the Normalized Difference Water Index (NDWI) for ponds (McFeeters, 1996; E. S. Miles et al., 2017; Watson et al., 2016, 2018; Text S2). The ice cliffs are then implicitly defined here as exposed ice in an otherwise debris-covered domain, therefore likely to undergo 'enhanced' melt locally. Some of these features were clearly identifiable as crevasses due to their elongated, straight or slightly curved shapes and these zones were outlined manually. Past 138 studies have only examined high-relief (several meters) ice cliffs, but here our interest is in all

139 exposed ice in the debris-covered area, so we include smaller features common for thin-debris

140 areas, such as crevasses, which similarly enhance surface ablation (Colgan et al., 2016).

141

Multi-temporal UAV data with a monitoring period longer than 2 years and with at least 3 high-resolution (<1 m) DEMs and orthoimages were available at five of the studied glaciers distributed across HMA. This complementary data was used to identify ice cliff formation events and derive the characteristics of newly formed ice cliffs (Text S1).

146

Figure 1: (a) Map of HMA with each triangle representing one of the 14 Pléiades scenes (some scenes are very close to each other) and the boxes to the side (c-m) showing a zoomed view of the glaciers in these areas. The background is the GTOPO 30 arc seconds (~1 km) DEM, and the glacierised areas are indicated in blue. The inset boxes show the glacier RGI 6.0 outlines in dark blue, the glaciers visible in the Pléiades images in turquoise and their debriscovered areas in brown. The pie charts are scaled to the absolute size of the debris-covered areas and show the relative proportion of ponds (dark blue) and cliffs (red) for each glacier for which more than 65% of their debris-covered area could be classified. (b) Cliff and pond density
of each of these glaciers. The bars show the uncertainties.

156

157 **3 Results**

158 159

3.1. Influence of supraglacial hydrology on ice cliff distribution

Cliffs are preferentially located in the vicinity of ponds and streams, as their density 160 strongly decreases with distance from these hydrological features (Fig. 2a, b), and a large 161 majority of the ponds are related to at least one neighbouring cliff (Fig. 2d). This is further 162 confirmed by field observations (Fig. 2e-g) and multitemporal UAV observations showing that 163 the presence of streams or ponds is responsible for more than 79% of the newly-formed cliff area 164 (Fig. S2). This leads us to define a 40m-buffer around ponds and streams within which we 165 classify the cliff pixels as pond-influenced or stream-influenced (Fig. 2h). With this definition, 166 pond-influenced cliffs account for 19.5% and stream-influenced cliffs for 38.9% of the total cliff 167 area (Fig. 2c). In addition, crevasses represent 19.7% of the cliff area across all glaciers. They 168 are mostly located in the upper extents of the debris-covered areas but also appear lower down 169 glacier, at shear margins, and in the vicinity of proglacial lakes or lateral streams entering the 170 glacier (Fig. S6). The remaining cliffs are qualified as undefined. The stream mapping 171 parameters and choice of buffer size have little influence on this classification (Fig. 2h, S12). 172 173

The slope and density of ice cliffs vary between categories, while this is less the case for aspect and size (Fig. S13). Crevasses are usually more densely distributed (15.2% of buffer area), followed by the pond-influenced (6.7%), stream-influenced (4.3%) and undefined cliffs (2.1% of remaining area, Fig. S13a). Despite a variety of glacier aspects (Table S3), there is a clear preferential cliff aspect distribution in the NNW direction for all categories (Fig. S13d), while the newly formed cliffs do not appear to have a preferential aspect (Sato et al., 2021; Fig. S4).

Figure 2: Cliff density for all glaciers as a function of (a) distance from ponds after 182 removal of the crevasses and (b) distance from streams, after removal of the pond-influenced 183 cliffs. The box plots indicate the median, 25th and 75th percentiles of the cliff density within each 184 10m bin for each glacier. The red dotted lines show the 40m buffers. (c) Area proportion of 185 undefined, pond- and stream-influenced cliffs and crevasses across all debris-covered glaciers. 186 (d) Pond density for all glaciers as a function of distance from cliffs. (h) Example of 187 classification of ice cliffs from Kyzylsu Glacier, Tajikistan: 1/ crevassed-areas, 2/ pond-188 influenced cliffs and 3/ stream-influenced cliffs, with the pictures (e-g) and Pléiades view (i-k) of 189 the corresponding zones. Image credit: Marin Kneib and Evan S. Miles. Background of (i-k) is 190 the Pléiades false-colour multispectral image (19/09/2021). Pléiades © CNES 2021, Distribution 191 192 AIRBUS DS.

193

3.2. Controls on ice cliff distribution

194

The variables associated with ice cliff distribution vary depending on the category of cliff 195 considered (Fig. 3, S15, Table S5). Stream-influenced and undefined cliffs follow a similar 196 distribution for all predictors (Fig. S15), which could indicate that a majority of the undefined 197 cliffs were formerly stream-influenced and backwasted away from the channels. 80% of stream-198 influenced cliffs are located in areas with debris estimated to be thinner than 33 cm, while 45% 199 of the pond-influenced cliffs are located in areas with thicker debris (Fig. S15). This results in 200 the total cliff density decreasing exponentially ($Y = 5.8e^{-\frac{X}{2}}$, $R^2 = 0.73$) when debris gets thicker 201 than 10 cm (Fig. 3a, S16). Furthermore, crevasses and pond-influenced cliffs have a clearly 202 203 contrasting response to the different controls investigated. Indeed, 80% of the crevasses are located in areas with surface velocities higher than the 13 m.yr⁻¹ threshold or in areas with debris 204 thinner than 20 cm (Fig. S15). Pond-influenced cliffs clearly depend on pond density, and are 205 thus preferentially located in non-dynamic areas with lower longitudinal gradient and velocity 206 207 and with thicker debris (Fig. 3, S15, S17).

208

Figure 3: Mean cliff density split by cliff category for all bins of all glaciers where more than

211 65% of the debris-covered area could be classified as a function of (a) debris thickness, (b)

212 surface velocity, (c) mean driving stress, (d) 'hummockiness', (e) stream sinuosity, (f)

- 213 longitudinal gradient, (g) absolute compressive strain rate, (h) tensile strain rate, (i) normalized
- 214 distance from terminus, (j) normalized elevation above terminus, (k) downstream slope to
- 215 *terminus and (l) pond density. The black line shows the area distribution of all the bins.*
- 216

217

3.2. Ice cliff dependence on glacier state

218

When aggregating the metrics per glacier, a clear relationship between mean surface 219 velocity across the debris-covered area and cliff density becomes apparent (Fig. 4, S18). The 220 influence of climatic variables seems instead to be limited (Fig. S19). Cliff density decreases 221 222 with decreasing velocity, up to a point where the trajectory seems to bifurcate. The debriscovered tongues with the highest cliff density and fastest velocity have a larger proportion of 223 crevasses (state 1, Fig. 4). At slower velocities (<10 m.yr⁻¹), two trajectories are apparent: 1) 224 glaciers with a large proportion (> $\frac{1}{3}$) of pond-influenced cliffs and higher cliff densities (state 225 3a, Fig 4), and 2) glaciers with a majority of stream-influenced cliffs, which tend to have lower 226 cliff densities (state 3b, Fig. 4). The majority of the glaciers are found at an intermediary stage 227 between these three end-members, with a decreasing proportion of crevasses and an increasing 228 proportion of stream- and pond-influenced cliffs as velocity decreases (state 2, Fig. 4). 229

230

231

Figure 4: Glacier-wide cliff density as a function of mean velocity in the debris-covered area for all glaciers where more than 65% of the debris-covered area could be classified. The proportion of undefined cliffs was not represented for readability. The boxes to the side show example maps of some of the glaciers with their surface classifications. Some additional reference glaciers are indicated in the main plot in black. The expression and R² of the black linear regression are indicated in the upper left corner. In light blue are shown four glacier clusters.

239 **4 Discussion and conclusions**

We have identified the presence of supraglacial streams and ponds, along with the opening of crevasses, to be the main mechanisms responsible for ice cliff formation and development. Newly-formed cliffs tend to be smaller in size and do not have any preferential aspect (Kneib et al., 2021; Fig. S4, S5). Cliffs get reburied when they backwaste away from these supraglacial features (Fig. 2a, b), with the strong control of solar radiation on cliff survival resulting in the preferentially poleward orientation of the total ice cliff population (Buri & Pellicciotti, 2018).

- 247
- 248

4.1. Ice cliff distribution and glacier state

249

Velocity stands out as the main control on ice cliff density both at the local and glacier 250 scale (Fig. 3, 4). Interlinkages with other variables means that the cliff density also responds to 251 other local controls, and debris thickness especially, although each category of cliffs responds 252 differently (Fig. 3). The distribution of ice cliffs therefore depends on the glacier dynamics and 253 state. A dynamic debris-covered glacier (mean surface velocity $> 10 \text{ m.yr}^{-1}$, Fig. 4, 5a, S20a) is 254 usually characterised by thin debris and crevasses which comprise the majority of exposed ice 255 and drain supraglacial streams. Glacier slow-down results in reduced strain rates and the 256 migration of crevasses to the upper sections of the debris-covered area and their eventual 257 disappearance (Fig. 3j, S20b), the extension of stream-influenced cliffs through debris 258 destabilisation and thermo-erosional undercutting (Moore, 2018; Fig. 3a) and possibly the 259 260 emergence of pond-influenced cliffs. Ponds maintain cliffs in more stagnant zones of thicker debris, also characterised by low longitudinal gradients and driving stress as well as increased 261 hummock prevalence (Benn et al., 2017; Steiner et al., 2019; Watson, Quincey, Carrivick, et al., 262 2017; Fig. 5c). Such evolution has been observed on other glaciers: on Zmutt Glacier, where it 263 264 was linked to the development of supraglacial valleys driven by stream incision (Mölg et al., 2020); and on Khumbu Glacier, where high relief zones characterised by growing cliffs and 265 ponds have developed as the glacier has slowed (King et al., 2020; Rowan et al., 2021). Our 266 large dataset enables us to show that this evolution holds across a large number of glaciers, and 267 to identify predictors of cliff type and distribution. The development of large pond-influenced 268

cliffs however requires the accumulation of water in surface depressions, which occurs for larger

- 270 glaciers with lower longitudinal gradients (Fig. 4, 5c, S17). Most HMA glaciers in this stage of
- evolution are located in the Central and Eastern Himalaya (Benn et al., 2012, 2017; Racoviteanu
- et al., 2021; Watson et al., 2016; Watson, Quincey, Carrivick, et al., 2017; Fig. 1). However,
- some glaciers do not develop such drainage systems due to their relative steepness and small
- size, resulting in lower ice cliff densities (Fig. 4, 5d, S20d).
- 275
- 276

277

Figure 5: The four glacier evolution states, with their ice cliff distributions. State 1: fast flowing glacier with thin debris and extensive crevassing. State 2: advanced debris cover, with

280 thicker debris and lower velocities enabling the development of supraglacial valleys and stream-

281 influenced cliffs in the non-crevassed areas. State 3a: large stagnating debris-covered tongues,

characterised by hummocks, thick debris and ponds maintaining cliffs in these zones. State 3b:

stagnating tongues with thick debris, but high enough longitudinal gradient or low enough

284 surface meltwater to prevent the formation of ponds and therefore the survival of cliffs. Figure

285 *credit: Martin Heynen.*

- 286
- 287 288

4.2. Implications for glacier mass balance

We have shown that ice cliff density and characteristics depend on the evolution state of the 289 debris-covered glacier (Fig. 5), which is controlled mainly by dynamics (velocity) and debris 290 thickness. Leveraging this new understanding of how glacier stage affects the presence of cliffs 291 on their surfaces, we have provided the distribution of each type of cliff on glaciers at different 292 stages of evolution (Fig. 3, 4, S20, Table S5). Future efforts should focus on testing the 293 framework developed here by substantially expanding the number of data points with particular 294 attention to include glaciers at distinct stages. Most of the debris-covered glaciers that have been 295 the object of detailed investigations belong to glacier states 2 and 3 and efforts should be made 296 297 to explore the whole range of evolution when targeting field studies. Already at this stage, however, the relationships detailed in this study outline a framework to estimate ice cliff 298 distribution based on glacier flow characteristics, that are usually available in prognostic flow 299 models, and debris thickness, without having to map the cliffs. Combined with cliff melt 300 enhancement factors (E. S. Miles et al., 2022), this would allow long term estimation of the 301 302 contribution of ice cliffs to debris-covered glacier mass balance - representing a key modelling advance. 303

304

Future work should also target the contribution of crevasses to glacier mass balance. Indeed, these features would likely enhance melt even more than traditional stream- and pond-influenced cliffs due to greater surface roughness at their location increasing turbulent fluxes, and additional reflected shortwave contributions from the opposite crevasse walls (Cathles et al., 2011; Colgan et al., 2016; W. T. Pfeffer & Bretherton, 1987; Purdie et al., 2022). Time-lapse images actually show the upper walls of crevasses backwasting as traditional ice cliffs would (Fig. S21). Furthermore, their longer-term evolution and influence on shaping the debris-covered glacier
surface remains unclear (Kirkbride & Deline, 2013).

313 314

315 Acknowledgments

This project has received funding from the European Research Council (ERC) under the

European Union's Horizon 2020 programme (grant agreement 772751) and from the Royal

Society via a Newton Advanced Fellowship award (NA170325). The majority of the Pléiades

319 stereo-pairs were provided by Etienne Berthier via the Pléiades Glacier Observatory (PGO)

initiative of the French Space Agency (CNES). The remaining images were acquired through the

321 CNES ISIS Programme. We thank the team of the Centre for Research on Glaciers at the

Academy of Sciences of Tajikistan who enabled our 2021 fieldwork on Kyzylsu Glacier.

323

324 **Open Research**

The glacier, debris, crevasse, cliff and pond outlines will be made available on Zenodo. Other

datasets used include surface velocity from Millan et al. (2022), climate data from ERA5-Land

327 (Muñoz Sabater, 2019), RGI 6.0. glacier outlines (https://nsidc.org/data/nsidc-0770/versions/6), the

AW3D 30m DEM (Tadono et al., 2014) and ice thicknesses (Farinotti et al., 2019). Atmospherically-

329 corrected Sentinel-2 images prior to 2019 were obtained from CNES through the PEPS platform

(Hagolle et al., 2015). From 2019 and later they were processed directly in Google Earth Engine.

331

332 **References**

333

334	Anderson, L. S.,	Armstrong, V	V. H., A	Anderson.	R. S., 6	& Buri. P.	(2021).	Debris c	cover and th	e
551	1 macroon, D. D.	, 1 11110110115, 1	••••••	macroom,	I . D., .	∞ Duil, I.	(2021)		lover und un	~

thinning of Kennicott Glacier, Alaska: In situ measurements, automated ice cliff delineation

and distributed melt estimates. *Cryosphere*, 15(1), 265–282. https://doi.org/10.5194/tc-15-

337 265-2021

Anderson, L. S., Armstrong, W. H., Anderson, R. S., Scherler, D., & Petersen, E. (2021). The

339 Causes of Debris-Covered Glacier Thinning: Evidence for the Importance of Ice Dynamics

- 340 From Kennicott Glacier, Alaska. *Frontiers in Earth Science*, 0, 723.
- 341 https://doi.org/10.3389/FEART.2021.680995
- Bartlett, O. T., Ng, F. S. L., & Rowan, A. V. (2020). Morphology and evolution of supraglacial
- hummocks on debris-covered Himalayan glaciers. *Earth Surface Processes and Landforms*,
- 344 esp.5043. https://doi.org/10.1002/esp.5043
- Benn, D. I., Wiseman, S., & Hands, K. A. (2001). Growth and drainage of supraglacial lakes on
- debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal. Journal of Glaciology, 47(159),
- 347 626–638. https://doi.org/10.3189/172756501781831729
- Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., et al. (2012,
- August). Response of debris-covered glaciers in the Mount Everest region to recent
- 350 warming, and implications for outburst flood hazards. *Earth-Science Reviews*.
- 351 https://doi.org/10.1016/j.earscirev.2012.03.008
- Benn, Douglas I, Thompson, S., Gulley, J., Mertes, J., Luckman, A., & Nicholson, L. (2017).
- 353 Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and
- its relationship with patterns of mass loss. *The Cryosphere*, 11. https://doi.org/10.5194/tc-
- 355 11-2247-2017
- Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, Á. Þ., Pitte, P., Le Meur, E., et al.
- (2014). Glacier topography and elevation changes derived from Pléiades sub-meter stereo
 images. *The Cryosphere*, 8, 2275–2291. https://doi.org/10.5194/tc-8-2275-2014
- Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., & Bajracharya, S. (2008). Identification
- of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal
- using spaceborne imagery. *Natural Hazards and Earth System Sciences*, 8(6), 1329–1340.
- 362 https://doi.org/10.5194/nhess-8-1329-2008

363	Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E., et al. (2016). Quantifying
364	volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and
365	aerial photogrammetry. Journal of Glaciology. https://doi.org/10.1017/jog.2016.54
366	Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., et al.
367	(2018). Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal,
368	central Himalaya. The Cryosphere, 12(11), 3439-3457. https://doi.org/10.5194/tc-12-3439-
369	2018
370	Buri, P., & Pellicciotti, F. (2018). Aspect controls the survival of ice cliffs on debris-covered
371	glaciers. Proceedings of the National Academy of Sciences, 115(17), 4369–4374.
372	https://doi.org/10.1073/pnas.1713892115
373	Buri, P., Pellicciotti, F., Steiner, J. F., Miles, E. S., & Immerzeel, W. W. (2016). A grid-based
374	model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Annals of
375	Glaciology, 57(71), 199–211. https://doi.org/10.3189/2016AoG71A059
376	Buri, P., Miles, E. S., Steiner, J. F., Ragettli, S., & Pellicciotti, F. (2021). Supraglacial Ice Cliffs
377	Can Substantially Increase the Mass Loss of Debris-Covered Glaciers. Geophysical
378	Research Letters, 48(6). https://doi.org/10.1029/2020GL092150
379	Cathles, L. M., Abbot, D. S., Bassis, J. N., & MacAyeal, D. R. (2011). Modeling surface-
380	roughness/solar-ablation feedback: application to small-scale surface channels and
381	crevasses of the Greenland ice sheet. Annals of Glaciology, 52(59), 99-108.
382	https://doi.org/10.3189/172756411799096268
383	Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., &
384	Grigsby, S. (2016, March 1). Glacier crevasses: Observations, models, and mass balance
385	implications. Reviews of Geophysics. Blackwell Publishing Ltd.

386 https://doi.org/10.1002/2015RG000504

- Compagno, L., Huss, M., Miles, E. S., McCarthy, M. J., Zekollari, H., Dehecq, A., et al. (2022).
- 388 Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale:
- an application to High Mountain Asia. *The Cryosphere*, *16*(5), 1697–1718.
- 390 https://doi.org/10.5194/tc-16-1697-2022
- Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow, P. W., et al. (2019).
- Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. *Nature Geoscience*, 12(1), 22–27. https://doi.org/10.1038/s41561-018-0271-9
- Egli, P. E., Belotti, B., Ouvry, B., Irving, J., & Lane, S. N. (2021). Subglacial Channels, Climate
- Warming, and Increasing Frequency of Alpine Glacier Snout Collapse. *Geophysical Research Letters*, 48(21). https://doi.org/10.1029/2021GL096031
- ³⁹⁷ Falaschi, D., Rivera, A., Lo Vecchio Repetto, A., Moragues, S., Villalba, R., Rastner, P., et al.
- 398 (2021). Evolution of Surface Characteristics of Three Debris-Covered Glaciers in the
- 399 Patagonian Andes From 1958 to 2020. *Frontiers in Earth Science*, 9.
- 400 https://doi.org/10.3389/feart.2021.671854
- 401 Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A.
- 402 (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth.
- 403 *Nature Geoscience*, *12*(3), 168–173. https://doi.org/10.1038/s41561-019-0300-3
- 404 Ferguson, J. C., & Vieli, A. (2021). Modelling steady states and the transient response of debris-
- 405 covered glaciers. *The Cryosphere*, *15*(7), 3377–3399. https://doi.org/10.5194/tc-15-3377-
- 406 2021
- 407 Gulley, J. D., Benn, D. I., Screaton, E., & Martin, J. (2009). Mechanisms of englacial conduit
- 408 formation and their implications for subglacial recharge. *Quaternary Science Reviews*,

- 409 28(19–20), 1984–1999. https://doi.org/10.1016/j.quascirev.2009.04.002
- 410 Hagolle, O., Huc, M., Villa Pascual, D., & Dedieu, G. (2015). A Multi-Temporal and Multi-
- 411 Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric
- 412 Correction of FormoSat-2, LandSat, VENµS and Sentinel-2 Images. *Remote Sensing*, 7(3),
- 413 2668–2691. https://doi.org/10.3390/rs70302668
- Herreid, S., & Pellicciotti, F. (2018). Automated detection of ice cliffs within supraglacial debris
- 415 cover. *The Cryosphere*, *12*, 1811–1829. https://doi.org/10.5194/tc-12-1811-2018
- 416 Herreid, S., & Pellicciotti, F. (2020). The state of rock debris covering Earth's glaciers. *Nature*
- 417 *Geoscience*, 1–7. https://doi.org/10.1038/s41561-020-0615-0
- Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., Shrestha, A. B., Pellicciotti, F.,
- 419 Bierkens, M. F. P., & De Jong, S. M. (2014). High-resolution monitoring of Himalayan
- 420 glacier dynamics using unmanned aerial vehicles. *Remote Sensing of Environment*, 150, 93–
- 421 103. https://doi.org/10.1016/j.rse.2014.04.025
- 422 Kienholz, C., Rich, J. L., Arendt, A. A., & Hock, R. (2014). A new method for deriving glacier
- 423 centerlines applied to glaciers in Alaska and northwest Canada. *The Cryosphere*, 8(2), 503–
- 424 519. https://doi.org/10.5194/tc-8-503-2014
- 425 King, O., Turner, A. G. D., Quincey, D. J., & Carrivick, J. L. (2020). Morphometric evolution of
- 426 Everest region debris-covered glaciers. *Geomorphology*, *371*, 107422.
- 427 https://doi.org/10.1016/j.geomorph.2020.107422
- 428 Kirkbride, M. P., & Deline, P. (2013). The formation of supraglacial debris covers by primary
- dispersal from transverse englacial debris bands. *Earth Surface Processes and Landforms*,
- 430 *38*(15), 1779–1792. https://doi.org/10.1002/esp.3416
- 431 Kneib, M., Miles, E. S., Jola, S., Buri, P., Herreid, S., Bhattacharya, A., et al. (2020). Mapping

432	ice cliffs on debris-covered glaciers using multispectral satellite images. Remote Sensing of
433	Environment, 112201. https://doi.org/10.1016/j.rse.2020.112201
434	Kneib, M., Miles, E. S., Buri, P., Molnar, P., McCarthy, M., Fugger, S., & Pellicciotti, F. (2021).
435	Interannual Dynamics of Ice Cliff Populations on Debris-Covered Glaciers From Remote
436	Sensing Observations and Stochastic Modeling. Journal of Geophysical Research: Earth
437	Surface, 126(10). https://doi.org/10.1029/2021JF006179
438	Kneib, Marin, Miles, E. S., Buri, P., Fugger, S., McCarthy, M., Shaw, T. E., et al. (2022). Sub-
439	seasonal variability of supraglacial ice cliff melt rates and associated processes from time-
440	lapse photogrammetry. The Cryosphere, 16(11), 4701–4725. https://doi.org/10.5194/tc-16-
441	4701-2022
442	Kraaijenbrink, P. D. A., Shea, J. M., Pellicciotti, F., De Jong, S. M., & Immerzeel, W. W.
443	(2016). Object-based analysis of unmanned aerial vehicle imagery to map and characterise
444	surface features on a debris-covered glacier. Remote Sensing of Environment, 186, 581-595.
445	https://doi.org/10.1016/j.rse.2016.09.013
446	Loriaux, T., & Ruiz, L. (2021). Spatio-Temporal Distribution of Supra-Glacial Ponds and Ice
447	Cliffs on Verde Glacier, Chile. Frontiers in Earth Science, 9.
448	https://doi.org/10.3389/feart.2021.681071
449	McCarthy, M., Miles, E., Kneib, M., Buri, P., Fugger, S., & Pellicciotti, F. (2022). Supraglacial
450	debris thickness and supply rate in High-Mountain Asia. Communications Earth &
451	Environment, 3(1), 269. https://doi.org/10.1038/s43247-022-00588-2
452	McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the
453	delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-
454	1432. https://doi.org/10.1080/01431169608948714

- 455 Miles, E. S., Willis, I. C., Arnold, N. S., Steiner, J., & Pellicciotti, F. (2017). Spatial, seasonal
- and interannual variability of supraglacial ponds in the Langtang Valley of Nepal, 1999-
- 457 2013. https://doi.org/10.1017/jog.2016.120
- 458 Miles, E. S., Watson, C. S., Brun, F., Berthier, E., Esteves, M., Quincey, D. J., et al. (2018).
- 459 Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest
- region, Nepal Himalaya. *The Cryosphere*, *12*, 3891–3905. https://doi.org/10.5194/tc-123891-2018
- 462 Miles, E. S., Willis, I., Buri, P., Steiner, J. F., Arnold, N. S., & Pellicciotti, F. (2018). Surface
- 463 Pond Energy Absorption Across Four Himalayan Glaciers Accounts for 1/8 of Total
- 464 Catchment Ice Loss. *Geophysical Research Letters*, 45(19), 10,464-10,473.
- 465 https://doi.org/10.1029/2018GL079678
- Miles, E. S., Steiner, J. F., Buri, P., Immerzeel, W. W., & Pellicciotti, F. (2022). Controls on the
- 467 relative melt rates of debris-covered glacier surfaces. *Environmental Research Letters*,

468 *17*(6), 064004. https://doi.org/10.1088/1748-9326/ac6966

- 469 Miles, K. E., Hubbard, B., Irvine-Fynn, T. D. L., Miles, E., Quincey, D. J., & Rowan, A. V.
- 470 (2020, August 1). Hydrology of debris-covered glaciers in High Mountain Asia. *Earth*-
- 471 *Science Reviews*. Elsevier B.V. https://doi.org/10.1016/j.earscirev.2020.103212
- Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022). Ice velocity and thickness of the
 world's glaciers. *Nature Geoscience*, *15*(2), 124–129. https://doi.org/10.1038/s41561-021-

474 00885-z

- 475 Mölg, N., Bolch, T., Walter, A., & Vieli, A. (2019). Unravelling the evolution of Zmuttgletscher
- and its debris cover since the end of the Little Ice Age. *The Cryosphere*, *13*(7), 1889–1909.

477 https://doi.org/10.5194/tc-13-1889-2019

- 478 Mölg, N., Ferguson, J., Bolch, T., & Vieli, A. (2020). On the influence of debris cover on glacier
- 479 morphology: How high-relief structures evolve from smooth surfaces. *Geomorphology*,
- 480 357, 107092. https://doi.org/10.1016/j.geomorph.2020.107092
- 481 Moore, P. L. (2018). Stability of supraglacial debris. *Earth Surface Processes and Landforms*,
- 482 43(1), 285–297. https://doi.org/10.1002/esp.4244
- 483 Moore, P. L. (2021). Numerical Simulation of Supraglacial Debris Mobility: Implications for
- 484 Ablation and Landform Genesis. *Frontiers in Earth Science*, 9.
- 485 https://doi.org/10.3389/feart.2021.710131
- 486 Muñoz Sabater, J. (2019). ERA5-Land monthly averaged data from 1981 to present. *Copernicus*
- 487 *Climate Change Service (C3S) Climate Data Store (CDS).*
- 488 https://doi.org/10.24381/cds.68d2bb30
- 489 Nicholson, L. I., McCarthy, M., Pritchard, H. D., & Willis, I. (2018). Supraglacial debris
- 490 thickness variability: Impact on ablation and relation to terrain properties. *Cryosphere*,
- 491 *12*(12), 3719–3734. https://doi.org/10.5194/tc-12-3719-2018
- 492 Pellicciotti, F., Stephan, C., Miles, E. S., Herreid, S., Immerzeel, W. W., & Bolch, T. (2015).
- 493 Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from
- 494 1974 to 1999. *Journal of Glaciology*, *61*(226), 373–386.
- 495 https://doi.org/10.3189/2015JoG13J237
- Pfeffer, W. T., & Bretherton, C. S. (1987). The effect of crevasses on the solar heating of a
 glacier surface. *The Physical Basis of Ice Sheet Modelling*, *170*, 191–205.
- Pfeffer, W. Tad, Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., et al. (2014).
- 499 The randolph glacier inventory: A globally complete inventory of glaciers. *Journal of*
- 500 *Glaciology*, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176

- 501 Purdie, H., Zawar-Reza, P., Katurji, M., Schumacher, B., Kerr, T., & Bealing, P. (2022).
- Variability in the vertical temperature profile within crevasses at an alpine glacier. *Journal* of *Glaciology*, 1–15. https://doi.org/10.1017/jog.2022.73
- 504 Quincey, D. J., & Glasser, N. F. (2009). Morphological and ice-dynamical changes on the
- Tasman Glacier, New Zealand, 1990-2007. *Global and Planetary Change*, 68(3), 185–197.
 https://doi.org/10.1016/j.gloplacha.2009.05.003
- 507 Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J. M., Hambrey, M. J.,

⁵⁰⁸ & Glasser, N. F. (2007). Early recognition of glacial lake hazards in the Himalaya using

remote sensing datasets. *Global and Planetary Change*, 56(1–2), 137–152.

- 510 https://doi.org/10.1016/j.gloplacha.2006.07.013
- 511 Racoviteanu, A. E., Nicholson, L., & Glasser, N. F. (2021). Surface composition of debris-
- 512 covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI
- 513 imagery. The Cryosphere, 15, 4557–4588. https://doi.org/10.5194/tc-15-4557-2021
- 514 Racoviteanu, A. E., Glasser, N. F., Robson, B. A., Harrison, S., Millan, R., Kayastha, R. B., &
- 515 Kayastha, R. (2022). Recent Evolution of Glaciers in the Manaslu Region of Nepal From
- 516 Satellite Imagery and UAV Data (1970–2019). *Frontiers in Earth Science*, 9.
- 517 https://doi.org/10.3389/feart.2021.767317
- 518 Reid, T. D., & Brock, B. W. (2014). Assessing ice-cliff backwasting and its contribution to total
- ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. *Journal of Glaciology*.
- 520 https://doi.org/10.3189/2014JoG13J045
- 521 Reynolds, J. (2000). On the formation of supraglacial lakes on debris-covered glaciers. *IAHS*-
- 522 *AISH Publication*, 264, 153–161.
- 523 Röhl, K. (2006). Thermo-erosional notch development at fresh-water-calving Tasman Glacier,

- 524 New Zealand. *Journal of Glaciology*, 52(177), 203–213.
- 525 https://doi.org/10.3189/172756506781828773
- 526 Röhl, K. (2008). Characteristics and evolution of supraglacial ponds on debris-covered Tasman
- 527 Glacier, New Zealand. *Journal of Glaciology*.
- 528 https://doi.org/10.3189/002214308787779861
- 529 Rounce, D. R., Hock, R., McNabb, R. W., Millan, R., Sommer, C., Braun, M. H., et al. (2021).
- 530 Distributed global debris thickness estimates reveal debris significantly impacts glacier
- 531 mass balance. *Geophysical Research Letters*, e2020GL091311.
- 532 https://doi.org/10.1029/2020GL091311
- 533 Rowan, A. V., Egholm, D. L., Quincey, D. J., Hubbard, B., King, O., Miles, E. S., et al. (2021).
- 534 The Role of Differential Ablation and Dynamic Detachment in Driving Accelerating Mass
- 535 Loss From a Debris-Covered Himalayan Glacier. Journal of Geophysical Research: Earth

536 *Surface*, *126*(9), e2020JF005761. https://doi.org/10.1029/2020JF005761

- 537 Sakai, A., & Fujita, K. (2010). Formation conditions of supraglacial lakes on debriscovered
- glaciers in the Himalaya. *Journal of Glaciology*, *56*(195), 177–181.
- 539 https://doi.org/10.3189/002214310791190785
- 540 Sakai, A., & Takeuchi, N. (2000). Debris-Covered Glaciers. IAHS Publ.
- Sakai, A., Nakawo, M., & Fujita, K. (1998). Melt rate of ice cliffs on the Lirung Glacier, Nepal
 Himalayas, 1996. *Bulletin of Glacier Research*, *16*, 57–66.
- 543 Sakai, A., Nakawo, M., & Fujita, K. (2002). Distribution Characteristics and Energy Balance of
- 544 Ice Cliffs on Debris-covered Glaciers, Nepal Himalaya. *Arctic, Antarctic, and Alpine*
- 545 *Research*, 34(1), 12–19. https://doi.org/10.1080/15230430.2002.12003463
- 546 Salerno, F., Thakuri, S., D'Agata, C., Smiraglia, C., Manfredi, E. C., Viviano, G., & Tartari, G.

547	(2012). Glacial lake distribution in the Mount Everest region: Uncertainty of measurement
548	and conditions of formation. Global and Planetary Change, 92–93, 30–39.
549	https://doi.org/10.1016/j.gloplacha.2012.04.001
550	Sato, Y., Fujita, K., Inoue, H., Sunako, S., Sakai, A., Tsushima, A., et al. (2021). Ice Cliff
551	Dynamics of Debris-Covered Trakarding Glacier in the Rolwaling Region, Nepal Himalaya.
552	Frontiers in Earth Science, 9, 398. https://doi.org/10.3389/FEART.2021.623623/BIBTEX
553	Scherler, D., Wulf, H., & Gorelick, N. (2018). Global Assessment of Supraglacial Debris-Cover
554	Extents. Geophysical Research Letters. https://doi.org/10.1029/2018GL080158
555	Schwanghart, W., & Scherler, D. (2014). Short Communication: TopoToolbox 2 – MATLAB-
556	based software for topographic analysis and modeling in Earth surface sciences. Earth
557	Surface Dynamics, 2(1), 1-7. https://doi.org/10.5194/esurf-2-1-2014
558	Sharp, R. P. (1949). Studies of superglacial debris on valley glaciers. American Journal of
559	Science, 247(5), 289-315. https://doi.org/10.2475/ajs.247.5.289
560	Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R., Porter, C., & Morin,
561	P. (2016). An automated, open-source pipeline for mass production of digital elevation
562	models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS
563	Journal of Photogrammetry and Remote Sensing, 116, 101–117.
564	https://doi.org/10.1016/j.isprsjprs.2016.03.012
565	Steiner, J. F., Buri, P., Miles, E. S., Ragettli, S., & Pellicciotti, F. (2019). Supraglacial ice cliffs
566	and ponds on debris-covered glaciers: Spatio-temporal distribution and characteristics.
567	Journal of Glaciology, 65(252), 617-632. https://doi.org/10.1017/jog.2019.40
568	Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., & Shahgedanova, M. (2007). Recent
569	glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial

- 570 debris cover and supra-/proglacial lake development. In Annals of Glaciology (Vol. 46, pp.
- 571 195–203). https://doi.org/10.3189/172756407782871468
- Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2014). Precise Global
- 573 DEM Generation by ALOS PRISM. *ISPRS Annals of the Photogrammetry, Remote Sensing*
- *and Spatial Information Sciences*, II–4, 71–76. https://doi.org/10.5194/isprsannals-II-4-71-
- 575 2014
- 576 Watson, C. S., Quincey, D. J., Carrivick, J. L., & Smith, M. W. (2016). The dynamics of
- 577 supraglacial ponds in the Everest region, central Himalaya. *Global and Planetary Change*,
- 578 *142*, 14–27. https://doi.org/https://doi.org/10.1016/j.gloplacha.2016.04.008
- 579 Watson, C. S., Quincey, D. J., Carrivick, J. L., & Smith, M. W. (2017). Ice cliff dynamics in the
- 580 Everest region of the Central Himalaya. *Geomorphology*, 278, 238–251.
- 581 https://doi.org/10.1016/j.geomorph.2016.11.017
- Watson, C. S., Quincey, D. J., Smith, M. W., Carrivick, J. L., Rowan, A. V, & James, M. R.
- 583 (2017). Quantifying ice cliff evolution with multi-temporal point clouds on the debris-
- covered Khumbu Glacier, Nepal. https://doi.org/10.1017/jog.2017.47
- 585 Watson, C. S., King, O., Miles, E. S., & Quincey, D. J. (2018). Optimising NDWI supraglacial
- 586 pond classification on Himalayan debris-covered glaciers. *Remote Sensing of Environment*,
- 587 217, 414–425. https://doi.org/10.1016/j.rse.2018.08.020
- 588
- 589

590 Additional references in supporting information

- 591
- 592 Fugger, S., Fyffe, C.L., Fatichi, S., Miles, E., McCarthy, M., Shaw, T.E., Ding, B., Yang, W.,
- 593 Wagnon, P., Immerzeel, W., Liu, Q., Pellicciotti, F., 2022. Understanding monsoon controls

- on the energy and mass balance of glaciers in the Central and Eastern Himalaya. Cryosph.
- 595 16, 1631–1652. https://doi.org/10.5194/tc-16-1631-2022

596

597 598

599

Geophysical Research Letters

Supporting Information for

Controls on Ice Cliff Formation, Distribution and Characteristics on Debris-Covered Glaciers

M. Kneib^{1, 2}, Catriona Fyffe³, Evan S. Miles¹, Shayna Lindemann¹, Thomas E. Shaw¹, Pascal Buri¹, Michael McCarthy¹, Boris Ouvry⁴, Andreas Vieli⁴, Yota Sato⁵, Philip D.A Kraaijenbrink⁶, Chuanxi Zhao^{7,8}, Peter Molnar², Francesca Pellicciotti^{1,3}

¹ High Mountain Glaciers and Hydrology Group, Swiss Federal Institute, WSL, Birmensdorf, Switzerland.

² Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland

³ Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK

⁴ Department of Geography, University of Zurich, 8057 Zurich, Switzerland

⁵ Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

⁶ Utrecht University, Department of Physical Geography, PO Box 80115, 3508 TC, Utrecht, The Netherlands.

⁷ College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

⁸ State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences

Contents of this file

Text S1 to S2 Figures S1 to S21 Tables S1 to S5

Text S1. Ice cliff formation

1.1. Multi-temporal UAV data

Here we took advantage of multi-temporal Unsupervised Aerial Vehicle (UAV) surveys over portions of five of the studied glaciers: Trakarding, Langtang, Lirung, 23K and 24K Glaciers (Brun et al., 2016; Chuanxi et al., in prep; Immerzeel et al., 2014; Kraaijenbrink et al., in prep; Sato et al., 2021; Table S1; Fig. S1). The surveys were conducted over a period of 2-5 years, with a repeat time of at least one year (Table S1). The resolution of the original DEMs and orthoimages varied between 0.1 and 0.2 m, and they were all co-registered using surrounding stable terrain (see details in Chuanxi et al., in prep.; Kraaijenbrink et al., in prep.; Sato et al., 2021;). From 2016 we used all available cloudless Sentinel-2 images (10m resolution) of the survey domains taken during the melt season to identify seasonal ponds. These images were atmospherically-corrected using the MAJA processing workflow (Hagolle et al., 2015).

1.2. Identification of newly-formed ice cliffs

We manually identified newly-formed cliffs in the orthoimages as patches of bare ice that were not visible in previous images, irrespective of their slope, accounting for glacier flow (Kneib et al., 2021). The outlines of these newly-formed cliffs were further derived manually. The DEMs were resampled to 1m to derive slope and aspect of all pixels, and to map supraglacial channels using a flow-routing algorithm following the same approach as for the Pléiades DEMs (Schwangart & Scherler, 2014).

The mechanisms underlying the ice cliff formation were determined by a single operator based on 1/ the proximity to ponds (including seasonal ponds identified in the Sentinel-2 images), visible streams or supraglacial channels and 2/ the initial shape of the cliffs and the general organisation of the glacier surface at this location. This classification, as well as the ice cliff outlines, were then validated by a second independent operator.

1.3. Main results

We identified 202 newly-formed cliffs (38 for Langtang, 27 for Lirung, 57 for Trakarding, 38 for 23K and 42 for 24K) and classified the formation mechanisms as 'pond-influenced', 'streaminfluenced', 'crevasses' or 'undefined' when the formation mechanism was not clear. Since the same classification was used for newly-formed cliffs and the entire cliff population, we could directly compare the characteristics of the newly-formed cliff pixels with the values obtained from looking at the entire cliff population with the Pléiades data, specifically for the UAV survey domains (Fig. S₂-S₅).

The proportion of cliff categories was mostly consistent between newly-formed cliffs and the entire cliff population, except for Lirung where the triggering mechanism for most newly-formed cliffs could not be determined, and for Trakarding, where the proportion of pond-influenced new cliffs was greater (Fig. S2). There were no consistent differences in the slope distribution of the newly-formed cliffs and the whole cliff population within these five domains. The slope of crevasses was consistently shallower, which was likely due to the DEM resolution being too coarse to represent their slope accurately. The slope distribution of the stream-influenced, pond-influenced and undefined cliffs was overall similar for the total cliff population, while the slope of the newly-formed pond-influenced cliffs tended to be steeper than for the other categories (Fig. S3). The most striking differences were visible in the aspect distributions, where the full cliff population was generally oriented north-west to north, except for Lirung, while the newly-formed cliffs seemed to either be completely random (e.g. for Trakarding) or preferentially oriented in the general glacier flow direction (Fig. S4). In terms of cliff size, the newly-formed cliffs were consistently smaller, and so for all categories (Fig. S5).

1.4. Discussion points

This focused study of the characteristics of newly-formed cliffs enabled us to link ice cliff formation with ice cliff distribution. Ice cliff formation mechanisms are indeed expected to have a strong influence on the distribution of ice cliffs across the glacier surface due to the high cliff birth and death rates (Kneib et al., 2021). The relatively long-term monitoring periods and the large number of sites covered here, with various glaciological and climatic characteristics (Fugger et al., 2022; Kneib et al., 2022; Sato et al., 2021), enabled us to identify a large number of ice cliff formation events and outline a number of interesting patterns. The main outcome was that as for ice cliff distribution, the formation mechanisms were driven by the glacier hydrology, including the proglacial or englacial hydrology for some of the crevasse-opening scenarios (Fig. S6). Other interesting findings were that there was no preferential north-facing aspect for newlyformed cliffs, which was additional evidence for the faster reburial of south-facing cliffs (Buri & Pellicciotti, 2018). Additionally, newly-formed cliffs tended to be smaller in size, which confirmed the observations made at other sites with coarser resolution sensors (Kneib et al., 2021).

There remained limitations in the analysis of these patterns due to the relatively small area covered and the observational bias to the lower part of the debris-covered area of these glaciers. Additionally, despite the relatively high frequency of repeat surveys, the time intervals usually remained too long to precisely describe the formation mechanisms (Kneib et al., 2022). For instance, the 'pond-influenced' formations could have been due to pond drainage or filling, but this was not always clear due to too long time intervals between images so we kept the generic term. Similarly for 'stream-influenced' formations, the exact mechanism was not always clear and the presence of water in the channel could not always be verified from the images (based on field observations from the various sites we anyway expected the water level in the streams to vary considerably seasonally), so a classification based on the presence of meanders in the surface DEMs was usually a strong argument to classify the newly-formed cliffs as stream-influenced. Crevasses were easily identifiable from their elongated, sometimes slightly curved shapes, but the triggering mechanism responsible for crevasse opening could not always be clearly identified (Reid & Brock, 2014; Steiner et al., 2019) and could vary from simple shear at the glacier lateral margins (for 24K especially) to the influence of proglacial lakes or streams

entering the glacier laterally (for Trakarding especially, Fig. S6). We did not see any evidence of englacial conduit collapse for the duration of the monitoring periods, although the development of concentric crevasses preluding some of these events on debris-covered glaciers have been described at several locations in the Swiss Alps (Mölg et al., 2019; Egli et al., 2021; Fig. S6). Similarly, we did not have enough evidence to categorize formation events as being solely caused by slope steepening from differential melt, and for the large majority of events the hydrology or the glacier dynamics seemed to play a decisive role (Sharp, 1949; Moore, 2021). These formation events were actually most likely due to a combination of factors leading to slope steepening prior to the emergence of the new cliff, and the formation mechanisms that we identified most likely mainly reflected the 'triggering' event leading to debris removal and cliff formation.

Text S2. Ice cliff, pond and stream delineation

Ice cliffs and ponds were derived automatically in each Pléiades scene following the Spectral Curvature method for cliffs, which is based solely on spectral characteristics (Kneib et al., 2020), and the Normalized Difference Water Index (NDWI) for ponds (McFeeters, 1998; Watson et al., 2016; 2018; Miles et al., 2017b). False positive identifications due to local shadows or changing geology were filtered out manually (Fig. S7, S8).

We accounted for pond seasonality by automatically mapping areas with a Normalized Difference Water Index (NDWI) value greater than 0.1 in all 10 m resolution Sentinel-2 images of the previous melt season (May-November), after filtering clouds and shaded areas (Kneib et al., 2020; McFeeters et al., 1998; Watson et al., 2018). We retained as ponds (at least temporary ones) the areas for which more than three cloudless Sentinel-2 images were available and where the NDWI was greater than 0.1 more than 33% of the time. False positives were removed manually and the resulting pond density values are consistent with the ones from the Pléiades images (Fig. S9) and additionally account for strong seasonal variability at some of the sites (E. S. Miles et al., 2017b; Watson et al., 2016). The final pond outlines were defined as the union between the Pléiades and Sentinel-2 outlines.

The minimum cliff and pond detection size is given by the resolution of the Pléiades data (2m). The uncertainties in the mapping of cliffs and ponds were assessed by eroding and dilating the mapped features by 0.5 pixels (1 m for cliffs, 5 m for ponds), and taking the upper (+42% for cliffs, +77% for ponds) and lower (-38% and -49%) area bounds as uncertainty values (Brun et al., 2018; Fig. S10). The Pléiades outlines were validated at one of the glaciers with near-contemporaneous outlines obtained from a 1m-resolution UAV orthoimage (Fig. S11).

Using the Pléiades DEMs, we mapped supraglacial channels (used as a proxy for supraglacial streams) across all the glaciers using the TopoToolbox flow routing algorithm (Schwangart & Scherler, 2014), after filling the DEM sinks shallower than 5m and removing the crevassed areas. These 'streams' were defined as the pixels with a contributing upstream area higher than 10000 m² and were used to calculate stream sinuosity (Anderson, Armstrong, Anderson, Scherler et al., 2021; Mölg et al., 2020).

Figure S1. UAV survey domain for each glacier. Background images are the (a) Lirung 10/2017, (b) Langtang 04/2018, (c) Trakarding 10/2017, (d) 24K 09/2018 and (e) 23K 09/2018 UAV orthoimages. Glacier and debris outlines are the ones derived from the corresponding Pléiades images.

Figure S2. Area proportion of different ice cliff categories within the five UAV survey domains from the total cliff population derived from the Pléiades data (a-e) and from the newly-formed

cliffs identified in the multi-temporal UAV data (f-j). (k-l) Combination of all five sites, weighted by the area of the survey domain and the duration of the UAV study period.

Figure S3: Slope distribution of the pixels of different ice cliff categories within the five UAV survey domains from the total cliff population derived from the Pléiades data (a-e) and from the newly-formed cliffs identified in the multi-temporal UAV data (f-j). (k-l) Combination of all five sites.

Figure S4: Aspect distribution of the pixels of different ice cliff categories within the five UAV survey domains from the total cliff population derived from the Pléiades data (a-e) and from the newly-formed cliffs identified in the multi-temporal UAV data (f-j). (k-l) Combination of all five sites.

Figure S5: Size distribution of the cliffs of different ice cliff categories within the five UAV survey domains from the total cliff population derived from the Pléiades data and from the newly-formed cliffs identified in the multi-temporal UAV data (a-e). (f) Combination of all five sites.

Figure S6: Crevasse patterns on (a-b) Trakarding Glacier, 10/2019 and (c-d) Zmutt Glacier, 09/2018. (a) Influence from a proglacial lake. (b) Stream entering the glacier from the side. (c) Circular crevasses symptomatic of englacial or subglacial conduit, likely preceding a conduit collapse. (d) Simple shear situation at the glacier lateral margins.

Figure S7: Processing steps of the Pléiades and Sentinel-2 images to obtain final cliff, pond, stream and crevasse maps.

Figure S8: Cliff and pond area before and after manual trimming of automatically derived outlines for each scene.

Figure S9: S2 ponds VS Pléiades ponds for each bin.

Figure S10: (a) Cliff and (b) pond original, dilated and eroded area for each scene.

Figure S11: Cliff (a) and pond (b) density on Trakarding Glacier as a function of distance from the terminus calculated based on the Pléiades outlines (01/12/2017) from this study and those independently derived using a 1m UAV orthoimage (27/10/2017).

Figure S12: Area proportion of each cliff category depending on the DEM sink filling threshold for the mapping of the streams and the stream and pond buffer, for all cliff pixels.

Figure S13: (a) Ice cliff density within buffer areas, (b) normalised slope distribution and (c) aspect distribution for all cliff pixels. (d) Size distribution of individual cliffs (defined as 8-connected objects in the cliff map) showing the median, 25th and 75th percentiles. The circles are considered as outliers.

Figure S14: Normalised size distribution of the different cliff categories. The distributions are limited by the resolution of the Pléiades pixels (4 m²), and the ability of the operator to identify ice cliffs less than ~25 pixels or 100 m² (Kneib et al., 2020).

Figure S15: Cliff cumulative area in each category as a function of various metrics for all bins of all glaciers where more than 65% of the debris-covered area could be classified. The black line shows the cumulative area of all the bins.

Figure S16: Cliff density with (a-c) and without crevasses (d-f) as a function of (a,d) surface velocity, (b,e) debris thickness and (c,f) normalized elevation from terminus for all bins of all glaciers for which more than 65% of the debris-covered area could be classified. The grey zones indicate the median and the interquartile range where each bin includes one tenth of the data. The red dots show a polynomial fit to the median values and the R² the results of this fit for the binned data.

Figure S17: Mean pond density as a function of different variables for all bins of all glaciers where more than 65% of the debris-covered area could be classified: (a) debris thickness, (b) surface velocity, (c) mean driving stress, (d) 'hummockiness', (e) stream sinuosity, (f) longitudinal gradient, (g) absolute compressive strain rate and (h) tensile strain rate. The black line shows the area distribution of all the bins. The equations on top of the plot show the best linear relationships that could be found between the mean pond density (y) and the different variables (x), with their respective R² value, only accounting for the points with more than 10 observations. The relationships with an R² value higher than 0.8 are indicated in bold.

Figure S18: Cliff density for all glaciers where more than 65% of the debris-covered area could be classified, as a function of mean (a) debris thickness, (b) velocity, (c) driving stress, (d) hummockiness, (e) stream sinuosity, (f) longitudinal gradient, (g) compressive strain rate, (h) tensile strain rate, (i) pond density.

Figure S19: Cliff density for all glaciers where more than 65% of the debris-covered area could be classified, as a function of May-September (a) air temperature, (b) relative humidity, (c) incoming shortwave radiation and (d) incoming longwave radiation. The climatic variables are from ERA5-Land reanalysis data (Muñoz-Sabater et al., 2019), and the air temperature was lapsed to the mean elevation of the debris-covered area considering the mean above-debris lapse rates (-0.0088°C.m⁻¹) following Shaw et al. (2016). The proportion of undefined cliffs was not represented for better readability.

Figure S20: Mean cliff density split by cliff category for all bins of all glaciers where more than 65% of the debris-covered area could be classified as a function of normalized distance from the terminus. The glaciers are split per glacier evolution states (a) 1, (b) 2, (c) 3a and (d) 3b. The categorization is based on the segmentation indicated in blue dashed lines in figure 4.

Figure S21: Crevasses on Kyzylsu Glacier (a-f) at bi-weekly time-steps during the 2021 melt season and (g-h) close-up views of other crevasses in September 2021 (image credit: Marin Kneib).

Table S1. Multi-temporal UAV datasets. The Trakarding data are from Sato et al. (2021), the 23K and 24K data are from Chuanxi et al. (in prep) and the Langtang and Lirung data are from Kraaijenbrink et al. (in prep) as well as from Immerzeel et al. (2014) and Brun et al. (2016).

Glacier	UAV survey dates	Original DEM and ortho resolution (m)	Resampled DEM resolution (m)	Survey domain area (km²)	Survey domain (% total debris- covered area)
Trakarding	27/10/2017	0.2			
(RGI-15.03448)	18/10/2018	0.2	1	2.9	43
	18- 19/10/2019	0.2			
	27/09/2018	0.08			
23K (RGI-15.11752)	13/08/2019	0.07			
	12/10/2019	0.07	1	0.51	38
	20/08/2020	0.08			
	22/10/2020	0.1			
	27/09/2018	0.09			
24K	13/08/2019	0.07			
(RGI-15.11758)	12/10/2019	0.07	1	0.59	64
	20/08/2020	0.13			
	22/10/2020	0.09			
	07/05/2014	0.1			
	22/10/2015	0.1			
Langtang	04/05/2016	0.1	1	1 5	۵. ۵
(RGI-15.04121)	09/10/2016	0.1	1	1.5	0.2

	26/04/2017	0.1			
	22/10/2017	0.1			
	22/04/2018	0.1			
	18/05/2013	0.1			
	22/10/2013	0.1			
	01/05/2014	0.1			
	10/2014	0.25			
Lırung (RGI-15.04045)	18/10/2015	0.1	1	0.47	0.49
	30/04/2016	0.1			
	06/10/2016	0.1			
	20/04/2017	0.1			
	19/10/2017	0.1			
	28/04/2018	0.1			

Acquisition name	Acquisition date	Location (coordinates of center point)	Number of debris- covered glaciers in scene (>65% of debris- covered area mapped)	Source
24K	20/09/2021	29.77°N, 95.70°E	5	Royal Society
Baralmos	13/09/2021	39.03°N, 71.37°E	4	ERC RAVEN
Bhutan	08/11/2017	28.10°N, 90.27°E	4	PGO
Hailuogou	29/09/2021	29.56°N, 101.94°E	3	Royal Society
HP	12/09/2020	32.25°N, 77.43°E	5	PGO
Kyzylsu	19/09/2021	39.06°N, 71.50°E	5	ERC RAVEN
Ladakh	24/09/2020	33.76°N, 76.30°E	5	PGO
Langtang	14/06/2019	28.28°N, 85.73°E	8	ERC RAVEN
Lirung	13/10/2019	28.23°N, 85.54°E	3	ERC RAVEN
Lunana	07/11/2017	28.12°N, 90.15°E	1	PGO
Makalu	16/10/2018	27.85°N, 87.04°E	7	PGO
RS	15/10/2017	28.76°N, 83.52°E	8	PGO
Satopanth	18/09/2021	30.78°N, 79.35°E	5	ERC RAVEN
Trambau	01/12/2017	27.89°N, 86.51°E	7	PGO

 Table S2. Pléiades stereo-images used in this study.

Table S3. Characteristics of each studied glacier. The mean glacier aspect was obtained from the AW3D 30m DEMs (Tadono et al., 2014).

RGI	RGI	Pléiades	Glacier	Glacier	Debris-	Debris-	Area	Mean	Cliff	Pond
Region	ID	scene	state	area (km²)	covered area (km²)	covered area (%)	classified (%)	glacier aspect (°)	density (%)	density (%)
13	19878	Baralmos	2	30.04	8.33	28	74	-62	5.6	0.1
13	19863	Baralmos		8.57	3.81	44	16	4	6.7	0.1
13	18355	Baralmos		1.39	0.23	17	63	-177	2.9	0
13	19836	Baralmos	2	1.65	0.88	53	81	-75	4.8	0

13	19851	Baralmos	2	7.77	5.01	64	93	-3	2.9	1.0
13	19833	Baralmos		1.69	1	59	88	-56	1.0	0
15	02369	Bhutan		4.92	1.44	29	46	156	6.4	0.6
15	02370	Bhutan	1	1.98	0.26	13	71	-177	4.7	0
15	02372	Bhutan	2	1.74	0.76	44	91	-151	5.4	0.2
15	02373	Bhutan	1	10.71	0.65	6	87	-108	5.9	0.1
15	02375	Bhutan	2	5.1	0.77	15	88	-70	6.4	0.9
14	15547	Himachal	3a	2.6	0.55	21	68	-99	4.7	0
		Pradesh								
14	15491	Himachal		5.51	1.72	31	41	-66	2.2	0.1
		Pradesh								
14	15536	Himachal	2	4.48	2.73	61	94	-32	4.7	0.1
		Pradesh								
14	15988	Himachal		15.04	4.04	27	54	-17	2.0	0
1.4	15471	Pradesn	20	0.62	0.17	27	07	17	2.1	0
14	15471	Prodoch	5d	0.62	0.17	27	97	-17	5.1	0
14	15990	Himachal		14 42	1 96	14	55	-14	1 9	0
14	15550	Pradesh		17.72	1.50	14	55	74	1.5	U
14	15989	Himachal		9.29	2.08	22	51	135	1.4	0.3
		Pradesh								
14	15437	Himachal	3a	1.03	0.1	10	85	-110	4.1	0
		Pradesh								
14	15991	Himachal		3.37	0.76	23	83	-61	3.7	0
		Pradesh								
13	19847	Kyzylsu	1	9.77	3.01	31	95	-4	10.9	0.1
13	19824	Kyzylsu	2	3.73	2.07	55	98	-24	3.3	0.2
13	18354	Kyzylsu	2	22.76	9.11	40	91	10	8.0	0.2
13	19807	Kyzylsu	1	12.69	4.06	32	85	-11	11.2	0
13	18358	Kyzylsu	2	0.52	0.34	65	87	29	3.8	0.2
14	18750	Ladakh	1	34.1	5.37	16	75	32	6.7	0.1
14	18904	Ladakh	3a	2.92	1.02	35	72	-18	4.5	0
14	18909	Ladakh	3a	14.58	2.76	19	72	41	4.4	0.1
14	18948	Ladakh	1	69.97	7.55	11	70	26	4.7	0.3
14	18940	Ladakh	2	22.25	6.97	31	89	43	5.4	0.2
15	09457	Langtang		12.32	5.6	45	50	-95	2.6	1.3
15	04119	Langtang	3a	13.65	2.88	21	97	159	3.0	1.8
15	04121	Langtang	3a	54.8	18.23	33	100	-173	3.0	2.2
15	09474	Langtang	3a	24.79	11.69	47	88	160	3.3	3.4
15	09476	Langtang	2	3.73	1.19	32	108	-161	1.9	7.2
15	04036	Langtang	3b	1.3	0.65	50	74	116	1.7	0.1
15	09475	Langtang	3a	4.35	3.41	78	94	80	3.5	2.5
15	04176	Langtang	2	19.9	5.08	26	106	-81	5.9	1.3
15	04308	Langtang	3b	1.22	0.73	60	108	-74	1.0	0.1

15	03957	Lirung	2	0.68	0.48	71	76	-175	2.9	0
15	04045	Lirung	3a	6.33	0.96	15	92	156	3.4	0.3
15	03956	Lirung	3a	1.45	0.7	48	79	-156	1.3	0
15	09457	Lirung		12.32	5.6	45	36	-95	1.0	0.9
15	02358	Lunana	2	11.23	7.16	64	37	136	0.8	4.0
15	02229	Lunana		32.47	15.96	49	93	179	4.0	1.3
15	03401	Makalu	2	7.28	2.81	39	80	-124	3.6	0.8
15	03378	Makalu	3b	2.81	0.74	26	78	-110	2.2	1.2
15	03366	Makalu		26.5	3.01	11	49	124	6.9	0.3
15	03849	Makalu	3a	0.55	0.28	51	96	171	2.3	1.9
15	03372	Makalu	1	1.44	0.51	35	73	67	2.7	0
15	03727	Makalu	3b	0.92	0.45	49	76	15	4.3	0
15	03619	Makalu	3a	30.73	7.9	26	90	119	5.8	1.1
15	03728	Makalu	3a	9.88	1.45	15	80	-120	3.9	1.2
15	04870	Rikha	2	4.77	1.05	22	70	-59	4.8	0
		Samba								
15	04591	Rikha	3b	3.04	1.07	35	74	168	0.7	0.4
		Samba								
15	04843	Rikha	3b	6.69	1.73	26	82	93	2.1	0.1
15	04411	Samba	26	1 77	0.05	27	00	120	2.1	0.2
15	04411	Rikna	30	1.//	0.65	37	88	139	2.1	0.3
15	04410	Rikha	3h	1 59	0.76	48	95	10	19	0.2
15	04410	Samba	50	1.55	0.70	-0	55	10	1.5	0.2
15	04854	Rikha	2	4.88	0.78	16	88	-126	4.9	0.1
		Samba								
15	04830	Rikha	1	30.93	3.49	11	90	-95	4.7	0.4
		Samba								
15	04568	Rikha	1	6.33	0.66	10	71	79	12.8	0
		Samba								
15	07122	Satopanth	1	34.86	12.42	36	91	97	4.3	0.7
15	07190	Satopanth	3b	1.22	0.37	30	83	180	2.8	0
15	06942	Satopanth	3a	1.7	0.46	27	89	-4	3.6	0.1
15	07123	Satopanth		19.27	4.77	25	64	42	6.3	0.2
15	06861	Satopanth	3b	3.29	1.07	33	68	35	2.5	0.1
15	07122	Satopanth	1	22.95	10.95	48	89	57	5.1	0.4
15	03776	Trambau		0.41	0.18	44	83	-112	2.1	0.3
15	03782	Trambau	3b	1.73	0.59	34	93	170	1.1	0
15	03531	Trambau		1.41	1.06	75	52	-111	3.2	0.6
15	03498	Trambau		3.31	1.18	36	38	-139	3.2	0
15	03448	Trambau		30.97	6.69	22	57	-99	6.0	0.7
15	03943	Trambau	1	1.99	0.81	41	76	-166	7.1	2.6
15	03926	Trambau	3a	1.19	0.86	72	89	169	3.3	2.1
15	03428	Trambau	3a	15.97	6.09	38	68	-136	5.5	0.7

15	03435	Trambau	3a	4.7	2.73	58	95	77	2.9063	3.4
15	09771	Trambau		19.74	5.13	26	39	-143	7.0	0.1
15	09764	Trambau		1.62	0.53	33	81	149	2.0	1.0
15	11750	24K	3b	3.14	0.67	21	100	-3	2.7	0
15	11752	24K	1	4.07	1.34	33	100	85	4.2	0.1
15	11758	24K	2	1.97	0.92	47	100	-66	4.9	0.1
15	11765	24K	2	1.31	0.69	53	100	47	4.6	0.1
15	11760	24K	3a	1.33	0.3	23	100	-11	5.8	0.4
15	07886	Hailuogou	1	19.07	1.57	8	100	93	7.8	0
15	07889	Hailuogou	2	5.44	0.92	17	100	69	2.8	0
15	07894	Hailuogou	1	1.25	0.65	52	100	70	4.4	0

Table S4: Mean and standard deviation of the lognormal distribution of cliff size for the different cliff categories.

Cliff category	Mean	Standard deviation
All	4.46	1.39
Pond-influenced	4.50	1.46
Stream-influenced	4.44	1.41
Crevasses	4.72	1.18
Undefined	4.34	1.42

Table S5: Best fitting relationships between binned density of different cliff categories (As shown in Fig. 4) and different predictors. Highlighted in green, blue and yellow are respectively the best, second best and third best relationships (based on R²).

Cliff type	Velocity	Debris thickness	Longitudinal gradient	Driving stress	Pond density
All	R²=0.73	R ² =0.94	R² =0.17	R ² =0.58	R ² =0.12
	Y = 3.7+0.10X	Y = 6.0e ^{-0.48X}	Y = 3.2+0.73ln(X)	Y = 2.9+(1.3x10 ⁻⁵)X	Y =5.0e ^{-0.013X}
Pond-infl.	R ² =0.34	R ² =0.27	R ² =0.88	R ² =0.15	R²=0.95
	Y = 0.94e ^{-0.019X}	Y = 0.95e ^{-0.28X}	Y = 1.8e ^{-0.084X}	Y = 1.1e ^{-0.0000036X}	Y = 0.74X ^{0.59}
Stream-	R²=0.08	R ² =0.86	R²=0.03	R ² =0.07	R ² =0.74
infl.	Y = 2.0-0.0099X	Y = 2.5e ^{-0.48X}	Y = 1.8-0.0078X	Y=1.7+(2.0x10 ⁻⁶)X	Y = 2.2e ^{-0.053X}
Crevasses	R²=0.83 Y = -0.65+0.12X	R ² =0.24 Y = 0.32-0.15ln(X)	R ² =0.52 Y = 0.11X ^{0.87}	R²=0.36	R ² =0.60 Y = 0.23X ^{-0.51}

				Y = -1.0+(1.3×10 ⁻ ⁵)X	
Undefined	R ² =0.14	R ² =0.74	$R^2=0.21$	R ² =0.01	R ² =0.58
	Y = 0.94X ^{0.14}	Y = 1.9e ^{-0.57X}	Y = 1.5 $e^{-0.012X}$	Y = 1.4+(3.0x10 ⁻⁷)X	Y = 1.6e ^{-0.052X}

Cliff type	Absolute compressive strain rate	Tensile strain rate	Hummockiness	Stream sinuosity	Normalized distance from terminus
All	R²=0.82	R ² =0.55	R ² =0.60	R ² =0.08	R ² =0.77
	Y = 11+1.3ln(X)	Y = 11X ^{0.15}	Y = 5.0X ^{0.038}	Y = 3.1e ^{0.44X}	Y = 4.1e ^{0.51X}
Pond-infl.	R ² =0.62	R ² =0.82	R²=0.93	R ² =0.22	R²=0.09
	Y = 1.0e ^{-20X}	Y = 1.1e ^{-34X}	Y = 0.26+0.076X	Y = 0.42X ^{2.5}	Y = 0.85+0.065ln(X)
Stream-	R ² =0.03	R²=0.74	R ² =0.22	R²=0.23	R ² =0.02
infl.	Y = 2.1X ^{0.04}	Y = 2.4e ^{-16X}	Y = 1.5X ^{0.083}	Y = 1.4+4.9ln(X)	Y = 2.0e ^{-0.065X}
Crevasses	R²=0.88	R²=0.84	R²=0.72	R ² =0.12	R ² =0.84
	Y = 403X ^{1.6}	Y = -0.17+103X	Y = 1.8-0.44ln(X)	Y = 2.1X ^{-6.8}	Y = 0.18e ^{2.9X}
Undefined	$R^2 = 0.14$	R ² =0.42	R ² =0.54	$R^2 = 0.01$	R^2 =0.02
	Y = 1.9X ^{0.092}	Y = 1.6e ^{-8.7X}	Y = 1.0X ^{0.15}	Y = 2.2 $e^{-0.39X}$	Y = 1.4 $e^{-0.075X}$

Cliff type	Normalized elevation	Downstream slope
All	R ² =0.59 Y = 6.0X ^{0.17}	R ² =0.64 Y = 4.1e ^{0.077X}
Pond-infl.	R²=0.09 Y = 0.92e ^{-0.36X}	R²=0.51 Y = 1.3-0.17X
Stream- infl.	R²=0.05 Y = 2.0+0.087ln(X)	R ² =0.05 Y = 2.10e ^{-0.030X}
Crevasses	R ² =0.72 Y = 0.18e ^{2.8X}	R²=0.69 Y = -1.1+0.68X
Undefined	$R^2=0.02$ Y = 1.4 $e^{-0.13X}$	R ² =0.15 Y = 1.6e ^{-0.041X}