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Abstract

Products derived from remote sensing reflectances ($R {rs}(\lambda)$), e.g. chlorophyll, phytoplankton carbon, euphotic

depth, or particle size, are widely used in oceanography. Problematically, $R {rs}(\lambda)$ may have fewer degrees of freedom

(DoF) than measured wavebands or derived products. A global sea surface hyperspectral $R {rs}(\lambda)$ dataset has DoF=4.

MODIS-like multispectral equivalent data also have DoF=4, while their SeaWiFS equivalent has DoF=3. Both multispectral-

equivalent datasets predict individual hyperspectral wavelengths’ $R {rs}(\lambda)$ within nominal uncertainties. Remotely

sensed climatological multispectral $R {rs}(\lambda)$ have DoF=2, as information is lost by atmospheric correction, shifting

to larger spatiotemporal scales, and/or more open-ocean measurements, but suites of $R {rs}(\lambda)$-derived products have

DoF=1. These results suggest that remote sensing products based on existing satellites’ $R {rs}(\lambda)$ are not independent

and should not be treated as such, that existing $R {rs}(\lambda)$ measurements hold unutilized information, and that future

multi- or especially hyper-spectral algorithms must rigorously consider correlations between $R {rs}(\lambda)$ wavebands.
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Key Points:7

• In situ hyperspectral Rrs(400-700nm) have 4 degrees of freedom & are predicted8

within uncertainties by MODIS & SeaWiFS wavebands.9

• Degrees of freedom are lost upscaling to global satellite climatologies and again10

to Rrs(λ)-derived products like chlorophyll.11

• Information exists in satellite Rrs(λ) that’s underutilized by products’ algorithms.12

Future algorithms must consider correlations carefully.13
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Abstract14

Products derived from remote sensing reflectances (Rrs(λ)), e.g. chlorophyll, phytoplank-15

ton carbon, euphotic depth, or particle size, are widely used in oceanography. Problem-16

atically, Rrs(λ) may have fewer degrees of freedom (DoF) than measured wavebands or17

derived products. A global sea surface hyperspectral Rrs(λ) dataset has DoF=4. MODIS-18

like multispectral equivalent data also have DoF=4, while their SeaWiFS equivalent has19

DoF=3. Both multispectral-equivalent datasets predict individual hyperspectral wave-20

lengths’ Rrs(λ) within nominal uncertainties. Remotely sensed climatological multispec-21

tral Rrs(λ) have DoF=2, as information is lost by atmospheric correction, shifting to larger22

spatiotemporal scales, and/or more open-ocean measurements, but suites of Rrs(λ)-derived23

products have DoF=1. These results suggest that remote sensing products based on ex-24

isting satellites’ Rrs(λ) are not independent and should not be treated as such, that ex-25

isting Rrs(λ) measurements hold unutilized information, and that future multi- or es-26

pecially hyper-spectral algorithms must rigorously consider correlations between Rrs(λ)27

wavebands.28

Plain Language Summary29

The reflectance of sunlight from the ocean can be observed from satellites and is30

used to derive many biologically-relevant parameters, such as the concentration of chloro-31

phyll in the upper ocean. Reflectances are currently observed at about ten different wave-32

lengths, but this will soon be expanded to hundreds with the upcoming launch of a new33

ocean color satellite, PACE, in early 2024. Many new algorithms are being proposed to34

make use of the wealth of ocean color data which will be provided. However, there are35

strong correlations between reflectances at different wavelengths; these correlations mean36

there will be far fewer products that can be independently derived than there will be re-37

flectance wavelengths observed. Here we use a ship-based measurements similar to what38

will be provided from PACE to suggest that, on a global scale, only a few independent39

variables can be calculated from hundreds of reflectance wavelengths. Current and past40

satellites provide a similar amount of independent data to what is projected from PACE.41

We then show that, on a global scale, a set of six derived parameters only contains one42

independent piece of information, suggesting that more information exists in ocean color43

data than is being currently used.44

1 Introduction45

Ocean color satellites have revolutionized the study of ocean ecology and biogeo-46

chemistry in recent decades by providing a near-continuous global picture of surface ocean47

properties (Hovis et al., 1980; O’Reilly et al., 1998). Satellites measure the spectral ra-48

diance emanating from the ocean and atmosphere. Remote sensing reflectance (Rrs(λ))49

is obtained following the removal of the contribution of atmospheric and surface effects50

and normalization to downwelling solar irradiance. Algorithms have been developed to51

estimate numerous biogeochemcally-relevant surface variables from Rrs(λ), such as chloro-52

phyll concentration (Chl, [µg/L]) (O’Reilly et al., 1998; Hu et al., 2012), the spectral slope53

of the particle size distribution (ξ) (Kostadinov et al., 2009), the concentrations of phy-54

toplankton and particulate organic and inorganic carbon (Cphyto, POC, and PIC, [µg/L])55

(Graff et al., 2015; Evers-King et al., 2017; Mitchell et al., 2017), euphotic layer depth56

(Zeu [m]) (Lee et al., 2007), and, using additional input variables, net primary produc-57

tion (NPP, [mg/m2d]) (Behrenfeld & Falkowski, 1997; Silsbe et al., 2016; Westberry et58

al., 2008). Such products are used in a wide variety of applications, such as validation59

of complex ocean ecosystem and biogeochemistry models (Dutkiewicz et al., 2020; Cael60

et al., 2021) or as inputs for simpler models that predict other variables such as verti-61

cal particulate organic carbon fluxes from ocean color (Siegel et al., 2014; Cael et al., 2017;62

DeVries & Weber, 2017; Nowicki et al., 2022; Bisson et al., 2020).63
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Existing Rrs(λ) data are multispectral, meaning they are measured within several64

individually determined wavebands. Derived products generally rely only on a subset65

of these wavebands and are commonly expressed as functions of band ratios between just66

two wavelengths (e.g. Hu et al., 2012). Some algorithms attempt to simultaneously es-67

timate multiple products to match the full spectrum of Rrs(λ); for example, the Gen-68

eralized Inherent Optical Properties (GIOP) approach (Werdell et al., 2013) uses known69

and assumed spectral shapes of backscattering and absorption from different optical con-70

stituents to estimate the suite of products that best represents the observed Rrs(λ). How-71

ever, the most widely used products, such as for Chl and POC, treat all outputs as in-72

dependent quantities and are fully empirical.73

Correlations between Rrs(λ) at different wavebands can be quite strong (Huot &74

Antoine, 2016), depending also on the spatiotemporal scales considered (see §3). This75

presents multiple potential issues for both users and developers of ocean color derived76

products. If multiple products are used simultaneously and treated as independent when77

they are in fact not, this can lead to overconfidence in model skill or miscalculation of78

uncertainties. An unintended consequence of treating satellite products independently79

within models is a functional limit on model complexity. Adding different (yet correlated)80

satellite products to a model can result in model output redundancy (Bisson et al., 2020).81

These issues will only be exacerbated by the hyperspectral resolution of the next gen-82

eration of ocean color satellites, namely the Plankton, Clouds, Aerosols and Ecosystems83

(PACE) satellite scheduled to launch January 2024 (Werdell et al., 2019). In addition84

to the common suite of multispectral products, PACE also plans to move beyond chloro-85

phyll and enable characterizations of phytoplankton communities (e.g. Chase et al., 2017),86

substantially increasing the number of products available from Rrs(λ).87

The strong correlations among Rrs(λ) wavelengths can be framed in terms of the88

degrees of freedom (DoF) of Rrs(λ) measurements and suites of derived products. DoF89

represents the effective number of dimensions of a dataset after accounting for correla-90

tions and uncertainties between variables and is in essence the number of independent91

variables in that dataset. It has been shown that the DoF of globally distributed near-92

surface measured hyperspectral absorption spectra is about five (Cael et al., 2020). This93

could be considered a possible upper limit for the DoF of satellite-measured Rrs(λ) given94

higher uncertainties on satellite measurements – particularly associated with atmospheric95

correction (Bisson et al., 2021; Cael et al., 2020). The DoF of PACE’s hyperspectral mea-96

surements might then be expected to be much lower than the number of wavelengths for97

which it will measure Rrs(λ), which will appreciably affect how hyperspectral satellite98

Rrs(λ) products should be constructed. For both existing and future satellite Rrs(λ),99

in other words, understanding the DoF of Rrs(λ) measurements and derived products100

is crucial for appropriate usage and optimal construction of such products.101

Here we investigate the DoF of Rrs(λ). We first find that a global sea surface hy-102

perspectral Rrs(λ) database has four DoF. Coarsening hyperspectral Rrs(λ) to their MODIS103

(Moderate Resolution Imaging Spectrometer) equivalent retains four DoF, though the104

SeaWiFS (Sea-viewing Wide Field of view Sensor) equivalent only has three DoF. Both105

of these multispectral equivalents can, however, predict individual hyperspectral Rrs(λ)106

wavelengths within nominal uncertainties for satellite sensors. We then consider clima-107

tological Rrs(λ) and derived products. We find that both MODIS-Aqua and SeaWiFS108

Rrs(λ) have two DoF at the climatological scale, suggesting that Rrs(λ) complexity is109

lost either through atmospheric correction, relatively more inclusion of open-ocean data,110

or averaging over larger scales in space and time. Suites of derived products, however,111

only retain one DoF. This latter result suggests that derived products should not be treated112

as independent by users. We close by discussing the substantial implications these find-113

ings have for the construction and use of ocean color products, from both existing and114

future Rrs(λ).115
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Figure 1. Locations of the 191 stations considered in this study (red dots).

2 Sea surface Rrs: hyperspectral versus multispectral116

We first analyze a global sea surface hyperspectral Rrs(λ) dataset to determine its117

DoF and how the DoF depends on spectral resolution (Chase et al., 2017; Kramer et al.,118

2022). The dataset includes Rrs(λ) data at 191 locations at an effective 3.35 nm reso-119

lution (Chase et al., 2017) from 400–800 nm, linearly interpolated to 1 nm (Figure 1).120

We trimmed spectra to 700nm due to the large fraction of missing values >700nm; note121

that most of the non-empty values >700nm are zeros and the non-zero-non-empty val-122

ues, with a median of <4×10−5 sr−1, have very small signal-to-noise ratios. The dataset123

includes measurements taken from 2004 to 2018 evenly distributed across months of the124

year, and from all major ocean basins ranging in latitude from 41◦S to 74◦N. We also125

compare these data to their MODIS-Aqua and SeaWiFS multispectral equivalents by126

convoluting the hyperspectral Rrs(λ) with the MODIS-Aqua and SeaWiFS spectral re-127

sponse functions (available at https://oceancolor.gsfc.nasa.gov/docs/rsr/HMODISA128

RSRs.txt and https://oceancolor.gsfc.nasa.gov/docs/rsr/SeaWiFS RSRs.txt)129

to generate 10-waveband and 6-waveband datasets which correspond to what each in-130

strument would have measured from the same optical input that the radiometer recieved131

when generating the hyperspectral Rrs(λ) data.132

We then apply principal component analysis (PCA) (Wold et al., 1987) to these133

301-, 10- and 6-dimensional Rrs(λ) datasets. PCA is a widely used method to reduce134

the dimensionality of datasets by identifying orthogonal vectors that explain the most135

variance in the data. PCA is linear in nature, which may result in an overestimation of136

effective dimensions by poorly approximating non-linear relationships between variables137

(e.g. a PCA performed on the pair (x, y) where y = x2 will yield two DoF). Nonlin-138

ear generalizations do exist (Weinberger et al., 2004; Scholz et al., 2008), though these139

are less widely applied due to their additional complexity and computational require-140

ments that make interpretation challenging. One may therefore consider the DoF we re-141

port to be upper bounds. We perform a PCA on each Rrs(λ) dataset, standardizing each142

first by subtracting from each waveband its mean and then dividing by its standard de-143

viation. This results in a percentage of total variance explained by each component. We144

use the broken-stick rule to choose the DoF, which states that the DoF is equal to the145

number of components that explain more variance than would be expected by randomly146

distributed data; this method was shown to be more consistent than a suite of others in147

a comparison (Jackson, 1993). These results can be shown visually as a ‘scree’ plot, which148

plots the percentage of variance explained by each component and for randomly distributed149

data; the DoF is the number of components with a higher percentage of variance explained150

than would be expected for randomly distributed data. Our figures also visibly demon-151
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Figure 2. Scree plot of percent variance explained versus component for hyperspectral Rrs(λ)

dataset and MODIS-Aqua and SeaWiFS equivalents calculated from their spectral response func-

tions. Black line indicates broken-stick significance threshold for hyperspectral data; numbers in

legend give percent variance explained for each mode above this threshold in each case.

strate that one would get the same results from using the scree plot rule, which states152

that the DoF is equal to the number of components not sitting on the straight line made153

by the higher-order components, and was found to consistently capture the correct DoF154

plus one when the first point on this straight line was included (Jackson, 1993).155

PCA analysis reveals that the hyperspectral in situ Rrs(λ) dataset has four DoF156

(Figure 2); the first four components explain 54%, 33%, 8%, and 2%, totalling 97%, of157

the variance. The first four MODIS-Aqua equivalent Rrs(λ) principal components have158

very similar percentages of variance explained: 49%, 37%, 10%, and 2%, totalling 99%159

of the total variance. In contrast, the first three SeaWiFS equivalent Rrs(λ) principal160

components explain 63% , 28%, and 8%, totalling 99%, of the variance. This suggests161

that the hyperspectral Rrs(λ) have four DoF, or four independent variables within the162

data, and that these four variables are effectively captured when reducing spectral res-163

olution to the ten MODIS-Aqua wavebands, but not to the six SeaWiFS wavebands.164

The ability of coarsened, MODIS-equivalent data to obtain the same number of DoF165

as the hyperspectral dataset is further supported by predictions of hyperspectral Rrs(λ)166

from multispectral equivalents. To illustrate this, for each hyperspectral wavelength we167

perform a multivariate linear regression of Rrs(λ) at that wavelength regressed against168

Rrs(λ) at each waveband of both the MODIS-Aqua and SeaWiFS equivalent Rrs(λ). We169

then calculate the root-mean-square-error (RMSE) of these regressions. For all wavelengths170

below 578 nm in the SeaWiFS case and 582 nm in the MODIS-Aqua case, the RMSE171

is smaller – and for many, much smaller – than 5% of the mean Rrs(λ) at that wavelength,172

where 5% is a nominal relative uncertainty for satellite Rrs(λ) (Figure 3). Even for wave-173

lengths greater than this, the RMSE is still very small in absolute terms, <0.00007 sr−1,174

far smaller than the nominal 0.0003 sr−1 absolute error for 1km-by-1km pixels for PACE175

(Gordon & Wang, 1994). These small errors in predicting hyperspectral Rrs(λ) from its176

multispectral equivalent underscore the extent to which different wavelengths’ Rrs(λ)177

–5–
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Figure 3. Root-mean-square-error of multivariate linear regressions of each hyperspectral

wavelength versus the MODIS-Aqua and SeaWiFS equivalent Rrs(λ). Solid line is 5% of the

mean of each wavelength’s hyperspectral Rrs(λ).

are correlated and demonstrate the ability of MODIS-Aqua equivalent multispectral Rrs(λ)178

to preserve the dimensionality of hyperspectral Rrs(λ). The fact that SeaWIFS-like Rrs(λ)179

can accurately predict hyperspectral Rrs(λ) to within PACE uncertainties but has fewer180

DoF than the in situ hyperspectral dataset is a reflection of the lower uncertainty on the181

in situ dataset than the expected PACE Rrs(λ), and suggests that PACE Rrs(λ) may182

have fewer DoF than the in situ hyperspectral dataset.183

We also note that excluding wavelengths 651–700nm affects the DoF numbers pre-184

sented here but not our conclusions. A choice of an upper limit of 650nm would be based185

on the fact that for all wavelengths above 648nm, >95% of measurements are below 0.0003186

sr−1, the nominal uncertainty of a 1km-by-1km pixel for PACE (Gordon & Wang, 1994).187

Repeating this analysis over 400–650nm results in hyperspectral and MODIS-Aqua-equivalent188

Rrs(λ) data having three DoF, and Sea-WiFS-equivalent Rrs(λ) data having two DoF.189

This suggests that there is one DoF in the 651–700nm range that is picked up by hyper-190

spectral and multispectral Rrs(λ) alike; however, the Rrs(λ) values are small enough (mean191

and median both <1.2×10−4 sr−1 for all wavelengths 651–700nm) compared to the nom-192

inal 1km-by-1km pixel uncertainty 3×10−4 sr−1) that this DoF may not be useful for193

satellite applications, which we are interested in here. This is corroborated by the DoF<3194

in the next section, despite incorporating the full wavebands of both MODIS-Aqua and195

SeaWiFS. Note that when estimating the MODIS-Aqua- and SeaWiFS-equivalent data196

from 400–650nm hyperspectral data, the contribution of hyperspectral Rrs > 650nm197

is not included; while both MODIS-Aqua and SeaWiFS have wavebands centered at >650nm,198

these wavebands’ spectral response functions are nonzero for some wavelengths in the199

range 400–650nm, and it is only the influence of these hyperspectral wavelengths on all200

wavebands that is considered. In other words, Rrs(λ) is effectively set to zero for all hy-201

perspectral wavelengths >650nm when calculating the multispectral equivalent datasets202

in this case.203
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3 Climatologies: Rrs versus products204

The analysis in Section 2 is based on instantaneous, local-scale Rrs(λ) values mea-205

sured in situ at the sea surface. The power of satellite Rrs(λ) and derived products, how-206

ever, lies in their near-continuous global spatial coverage, and many users are primar-207

ily interested in climatological data, which is near the coarsest spatial and temporal scales.208

In this section we therefore analyze climatological Rrs(λ) and derived products, again209

via PCA to determine DoF.210

We generated a 1◦×1◦ climatology for each month using Rrs(λ) data from Sea-211

WiFS spanning 1997–2008, excluding the final 2 years of the mission due to known in-212

strument issues (Siegel et al., 2014), using data downloaded from https://oceancolor213

.gsfc.nasa.gov/. We did the same for MODIS-Aqua, spanning the time period from214

July 2002 – June 2022. We generated analogous climatologies for derived products from215

each satellite over the same period and at the same spatial and temporal resolution, namely216

the extensive (i.e. mass-dependent) variables Chl, Cphyto, POC, PIC, and the intensive217

(i.e. mass-independent) variables Zeu, ξ, the fraction of biovolume in the microplank-218

ton size class fmicro calculated from ξ as described in (Kostadinov et al., 2009), the par-219

ticulate backscatter to chlorophyll ratio bbp :Chl, and NPP as estimated by the CAFE220

(Silsbe et al., 2016) and CbPMv2 (Westberry et al., 2008) models. Chl, POC, and PIC221

were downloaded from https://oceancolor.gsfc.nasa.gov/, as was bbp to calculate222

Cphyto according to (Graff et al., 2015) and bbp :Chl and the diffuse attenuation coef-223

ficent at 490nm to calculate Zeu according to (Lee et al., 2007); SeaWiFS ξ and fmicro224

were derived as in (Kostadinov et al., 2009); and NPP products were downloaded from225

http://sites.science.oregonstate.edu/ocean.productivity/index.php. In total226

we then have climatologies for MODIS-Aqua, SeaWiFS Rrs(λ), and ten derived prod-227

ucts. We consider the six products Chl, Cphyto, POC, PIC, ξ, and Zeu, to be core prod-228

ucts and fmicro, bbp:Chl, CAFE NPP, and CbPMv2 NPP to be ancillary products as these229

are either derived from the core products or rely on ancillary data other than Rrs(λ).230

We note that a PCA on the MODIS-Aqua climatologies of Rrs(λ) and products231

other than ξ and fmicro yields the same results as those for SeaWiFS below, so we fo-232

cus here only on the SeaWiFS climatologies because ξ and fmicro are not readily avail-233

able for MODIS-Aqua. We find two DoF for SeaWiFS Rrs(λ), but only one for the prod-234

ucts (Figure 4). This result is not sensitive to which combination of products is used –235

for instance, including all the ancillary products as well still results in one DoF for the236

products. This result is also not sensitive to log-transformations of the variables that are237

log-normally (e.g. Chl, POC, PIC, Cphyto (Campbell, 1995)) or log-skew-normally (e.g.238

NPP, (Cael et al., 2018; Cael, 2021)) distributed, or removal of outliers, zeros, or neg-239

ative values.240

That MODIS-Aqua Rrs(λ) have three DoF for the data in the previous section but241

two DoF from satellite-derived climatologies suggests that some reduction of complex-242

ity of the data occurs via some combination of increased sensor noise relative to ship-243

based data, atmospheric correction, or averaging over large space and time scales (Scott244

& Werdell, 2019). (Note (Scott & Werdell, 2019) also point out the difference between245

averaging Rrs(λ) versus taking the ratio of averaged water-leaving radiance Lw and down-246

welling irradiance, which may introduce a slight bias but is unlikely to affect our results247

here.) Two DoF remain in satellite climatological Rrs(λ) for both SeaWiFS and MODIS-248

Aqua, indicating the possibility of generating two independent products from these data.249

The suite of products tested above, however, has one fewer DoF than the Rrs(λ). This250

is likely due to derived products’ appreciable uncertainties and/or strong correlations251

with chlorophyll. POC, ξ, and Zeu, for instance, have Spearman rank correlations (across252

all months and 1◦ grid cells) of >0.9 with Chl. Cphyto’s rank correlation with Chl is still253

fairly high, at 0.61, and is low largely due to small fluctuations when both are small; a254

simple spline fit of log(Cphyto) against log(Chl) yields an r2 of 0.7.255
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Figure 4. Scree plot of percent variance explained versus component for climatologies of

SeaWiFS Rrs(λ) and of six SeaWiFS-Rrs(λ)-derived products. Black line indicates broken-stick

significance threshold for six-dimensional data.

The exception is PIC, which has a rank correlation with Chl of 0.11. PIC, how-256

ever, is highly sensitive to small variations in Rrs(λ) for typical Rrs(λ) values. To sub-257

stantiate this, we performed a simple sensitivity analysis with the standard two-band PIC258

algorithm used by NASA for all but the most optically bright waters (see https://oceancolor259

.gsfc.nasa.gov/atbd/pic/). We calculated PIC for the climatological median Rrs(λ)260

at 443 nm and 555 nm and for 5% variations, converting to normalized water-leaving ra-261

diance by multiplying by the global mean extraterrestrial solar irradiance. We then per-262

turbed these Rrs(λ) values with Gaussian noise at the 5% level, corresponding to the263

nominal uncertainty in Rrs(λ). This noise at 443 nm results in 68% noise in PIC. By con-264

trast, POC only varies 5% with these 5% variations in Rrs(λ) at either wavelength. This265

indicates that in the bulk of cases, satellite-derived PIC is highly uncertain, on the or-266

der of 70% (and note the PIC uncertainty will be magnified more when considering doc-267

umented uncertainties for Rrs(λ) of 15-40% in some regions (Bisson et al., 2021)). In con-268

trast, for relatively bright waters, the same exercise resulted in PIC variations of <10%,269

indicating that this algorithm performs well in instances when PIC values are high. Nonethe-270

less, the high sensitivity to typical uncertainty in Rrs(λ) for median waters explains why271

we find one DoF for the products even though PIC and Chl are not strongly correlated:272

derived PIC is noisy most of the time.273

These results have two key implications. One is that there is additional informa-274

tion in climatological Rrs(λ) that is not included in current derived products. This im-275

plies that existing products do not utilize the full set of Rrs(λ) wavelengths. The other276

implication is that these products are not at all independent, and should not be treated277

as such when using them simultaneously. In other words, there are more products than278

there are DoF in satellite data. A numerical ecosystem model that reproduces the satellite-279

derived climatology of chlorophyll and of the particle size distribution’s spectral slope280

should not be considered to be capturing two independent properties of the Earth sys-281
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tem. When using satellite products as inputs to other models, these products and their282

propagated uncertainties must be treated simultaneously rather than independently.283

The results presented here are appropriate for global ocean analyses. The open ocean284

represents the largest area, and is composed primarily of Case 1 waters; that is, waters285

in which optical variability is dominated by chlorophyll (Morel & Prieur, 1977). In this286

context, it is in a sense unsurprising that the suite of Rrs(λ)-derived products produced287

only one DoF. More optically complex waters, such as coastal regions and inland waters,288

have optical variability that is influenced by other constituents, such as colored dissolved289

organic material (CDOM), inorganic particles, and other pigments in addition to chloro-290

phyll (e.g. Brown et al., 2008; Nelson & Siegel, 2013)). Analyses focused on these wa-291

ters is likely to reveal a higher number of DoF from both Rrs(λ) and derived products.292

Indeed, algorithms to derive concentrations of cyanobacteria and suspended particulate293

(Wang et al., 2016)) or distinguish between different phytoplankton species (Erickson294

et al., 2020) can be successful in such waters. However, we note that the in situ dataset295

used here (Figure 1) represents waters with Rrs(λ) variability similar to that of the ocean296

as a whole, which can be seen by comparing the variation in Rrs(λ) at each MODIS-Aqua297

wavelength from global satellite data with the same satellite data sub-sampled to the lo-298

cations with in situ measurements (or the closest non-cloudy location). Sub-sampled satel-299

lite measurements have similar, and slightly lower, Rrs(λ) in bluer wavelengths, indicat-300

ing that the in situ dataset is oriented more towards optically complex coastal waters301

with substantial CDOM. This suggests that part of the explanation for the drop in DoF302

in satellite-derived climatologies comes from the fact that the in situ dataset sampled,303

as a whole, more optically complex waters.304

We find that both Rrs(λ) and variables derived from Rrs(λ) are highly inter-correlated,305

reducing the number of DoF associated with each, with a greater reduction in DoF in306

the derived products. This becomes a problem when products are derived using empir-307

ical relationships with Rrs(λ), and especially when the same wavelengths are used for308

the products that are assumed to be independent of each other; for example, over much309

of the ocean PIC, POC, and chlorophyll all are functions only of Rrs(λ) at two wave-310

lengths, at (or near, depending on the sensor) 443 and 555 nm. Certain combinations311

of PIC, POC, and chlorophyll, which may occur in the surface ocean, are therefore im-312

possible to find using these algorithms. This is distinct from algorithms, typically called313

“quasi-analytical” or “semi-empirical”, that use known or assumed spectral shapes for314

absorption and scattering properties of optical constituents that can be related to the315

same derived products, such as PIC, POC, and chlorophyll (Werdell et al., 2013). These316

approaches may result in similar correlations and DoF between derived products, but317

do not inherently have the same problems as empirical approaches. We note that PACE318

will have, in addition to hyperspectral visible bands, UV bands from 350nm as well as319

spectral polarized bands. These measurements are expected to both improve the atmo-320

spheric correction (hence reduce the Rrs(λ) uncertainties) as well as provide their own321

ocean signals, both of which may increase the DoF compared to those found here. In ad-322

dition, it has been shown that adding other environmental variables such as SST can add323

useful information to inversions of phytoplantkon groups (e.g. Chase et al., 2022) and324

thus another approach to increase DoF for inversions by adding relevant and indepen-325

dent information (e.g. mixed-layer depth and nutrients from BGC-Argo assimilating mod-326

els).327

4 Conclusion328

The results presented here highlight the high degree of co-dependence between re-329

mote sensing reflectances at different wavelengths and of the products derived from these330

reflectances. For users of products based on existing reflectances, this primarily means331

factoring in the relationships between products when using more than one simultane-332

ously. For the algorithms that generate these products from existing reflectances, these333
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results indicate a potential to improve the suite of available products to be more accu-334

rate and precise, and to account for the relationships between products and Rrs(λ) wave-335

bands. One way to do this, consistent with the findings above, would be to derive a sin-336

gle product such as chlorophyll as a function of all reflectance wavebands, derive an anomaly337

from chlorophyll-based expectations of a secondary product (e.g., phytoplankton com-338

munity composition, size, POC, PIC, and so forth), then specify all other products ex-339

plicitly as a function of these two, along the lines of Alvain et al. (2005). Ancillary and340

independent information can also be added to algorithms, as is currently done with net341

primary production models via temperature and mixed layer depth.342

These findings are most relevant for algorithms that will generate products from343

hyperspectral reflectances in the future. The small number of degrees of freedom in hy-344

perspectral reflectances indicates that only a few quantities can be estimated indepen-345

dently, and that different wavelengths’ reflectances as measured from space will be strongly346

correlated. Complex algorithms that utilize the full spectrum of reflectance will need to347

factor in these correlations in order to generate reliable products. Crucially, if more than348

a few products are generated from hyperspectral reflectances, as is likely the case, such349

algorithms will also need to output the covariance information encoding the uncertainty350

in each product and the relationships between them. This can be achieved by some, but351

not all, machine learning techniques, on which this new generation of algorithms are likely352

to be based. The fact that hyperspectral reflectances can be predicted within nominal353

uncertainties by their multispectral equivalents suggests that hyperspectral resolution354

can play a role in improving ocean color products, but that it will be challenging to pro-355

vide a substantially finer-grained picture of surface ocean ecosystems and biogeochem-356

ical cycles. Here by relying on principal component analysis we have focused on broad,357

first-order variations, but where such resolution may be most useful and generate novel358

insights is in investigating outliers and rare events, such as blooms or binning data over359

coherent features like eddies, where e.g. monospecific signatures may be resolved with360

spectral precision.361

Open Research362

Remote sensing data were downloaded from https://oceancolor.gsfc.nasa.gov/363

and http://sites.science.oregonstate.edu/ocean.productivity/index.php. All364

data and code are available at github.com/bbcael/eifoc for review purposes and will365

be given a Zenodo DOI should this manuscript be accepted for publication.366

Acknowledgments367

It is a pleasure to thank the many scientists whose collective work has generated the data368

on which this work relies. Cael acknowledges support from the National Environmen-369

tal Research Council through Enhancing Climate Observations, Models and Data, and370

the European Union’s Horizon 2020 Research and Innovation Programme under grant371

agreement No. 820989 (project COMFORT). The work reflects only the authors’ view;372

the European Commission and their executive agency are not responsible for any use that373

may be made of the information the work contains. KB acknowledges support from NASA374

grant 80NSSC18K0957. EB acknowledges support form NASA grant 80NSSC20M0203.375

Cael lead and all other authors assisted with all aspects of this work. The authors have376

no competing interests to declare. This is PMEL contribution number 5445.377

References378

Alvain, S., Moulin, C., Dandonneau, Y., & Breon, F.-M. (2005). Remote sensing of379

phytoplankton groups in case 1 waters from global seawifs imagery. Deep Sea380

Research Part I: Oceanographic Research Papers, 52 (11), 1989–2004.381

–10–



manuscript submitted to Geophysical Research Letters

Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from382

satellite-based chlorophyll concentration. Limnology and oceanography , 42 (1),383

1–20.384

Bisson, K., Boss, E., Werdell, P. J., Ibrahim, A., Frouin, R., & Behrenfeld, M.385

(2021). Seasonal bias in global ocean color observations. Applied optics,386

60 (23), 6978–6988.387

Bisson, K., Siegel, D. A., & DeVries, T. (2020). Diagnosing mechanisms of ocean388

carbon export in a satellite-based food web model. Frontiers in Marine Sci-389

ence, 7 , 505.390

Brown, C. A., Huot, Y., Werdell, P. J., Gentili, B., & Claustre, H. (2008). The391

origin and global distribution of second order variability in satellite ocean392

color and its potential applications to algorithm development. Remote393

Sensing of Environment , 112 (12), 4186-4203. Retrieved from https://394

www.sciencedirect.com/science/article/pii/S0034425708002162 doi:395

https://doi.org/10.1016/j.rse.2008.06.008396

Cael, B. (2021). Variability-based constraint on ocean primary production models.397

Limnology and Oceanography Letters, 6 (5), 262–269.398

Cael, B., Bisson, K., & Follett, C. L. (2018). Can rates of ocean primary production399

and biological carbon export be related through their probability distributions?400

Global biogeochemical cycles, 32 (6), 954–970.401

Cael, B., Bisson, K., & Follows, M. J. (2017). How have recent temperature changes402

affected the efficiency of ocean biological carbon export? Limnology and403

Oceanography Letters, 2 (4), 113–118.404

Cael, B., Chase, A., & Boss, E. (2020). Information content of absorption spectra405

and implications for ocean color inversion. Applied Optics, 59 (13), 3971–3984.406

Cael, B., Dutkiewicz, S., & Henson, S. (2021). Abrupt shifts in 21st-century plank-407

ton communities. Science advances, 7 (44), eabf8593.408

Campbell, J. W. (1995). The lognormal distribution as a model for bio-optical vari-409

ability in the sea. Journal of Geophysical Research: Oceans, 100 (C7), 13237–410

13254.411
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Key Points:7

• In situ hyperspectral Rrs(400-700nm) have 4 degrees of freedom & are predicted8

within uncertainties by MODIS & SeaWiFS wavebands.9

• Degrees of freedom are lost upscaling to global satellite climatologies and again10

to Rrs(λ)-derived products like chlorophyll.11

• Information exists in satellite Rrs(λ) that’s underutilized by products’ algorithms.12

Future algorithms must consider correlations carefully.13
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Abstract14

Products derived from remote sensing reflectances (Rrs(λ)), e.g. chlorophyll, phytoplank-15

ton carbon, euphotic depth, or particle size, are widely used in oceanography. Problem-16

atically, Rrs(λ) may have fewer degrees of freedom (DoF) than measured wavebands or17

derived products. A global sea surface hyperspectral Rrs(λ) dataset has DoF=4. MODIS-18

like multispectral equivalent data also have DoF=4, while their SeaWiFS equivalent has19

DoF=3. Both multispectral-equivalent datasets predict individual hyperspectral wave-20

lengths’ Rrs(λ) within nominal uncertainties. Remotely sensed climatological multispec-21

tral Rrs(λ) have DoF=2, as information is lost by atmospheric correction, shifting to larger22

spatiotemporal scales, and/or more open-ocean measurements, but suites of Rrs(λ)-derived23

products have DoF=1. These results suggest that remote sensing products based on ex-24

isting satellites’ Rrs(λ) are not independent and should not be treated as such, that ex-25

isting Rrs(λ) measurements hold unutilized information, and that future multi- or es-26

pecially hyper-spectral algorithms must rigorously consider correlations between Rrs(λ)27

wavebands.28

Plain Language Summary29

The reflectance of sunlight from the ocean can be observed from satellites and is30

used to derive many biologically-relevant parameters, such as the concentration of chloro-31

phyll in the upper ocean. Reflectances are currently observed at about ten different wave-32

lengths, but this will soon be expanded to hundreds with the upcoming launch of a new33

ocean color satellite, PACE, in early 2024. Many new algorithms are being proposed to34

make use of the wealth of ocean color data which will be provided. However, there are35

strong correlations between reflectances at different wavelengths; these correlations mean36

there will be far fewer products that can be independently derived than there will be re-37

flectance wavelengths observed. Here we use a ship-based measurements similar to what38

will be provided from PACE to suggest that, on a global scale, only a few independent39

variables can be calculated from hundreds of reflectance wavelengths. Current and past40

satellites provide a similar amount of independent data to what is projected from PACE.41

We then show that, on a global scale, a set of six derived parameters only contains one42

independent piece of information, suggesting that more information exists in ocean color43

data than is being currently used.44

1 Introduction45

Ocean color satellites have revolutionized the study of ocean ecology and biogeo-46

chemistry in recent decades by providing a near-continuous global picture of surface ocean47

properties (Hovis et al., 1980; O’Reilly et al., 1998). Satellites measure the spectral ra-48

diance emanating from the ocean and atmosphere. Remote sensing reflectance (Rrs(λ))49

is obtained following the removal of the contribution of atmospheric and surface effects50

and normalization to downwelling solar irradiance. Algorithms have been developed to51

estimate numerous biogeochemcally-relevant surface variables from Rrs(λ), such as chloro-52

phyll concentration (Chl, [µg/L]) (O’Reilly et al., 1998; Hu et al., 2012), the spectral slope53

of the particle size distribution (ξ) (Kostadinov et al., 2009), the concentrations of phy-54

toplankton and particulate organic and inorganic carbon (Cphyto, POC, and PIC, [µg/L])55

(Graff et al., 2015; Evers-King et al., 2017; Mitchell et al., 2017), euphotic layer depth56

(Zeu [m]) (Lee et al., 2007), and, using additional input variables, net primary produc-57

tion (NPP, [mg/m2d]) (Behrenfeld & Falkowski, 1997; Silsbe et al., 2016; Westberry et58

al., 2008). Such products are used in a wide variety of applications, such as validation59

of complex ocean ecosystem and biogeochemistry models (Dutkiewicz et al., 2020; Cael60

et al., 2021) or as inputs for simpler models that predict other variables such as verti-61

cal particulate organic carbon fluxes from ocean color (Siegel et al., 2014; Cael et al., 2017;62

DeVries & Weber, 2017; Nowicki et al., 2022; Bisson et al., 2020).63
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Existing Rrs(λ) data are multispectral, meaning they are measured within several64

individually determined wavebands. Derived products generally rely only on a subset65

of these wavebands and are commonly expressed as functions of band ratios between just66

two wavelengths (e.g. Hu et al., 2012). Some algorithms attempt to simultaneously es-67

timate multiple products to match the full spectrum of Rrs(λ); for example, the Gen-68

eralized Inherent Optical Properties (GIOP) approach (Werdell et al., 2013) uses known69

and assumed spectral shapes of backscattering and absorption from different optical con-70

stituents to estimate the suite of products that best represents the observed Rrs(λ). How-71

ever, the most widely used products, such as for Chl and POC, treat all outputs as in-72

dependent quantities and are fully empirical.73

Correlations between Rrs(λ) at different wavebands can be quite strong (Huot &74

Antoine, 2016), depending also on the spatiotemporal scales considered (see §3). This75

presents multiple potential issues for both users and developers of ocean color derived76

products. If multiple products are used simultaneously and treated as independent when77

they are in fact not, this can lead to overconfidence in model skill or miscalculation of78

uncertainties. An unintended consequence of treating satellite products independently79

within models is a functional limit on model complexity. Adding different (yet correlated)80

satellite products to a model can result in model output redundancy (Bisson et al., 2020).81

These issues will only be exacerbated by the hyperspectral resolution of the next gen-82

eration of ocean color satellites, namely the Plankton, Clouds, Aerosols and Ecosystems83

(PACE) satellite scheduled to launch January 2024 (Werdell et al., 2019). In addition84

to the common suite of multispectral products, PACE also plans to move beyond chloro-85

phyll and enable characterizations of phytoplankton communities (e.g. Chase et al., 2017),86

substantially increasing the number of products available from Rrs(λ).87

The strong correlations among Rrs(λ) wavelengths can be framed in terms of the88

degrees of freedom (DoF) of Rrs(λ) measurements and suites of derived products. DoF89

represents the effective number of dimensions of a dataset after accounting for correla-90

tions and uncertainties between variables and is in essence the number of independent91

variables in that dataset. It has been shown that the DoF of globally distributed near-92

surface measured hyperspectral absorption spectra is about five (Cael et al., 2020). This93

could be considered a possible upper limit for the DoF of satellite-measured Rrs(λ) given94

higher uncertainties on satellite measurements – particularly associated with atmospheric95

correction (Bisson et al., 2021; Cael et al., 2020). The DoF of PACE’s hyperspectral mea-96

surements might then be expected to be much lower than the number of wavelengths for97

which it will measure Rrs(λ), which will appreciably affect how hyperspectral satellite98

Rrs(λ) products should be constructed. For both existing and future satellite Rrs(λ),99

in other words, understanding the DoF of Rrs(λ) measurements and derived products100

is crucial for appropriate usage and optimal construction of such products.101

Here we investigate the DoF of Rrs(λ). We first find that a global sea surface hy-102

perspectral Rrs(λ) database has four DoF. Coarsening hyperspectral Rrs(λ) to their MODIS103

(Moderate Resolution Imaging Spectrometer) equivalent retains four DoF, though the104

SeaWiFS (Sea-viewing Wide Field of view Sensor) equivalent only has three DoF. Both105

of these multispectral equivalents can, however, predict individual hyperspectral Rrs(λ)106

wavelengths within nominal uncertainties for satellite sensors. We then consider clima-107

tological Rrs(λ) and derived products. We find that both MODIS-Aqua and SeaWiFS108

Rrs(λ) have two DoF at the climatological scale, suggesting that Rrs(λ) complexity is109

lost either through atmospheric correction, relatively more inclusion of open-ocean data,110

or averaging over larger scales in space and time. Suites of derived products, however,111

only retain one DoF. This latter result suggests that derived products should not be treated112

as independent by users. We close by discussing the substantial implications these find-113

ings have for the construction and use of ocean color products, from both existing and114

future Rrs(λ).115

–3–



manuscript submitted to Geophysical Research Letters

Figure 1. Locations of the 191 stations considered in this study (red dots).

2 Sea surface Rrs: hyperspectral versus multispectral116

We first analyze a global sea surface hyperspectral Rrs(λ) dataset to determine its117

DoF and how the DoF depends on spectral resolution (Chase et al., 2017; Kramer et al.,118

2022). The dataset includes Rrs(λ) data at 191 locations at an effective 3.35 nm reso-119

lution (Chase et al., 2017) from 400–800 nm, linearly interpolated to 1 nm (Figure 1).120

We trimmed spectra to 700nm due to the large fraction of missing values >700nm; note121

that most of the non-empty values >700nm are zeros and the non-zero-non-empty val-122

ues, with a median of <4×10−5 sr−1, have very small signal-to-noise ratios. The dataset123

includes measurements taken from 2004 to 2018 evenly distributed across months of the124

year, and from all major ocean basins ranging in latitude from 41◦S to 74◦N. We also125

compare these data to their MODIS-Aqua and SeaWiFS multispectral equivalents by126

convoluting the hyperspectral Rrs(λ) with the MODIS-Aqua and SeaWiFS spectral re-127

sponse functions (available at https://oceancolor.gsfc.nasa.gov/docs/rsr/HMODISA128

RSRs.txt and https://oceancolor.gsfc.nasa.gov/docs/rsr/SeaWiFS RSRs.txt)129

to generate 10-waveband and 6-waveband datasets which correspond to what each in-130

strument would have measured from the same optical input that the radiometer recieved131

when generating the hyperspectral Rrs(λ) data.132

We then apply principal component analysis (PCA) (Wold et al., 1987) to these133

301-, 10- and 6-dimensional Rrs(λ) datasets. PCA is a widely used method to reduce134

the dimensionality of datasets by identifying orthogonal vectors that explain the most135

variance in the data. PCA is linear in nature, which may result in an overestimation of136

effective dimensions by poorly approximating non-linear relationships between variables137

(e.g. a PCA performed on the pair (x, y) where y = x2 will yield two DoF). Nonlin-138

ear generalizations do exist (Weinberger et al., 2004; Scholz et al., 2008), though these139

are less widely applied due to their additional complexity and computational require-140

ments that make interpretation challenging. One may therefore consider the DoF we re-141

port to be upper bounds. We perform a PCA on each Rrs(λ) dataset, standardizing each142

first by subtracting from each waveband its mean and then dividing by its standard de-143

viation. This results in a percentage of total variance explained by each component. We144

use the broken-stick rule to choose the DoF, which states that the DoF is equal to the145

number of components that explain more variance than would be expected by randomly146

distributed data; this method was shown to be more consistent than a suite of others in147

a comparison (Jackson, 1993). These results can be shown visually as a ‘scree’ plot, which148

plots the percentage of variance explained by each component and for randomly distributed149

data; the DoF is the number of components with a higher percentage of variance explained150

than would be expected for randomly distributed data. Our figures also visibly demon-151

–4–



manuscript submitted to Geophysical Research Letters

Figure 2. Scree plot of percent variance explained versus component for hyperspectral Rrs(λ)

dataset and MODIS-Aqua and SeaWiFS equivalents calculated from their spectral response func-

tions. Black line indicates broken-stick significance threshold for hyperspectral data; numbers in

legend give percent variance explained for each mode above this threshold in each case.

strate that one would get the same results from using the scree plot rule, which states152

that the DoF is equal to the number of components not sitting on the straight line made153

by the higher-order components, and was found to consistently capture the correct DoF154

plus one when the first point on this straight line was included (Jackson, 1993).155

PCA analysis reveals that the hyperspectral in situ Rrs(λ) dataset has four DoF156

(Figure 2); the first four components explain 54%, 33%, 8%, and 2%, totalling 97%, of157

the variance. The first four MODIS-Aqua equivalent Rrs(λ) principal components have158

very similar percentages of variance explained: 49%, 37%, 10%, and 2%, totalling 99%159

of the total variance. In contrast, the first three SeaWiFS equivalent Rrs(λ) principal160

components explain 63% , 28%, and 8%, totalling 99%, of the variance. This suggests161

that the hyperspectral Rrs(λ) have four DoF, or four independent variables within the162

data, and that these four variables are effectively captured when reducing spectral res-163

olution to the ten MODIS-Aqua wavebands, but not to the six SeaWiFS wavebands.164

The ability of coarsened, MODIS-equivalent data to obtain the same number of DoF165

as the hyperspectral dataset is further supported by predictions of hyperspectral Rrs(λ)166

from multispectral equivalents. To illustrate this, for each hyperspectral wavelength we167

perform a multivariate linear regression of Rrs(λ) at that wavelength regressed against168

Rrs(λ) at each waveband of both the MODIS-Aqua and SeaWiFS equivalent Rrs(λ). We169

then calculate the root-mean-square-error (RMSE) of these regressions. For all wavelengths170

below 578 nm in the SeaWiFS case and 582 nm in the MODIS-Aqua case, the RMSE171

is smaller – and for many, much smaller – than 5% of the mean Rrs(λ) at that wavelength,172

where 5% is a nominal relative uncertainty for satellite Rrs(λ) (Figure 3). Even for wave-173

lengths greater than this, the RMSE is still very small in absolute terms, <0.00007 sr−1,174

far smaller than the nominal 0.0003 sr−1 absolute error for 1km-by-1km pixels for PACE175

(Gordon & Wang, 1994). These small errors in predicting hyperspectral Rrs(λ) from its176

multispectral equivalent underscore the extent to which different wavelengths’ Rrs(λ)177

–5–



manuscript submitted to Geophysical Research Letters

Figure 3. Root-mean-square-error of multivariate linear regressions of each hyperspectral

wavelength versus the MODIS-Aqua and SeaWiFS equivalent Rrs(λ). Solid line is 5% of the

mean of each wavelength’s hyperspectral Rrs(λ).

are correlated and demonstrate the ability of MODIS-Aqua equivalent multispectral Rrs(λ)178

to preserve the dimensionality of hyperspectral Rrs(λ). The fact that SeaWIFS-like Rrs(λ)179

can accurately predict hyperspectral Rrs(λ) to within PACE uncertainties but has fewer180

DoF than the in situ hyperspectral dataset is a reflection of the lower uncertainty on the181

in situ dataset than the expected PACE Rrs(λ), and suggests that PACE Rrs(λ) may182

have fewer DoF than the in situ hyperspectral dataset.183

We also note that excluding wavelengths 651–700nm affects the DoF numbers pre-184

sented here but not our conclusions. A choice of an upper limit of 650nm would be based185

on the fact that for all wavelengths above 648nm, >95% of measurements are below 0.0003186

sr−1, the nominal uncertainty of a 1km-by-1km pixel for PACE (Gordon & Wang, 1994).187

Repeating this analysis over 400–650nm results in hyperspectral and MODIS-Aqua-equivalent188

Rrs(λ) data having three DoF, and Sea-WiFS-equivalent Rrs(λ) data having two DoF.189

This suggests that there is one DoF in the 651–700nm range that is picked up by hyper-190

spectral and multispectral Rrs(λ) alike; however, the Rrs(λ) values are small enough (mean191

and median both <1.2×10−4 sr−1 for all wavelengths 651–700nm) compared to the nom-192

inal 1km-by-1km pixel uncertainty 3×10−4 sr−1) that this DoF may not be useful for193

satellite applications, which we are interested in here. This is corroborated by the DoF<3194

in the next section, despite incorporating the full wavebands of both MODIS-Aqua and195

SeaWiFS. Note that when estimating the MODIS-Aqua- and SeaWiFS-equivalent data196

from 400–650nm hyperspectral data, the contribution of hyperspectral Rrs > 650nm197

is not included; while both MODIS-Aqua and SeaWiFS have wavebands centered at >650nm,198

these wavebands’ spectral response functions are nonzero for some wavelengths in the199

range 400–650nm, and it is only the influence of these hyperspectral wavelengths on all200

wavebands that is considered. In other words, Rrs(λ) is effectively set to zero for all hy-201

perspectral wavelengths >650nm when calculating the multispectral equivalent datasets202

in this case.203
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3 Climatologies: Rrs versus products204

The analysis in Section 2 is based on instantaneous, local-scale Rrs(λ) values mea-205

sured in situ at the sea surface. The power of satellite Rrs(λ) and derived products, how-206

ever, lies in their near-continuous global spatial coverage, and many users are primar-207

ily interested in climatological data, which is near the coarsest spatial and temporal scales.208

In this section we therefore analyze climatological Rrs(λ) and derived products, again209

via PCA to determine DoF.210

We generated a 1◦×1◦ climatology for each month using Rrs(λ) data from Sea-211

WiFS spanning 1997–2008, excluding the final 2 years of the mission due to known in-212

strument issues (Siegel et al., 2014), using data downloaded from https://oceancolor213

.gsfc.nasa.gov/. We did the same for MODIS-Aqua, spanning the time period from214

July 2002 – June 2022. We generated analogous climatologies for derived products from215

each satellite over the same period and at the same spatial and temporal resolution, namely216

the extensive (i.e. mass-dependent) variables Chl, Cphyto, POC, PIC, and the intensive217

(i.e. mass-independent) variables Zeu, ξ, the fraction of biovolume in the microplank-218

ton size class fmicro calculated from ξ as described in (Kostadinov et al., 2009), the par-219

ticulate backscatter to chlorophyll ratio bbp :Chl, and NPP as estimated by the CAFE220

(Silsbe et al., 2016) and CbPMv2 (Westberry et al., 2008) models. Chl, POC, and PIC221

were downloaded from https://oceancolor.gsfc.nasa.gov/, as was bbp to calculate222

Cphyto according to (Graff et al., 2015) and bbp :Chl and the diffuse attenuation coef-223

ficent at 490nm to calculate Zeu according to (Lee et al., 2007); SeaWiFS ξ and fmicro224

were derived as in (Kostadinov et al., 2009); and NPP products were downloaded from225

http://sites.science.oregonstate.edu/ocean.productivity/index.php. In total226

we then have climatologies for MODIS-Aqua, SeaWiFS Rrs(λ), and ten derived prod-227

ucts. We consider the six products Chl, Cphyto, POC, PIC, ξ, and Zeu, to be core prod-228

ucts and fmicro, bbp:Chl, CAFE NPP, and CbPMv2 NPP to be ancillary products as these229

are either derived from the core products or rely on ancillary data other than Rrs(λ).230

We note that a PCA on the MODIS-Aqua climatologies of Rrs(λ) and products231

other than ξ and fmicro yields the same results as those for SeaWiFS below, so we fo-232

cus here only on the SeaWiFS climatologies because ξ and fmicro are not readily avail-233

able for MODIS-Aqua. We find two DoF for SeaWiFS Rrs(λ), but only one for the prod-234

ucts (Figure 4). This result is not sensitive to which combination of products is used –235

for instance, including all the ancillary products as well still results in one DoF for the236

products. This result is also not sensitive to log-transformations of the variables that are237

log-normally (e.g. Chl, POC, PIC, Cphyto (Campbell, 1995)) or log-skew-normally (e.g.238

NPP, (Cael et al., 2018; Cael, 2021)) distributed, or removal of outliers, zeros, or neg-239

ative values.240

That MODIS-Aqua Rrs(λ) have three DoF for the data in the previous section but241

two DoF from satellite-derived climatologies suggests that some reduction of complex-242

ity of the data occurs via some combination of increased sensor noise relative to ship-243

based data, atmospheric correction, or averaging over large space and time scales (Scott244

& Werdell, 2019). (Note (Scott & Werdell, 2019) also point out the difference between245

averaging Rrs(λ) versus taking the ratio of averaged water-leaving radiance Lw and down-246

welling irradiance, which may introduce a slight bias but is unlikely to affect our results247

here.) Two DoF remain in satellite climatological Rrs(λ) for both SeaWiFS and MODIS-248

Aqua, indicating the possibility of generating two independent products from these data.249

The suite of products tested above, however, has one fewer DoF than the Rrs(λ). This250

is likely due to derived products’ appreciable uncertainties and/or strong correlations251

with chlorophyll. POC, ξ, and Zeu, for instance, have Spearman rank correlations (across252

all months and 1◦ grid cells) of >0.9 with Chl. Cphyto’s rank correlation with Chl is still253

fairly high, at 0.61, and is low largely due to small fluctuations when both are small; a254

simple spline fit of log(Cphyto) against log(Chl) yields an r2 of 0.7.255
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Figure 4. Scree plot of percent variance explained versus component for climatologies of

SeaWiFS Rrs(λ) and of six SeaWiFS-Rrs(λ)-derived products. Black line indicates broken-stick

significance threshold for six-dimensional data.

The exception is PIC, which has a rank correlation with Chl of 0.11. PIC, how-256

ever, is highly sensitive to small variations in Rrs(λ) for typical Rrs(λ) values. To sub-257

stantiate this, we performed a simple sensitivity analysis with the standard two-band PIC258

algorithm used by NASA for all but the most optically bright waters (see https://oceancolor259

.gsfc.nasa.gov/atbd/pic/). We calculated PIC for the climatological median Rrs(λ)260

at 443 nm and 555 nm and for 5% variations, converting to normalized water-leaving ra-261

diance by multiplying by the global mean extraterrestrial solar irradiance. We then per-262

turbed these Rrs(λ) values with Gaussian noise at the 5% level, corresponding to the263

nominal uncertainty in Rrs(λ). This noise at 443 nm results in 68% noise in PIC. By con-264

trast, POC only varies 5% with these 5% variations in Rrs(λ) at either wavelength. This265

indicates that in the bulk of cases, satellite-derived PIC is highly uncertain, on the or-266

der of 70% (and note the PIC uncertainty will be magnified more when considering doc-267

umented uncertainties for Rrs(λ) of 15-40% in some regions (Bisson et al., 2021)). In con-268

trast, for relatively bright waters, the same exercise resulted in PIC variations of <10%,269

indicating that this algorithm performs well in instances when PIC values are high. Nonethe-270

less, the high sensitivity to typical uncertainty in Rrs(λ) for median waters explains why271

we find one DoF for the products even though PIC and Chl are not strongly correlated:272

derived PIC is noisy most of the time.273

These results have two key implications. One is that there is additional informa-274

tion in climatological Rrs(λ) that is not included in current derived products. This im-275

plies that existing products do not utilize the full set of Rrs(λ) wavelengths. The other276

implication is that these products are not at all independent, and should not be treated277

as such when using them simultaneously. In other words, there are more products than278

there are DoF in satellite data. A numerical ecosystem model that reproduces the satellite-279

derived climatology of chlorophyll and of the particle size distribution’s spectral slope280

should not be considered to be capturing two independent properties of the Earth sys-281
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tem. When using satellite products as inputs to other models, these products and their282

propagated uncertainties must be treated simultaneously rather than independently.283

The results presented here are appropriate for global ocean analyses. The open ocean284

represents the largest area, and is composed primarily of Case 1 waters; that is, waters285

in which optical variability is dominated by chlorophyll (Morel & Prieur, 1977). In this286

context, it is in a sense unsurprising that the suite of Rrs(λ)-derived products produced287

only one DoF. More optically complex waters, such as coastal regions and inland waters,288

have optical variability that is influenced by other constituents, such as colored dissolved289

organic material (CDOM), inorganic particles, and other pigments in addition to chloro-290

phyll (e.g. Brown et al., 2008; Nelson & Siegel, 2013)). Analyses focused on these wa-291

ters is likely to reveal a higher number of DoF from both Rrs(λ) and derived products.292

Indeed, algorithms to derive concentrations of cyanobacteria and suspended particulate293

(Wang et al., 2016)) or distinguish between different phytoplankton species (Erickson294

et al., 2020) can be successful in such waters. However, we note that the in situ dataset295

used here (Figure 1) represents waters with Rrs(λ) variability similar to that of the ocean296

as a whole, which can be seen by comparing the variation in Rrs(λ) at each MODIS-Aqua297

wavelength from global satellite data with the same satellite data sub-sampled to the lo-298

cations with in situ measurements (or the closest non-cloudy location). Sub-sampled satel-299

lite measurements have similar, and slightly lower, Rrs(λ) in bluer wavelengths, indicat-300

ing that the in situ dataset is oriented more towards optically complex coastal waters301

with substantial CDOM. This suggests that part of the explanation for the drop in DoF302

in satellite-derived climatologies comes from the fact that the in situ dataset sampled,303

as a whole, more optically complex waters.304

We find that both Rrs(λ) and variables derived from Rrs(λ) are highly inter-correlated,305

reducing the number of DoF associated with each, with a greater reduction in DoF in306

the derived products. This becomes a problem when products are derived using empir-307

ical relationships with Rrs(λ), and especially when the same wavelengths are used for308

the products that are assumed to be independent of each other; for example, over much309

of the ocean PIC, POC, and chlorophyll all are functions only of Rrs(λ) at two wave-310

lengths, at (or near, depending on the sensor) 443 and 555 nm. Certain combinations311

of PIC, POC, and chlorophyll, which may occur in the surface ocean, are therefore im-312

possible to find using these algorithms. This is distinct from algorithms, typically called313

“quasi-analytical” or “semi-empirical”, that use known or assumed spectral shapes for314

absorption and scattering properties of optical constituents that can be related to the315

same derived products, such as PIC, POC, and chlorophyll (Werdell et al., 2013). These316

approaches may result in similar correlations and DoF between derived products, but317

do not inherently have the same problems as empirical approaches. We note that PACE318

will have, in addition to hyperspectral visible bands, UV bands from 350nm as well as319

spectral polarized bands. These measurements are expected to both improve the atmo-320

spheric correction (hence reduce the Rrs(λ) uncertainties) as well as provide their own321

ocean signals, both of which may increase the DoF compared to those found here. In ad-322

dition, it has been shown that adding other environmental variables such as SST can add323

useful information to inversions of phytoplantkon groups (e.g. Chase et al., 2022) and324

thus another approach to increase DoF for inversions by adding relevant and indepen-325

dent information (e.g. mixed-layer depth and nutrients from BGC-Argo assimilating mod-326

els).327

4 Conclusion328

The results presented here highlight the high degree of co-dependence between re-329

mote sensing reflectances at different wavelengths and of the products derived from these330

reflectances. For users of products based on existing reflectances, this primarily means331

factoring in the relationships between products when using more than one simultane-332

ously. For the algorithms that generate these products from existing reflectances, these333
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results indicate a potential to improve the suite of available products to be more accu-334

rate and precise, and to account for the relationships between products and Rrs(λ) wave-335

bands. One way to do this, consistent with the findings above, would be to derive a sin-336

gle product such as chlorophyll as a function of all reflectance wavebands, derive an anomaly337

from chlorophyll-based expectations of a secondary product (e.g., phytoplankton com-338

munity composition, size, POC, PIC, and so forth), then specify all other products ex-339

plicitly as a function of these two, along the lines of Alvain et al. (2005). Ancillary and340

independent information can also be added to algorithms, as is currently done with net341

primary production models via temperature and mixed layer depth.342

These findings are most relevant for algorithms that will generate products from343

hyperspectral reflectances in the future. The small number of degrees of freedom in hy-344

perspectral reflectances indicates that only a few quantities can be estimated indepen-345

dently, and that different wavelengths’ reflectances as measured from space will be strongly346

correlated. Complex algorithms that utilize the full spectrum of reflectance will need to347

factor in these correlations in order to generate reliable products. Crucially, if more than348

a few products are generated from hyperspectral reflectances, as is likely the case, such349

algorithms will also need to output the covariance information encoding the uncertainty350

in each product and the relationships between them. This can be achieved by some, but351

not all, machine learning techniques, on which this new generation of algorithms are likely352

to be based. The fact that hyperspectral reflectances can be predicted within nominal353

uncertainties by their multispectral equivalents suggests that hyperspectral resolution354

can play a role in improving ocean color products, but that it will be challenging to pro-355

vide a substantially finer-grained picture of surface ocean ecosystems and biogeochem-356

ical cycles. Here by relying on principal component analysis we have focused on broad,357

first-order variations, but where such resolution may be most useful and generate novel358

insights is in investigating outliers and rare events, such as blooms or binning data over359

coherent features like eddies, where e.g. monospecific signatures may be resolved with360

spectral precision.361
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