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Abstract

River flows change on timescales ranging from minutes to millennia. These variations influence fundamental functions of

ecosystems, including biogeochemical fluxes, aquatic habitat, and human society. Efforts to describe temporal variation in

river flow—i.e., flow regime—have resulted in hundreds of unique descriptors, complicating interpretation and identification of

global drivers of flow dynamics. Here, we used a cross-disciplinary analytical approach to investigate two related questions:

1. Is there a low-dimensional structure that can be used to simplify descriptions of streamflow regime? 2. What catchment

characteristics are most associated with that structure? Using a global database of daily river discharge from 1988-2016 for 3,120

stations, we calculated 189 traditional flow metrics, which we compared to the results of a wavelet analysis. Both quantification

techniques independently revealed that streamflow data contain substantial low-dimensional structure that correlates closely

with a small number of catchment characteristics. This structure provides a framework for understanding fundamental controls
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of river flow variability across multiple timescales. Climate was the most important variable across all timescales, especially

those lasting several weeks, and likely contributes as much as dams in controlling flow regime. Catchment area was critical for

timescales lasting several days, as was human impact for timescales lasting several years. In addition, both methods suggested

that streamflow data also contain high-dimensional structure that is harder to predict from a small number of catchment

characteristics (i.e. is dependent on land use, soil structure, etc.), and which accounts for the difficulty of producing simple

hydrological models that generalize well.
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Key Points: 31 

• As complex ecosystem timeseries become longer, we need mathematical tools to 32 
understand their structure and links with other parameters. 33 

• Wavelet analyses are tools that can describe complex timeseries such as streamflow, 34 
providing a complement to traditional flow metrics. 35 
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• A global wavelet analysis of streamflow reveals that variability at short timescales is 36 
negatively correlated with long timescales. 37 

Abstract 38 

River flows change on timescales ranging from minutes to millennia. These variations influence 39 
fundamental functions of ecosystems, including biogeochemical fluxes, aquatic habitat, and 40 
human society. Efforts to describe temporal variation in river flow—i.e., flow regime—have 41 
resulted in hundreds of unique descriptors, complicating interpretation and identification of 42 
global drivers of flow dynamics. Here, we used a cross-disciplinary analytical approach to 43 
investigate two related questions: 1. Is there a low-dimensional structure that can be used to 44 
simplify descriptions of streamflow regime?  2. What catchment characteristics are most 45 
associated with that structure? Using a global database of daily river discharge from 1988-2016 46 
for 3,120 stations, we calculated 189 traditional flow metrics, which we compared to the results 47 
of a wavelet analysis. Both quantification techniques independently revealed that streamflow 48 
data contain substantial low-dimensional structure that correlates closely with a small number of 49 
catchment characteristics. This structure provides a framework for understanding fundamental 50 
controls of river flow variability across multiple timescales. Climate was the most important 51 
variable across all timescales, especially those lasting several weeks, and likely contributes as 52 
much as dams in controlling flow regime. Catchment area was critical for timescales lasting 53 
several days, as was human impact for timescales lasting several years. In addition, both methods 54 
suggested that streamflow data also contain high-dimensional structure that is harder to predict 55 
from a small number of catchment characteristics (i.e. is dependent on land use, soil structure, 56 
etc.), and which accounts for the difficulty of producing simple hydrological models that 57 
generalize well. 58 
 59 

1 Introduction 60 

River flow drives the structure and function of aquatic systems on sub-daily to decadal 61 
timescales, and sculpts landscapes on geological timescales from centuries to millennia (Fisher et 62 
al., 1998; Pinay et al., 2018; Tucker & Hancock, 2010). For people, variability in river flow 63 
regulates access to freshwater, with extreme flow events such as floods and droughts imposing 64 
immense personal and societal costs (Abbott, Bishop, Zarnetske, Minaudo, et al., 2019; Van 65 
Loon et al., 2016; Vörösmarty et al., 2010). For ecosystems, water flow through soils, aquifers, 66 
and surface-water networks mediates aquatic and riparian biodiversity (Bochet et al., 2020; Hain 67 
et al., 2018; N. LeRoy Poff et al., 1997; N. Leroy Poff & Zimmerman, 2010). Additionally, the 68 
direction, volume, and timing of flow define terrestrial-aquatic connectivity, and thereby mediate 69 
the delivery of biogeochemical substituents, including pollutants, to aquatic and marine 70 
ecosystems, including human pathogens, excess nutrients, and novel entities (Raymond et al., 71 
2016; Bernhardt et al., 2017; Moatar et al., 2017; Zarnetske et al., 2018; Frei et al., 2020; Gorski 72 
& Zimmer, 2021; S. Liu et al., 2022). From the various viewpoints of human society, 73 
biogeochemical fluxes, and aquatic habitat, no single timescale stands out as singularly important 74 
regarding flow regime (Fig. 1). 75 
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for individual studies and management, their sheer range and redundancy creates a problem of 104 
comparability at regional to global scales (Olden & Poff, 2003). In addition to these “traditional” 105 
flow metrics, the strictly hydrological literature has widely used the spectral properties of flow 106 
regime obtained via wavelet decomposition, an analytical technique which leverages the concise 107 
mathematics of waves to describe variability at multiple timescales simultaneously. Wavelet 108 
analyses are used to identify which timescales are most important in a timeseries (Carey et al., 109 
2013; Labat, 2010; Sang, 2013; Smith et al., 1998; White et al., 2005). Wavelet decompositions 110 
and the traditional flow metrics are rarely used in concert, and similarities and differences 111 
between the two approaches have not been quantified. 112 

The complexity of measuring and characterizing flow regime likely contributes to the 113 
persistent difficulty in understanding the factors influencing river flow. Even when constraining 114 
the discussion to specific timescales or metrics such as annual flow or runoff ratios during storm 115 
events, the physical, biological, and human controls on flow at the catchment scale are still being 116 
debated (Lane et al., 2017; Lin et al., 2019; Reaver et al., 2020; Savenije, 2018; Sivapalan, 2006; 117 
Tetzlaff et al., 2008; Zhou et al., 2015). Climatic, surface, and subsurface parameters have been 118 
proposed as primary controls on the timing and magnitude of river flow across sites, including 119 
the amount of soil and aquifer water storage, the relative availability of energy and water, the 120 
configuration and size of the surface water network, and the extent and type of vegetation 121 
(Carlisle et al., 2010; Lane et al., 2017; Oldfield, 2016; Ryo et al., 2015; Sanborn & Bledsoe, 122 
2006; Zhou et al., 2015). Regardless of the method, understanding variation and similarity in 123 
flow regimes across biomes and ecoregions could reveal drivers of aquatic ecology and explain 124 
differences in success of water management and ecosystem protections in different conditions 125 
(Berghuijs et al., 2019; Bunn & Arthington, 2002; Zhou et al., 2015). 126 

In this context, we analyzed a global dataset of river flow to compare methods for 127 
characterizing flow regime and to identify flow relationships with climatic and catchment 128 
factors. We combined traditional flow metrics with wavelet analysis to describe 3,120 time series 129 
of river flow, each with over 9 years of continuous data between 1988 and 2016. In addition to 130 
quantifying the relationship between streamflow metrics and wavelet analysis, we sought to 131 
identify which climatic, geomorphological, and human attributes are most important for 132 
determining variability in flow at timescales ranging from days to a decade. These flow 133 
behaviors across timescales are rarely analyzed in concert (McMillan, 2021; Olden & Poff, 134 
2003), but we further hypothesized that variability in flow at different timescales acts as an 135 
interacting set of variables, meaning that changes in flow volume that last only a few days are 136 
fundamentally linked to changes in flow volume that last several years. If present, these linkages 137 
would imply low-dimensional structure in streamflow data, which we believe would be 138 
fundamental to developing a concise vocabulary for describing streamflow regime and 139 
understanding its controls. Because the same climatic and catchment attributes influence flow on 140 
multiple timescales, considering potential interactions across timescales could open new 141 
pathways towards understanding and predicting flow regimes. For example, because the relative 142 
abundance of energy and water influence vegetation and soil development (Malone et al., 2018; 143 
Tank et al., 2020), hot and dry catchments could simultaneously exhibit high seasonal variability 144 
in flow and greater extractive human water use, causing long-term reductions in the water table. 145 
Likewise, because larger catchments integrate heterogenous subcatchments over larger and 146 
longer spatiotemporal scales (Chezik et al., 2017; Dupas et al., 2019; Levia et al., 2020), we 147 
predict they will show less short-term variability but greater sensitivity to long-term changes in 148 
water balance. 149 
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2 Materials and Methods 150 

2.1 River flow and catchment characteristics data 151 

We obtained daily river discharge time series from the Global Runoff Data Centre 152 
(GRDC; https://www.bafg.de/GRDC). We used several criteria to select from the 6,544 stations 153 
with discharge data from a recent 30-year period of interest (1988-2016). Because continuous 154 
time series are required for the calculation of many flow metrics, we first removed stations that 155 
had less than nine complete water years over the period of interest. This left us with 4,762 156 
candidate stations (2,399 without any gaps and 2,363 with some gaps). For all stations, we 157 
removed records for partial water years, i.e., those before the first complete water year or after 158 
the last complete water year. For those time series with gaps, we computed the number of days in 159 
each missing period and the total number of missing periods. We summarized the number of 160 
missing days (e.g., minimum, mean, maximum, and percentiles), and calculated the proportion of 161 
days in the record for which data were available. We filled gaps via linear interpolation for 162 
stations that met the following criteria:  < 25% missing data, the longest data gap was less than 2 163 
years, and the 75th percentile of consecutive days of missing data was less than 3 months. For 164 
stations that passed this test (1,163 of the 2,363), we visually inspected the result of interpolation 165 
to ensure that obvious peaks or troughs in each station’s data record were not omitted. We 166 
discarded 104 stations that showed anomalous effects during interpolation, leaving 1,059 167 
stations. For the stations with gaps that did not meet our criteria, 509 were located more 168 
than 1 km from an included station, and many were in data-sparse regions with relatively few 169 
observations. Despite their gaps, some of these stations had long data records within the period 170 
of interest. Therefore, we determined which stations had sufficiently long (>9 y) intact stretches 171 
that could be extracted from the longer time series. We were able to salvage an additional 227 172 
stations using an automated approach followed by visual inspection. Therefore, our final set of 173 
stations included those with complete records (2,399), those with interpolation that met our 174 
inclusion criteria (1,059), and additional salvaged stations (227), for a total of 3,685 stations—175 
56% of the original GRDC stations. 176 

The GRDC streamflow dataset reports the upstream catchment area associated with each 177 
station but does not directly reference them to the hydrography we used in this study. As such, 178 
differences in data sources could have created mismatches between the location of a GRDC 179 
station and the upstream catchment we delineated from the integrated Shuttle Radar Topography 180 
Mission (SRTM) digital elevation model and the GTOPO30 Digital Elevation Model (DEM, 181 
http://files.ntsg.umt.edu/data/DRT). Following Barbarossa et al. (2018), we geo-referenced each 182 
station to the pixel that was most similar in catchment area and within 5 km from its original 183 
location. We designated stations as high, medium, or low quality if the difference in catchment 184 
area was <5%, 5% to 10%, or 10% to 50%, respectively (Barbarossa et al., 2018). 185 

After delineating each watershed, we extracted 117 variables obtained from a variety of 186 
geospatial data sources (supplemental table S1). These variables capture the stream network 187 
structure, climate, landcover (including lakes and soils), and anthropogenic impacts (including 188 
population density and reservoirs) upstream of each GRDC location. Depending on the 189 
parameter, we calculated cumulative values (e.g., total precipitation) or catchment means (e.g., 190 
mean annual temperature). Because the configuration and density of stream networks can 191 
influence propagation of water and solutes (Godsey & Kirchner, 2014; Helton et al., 2011), we 192 
quantified stream network structure using TauDem (Terrain Analysis Using Digital Elevation 193 
Models, https://hydrology.usu.edu/taudem/taudem5/). This open-source software implements 194 
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variables. Mathematical tools exist to run this process backwards—decomposing a timeseries 249 
into a set of perfect sinusoids that together recreate the original timeseries. These are known as 250 
frequency decompositions, and can be thought of as functioning similarly to a prism, which 251 
decomposes white light into a rainbow of colors ranging from high to low frequency, or to a 252 
computer program that takes in the sound recording of a symphony and outputs a musical score 253 
of notes representing air vibrations at particular frequencies. No matter the timeseries, the 254 
amplitudes of the resultant decomposed waves at different frequencies relate to the amount of 255 
variability in the data that occurs on those timescales, reported in a characteristic known as 256 
spectral power. Spectral power thus provides a unit for describing variability in streamflow 257 
across every timescale present in a hydrograph. 258 

Decision trees are a primal machine learning model that are foundational to many more 259 
complex models, such as random forests and gradient boosting forests. Conceptually, decision 260 
trees take in an array of prediction features and step-by-step combine multiple points of data 261 
along the feature array. Using relatively simple logic, they distill information further and further 262 
until a single prediction is made (Myles et al., 2004). Decision trees are generally known to have 263 
high bias (typically viewed as undesirable) with low variance, though they are still occasionally 264 
used because of their inherent interpretability. 265 

Random forests are called “forests” because they comprise many individual decision 266 
trees, usually of significant depth, whose collective predictions are averaged to produce an 267 
output that is generally less biased and more accurate than individual decision tree regressors 268 
(Biau & Scornet, 2016). The “random” aspect comes from an innovation in 2001 where 269 
successive trees are trained on independent random samples with replacement from the larger 270 
dataset (Breiman, 2001). 271 

Gradient boosting regressors are similar to random forest regressors, but they differ in 272 
that new trees are added in a way that minimizes error in a targeted, rather than a random 273 
fashion. This targeted approach is achieved by adding new trees according to the gradient of a 274 
user-defined loss function, which is simply a function which characterizes the error of the model 275 
(Elith et al., 2008). 276 

Principal Components Analysis, or PCA, projects high dimensional data onto a lower 277 
dimensional space where each axis is a linear combination of the original variables in the high 278 
dimensional space, and where the number of dimensions projected onto is the user’s choice. As 279 
an intuitive example, imagine a “high-dimensional” dataset with two variables, x and y. If, for 280 
every step in the x direction, data tend to take two steps in the y direction, the two variables are 281 
redundant and linearly related; total least squares linear regression would draw a line through the 282 
two axes with a slope of ~2. PCA on these two axes would project data points onto that 283 
regression line. That is, instead of listing data points by their x and y coordinates, the PCA 284 
projection would list data points by their location on a new axis, z, which is two parts y, and one 285 
part x. The “two parts” and “one part” that describe how much each original axis contributes to 286 
the new projected axis are referred to as the loadings matrix. The loadings matrix effectively 287 
describes how correlated (positive or negative) each of the original axes in the high-dimensional 288 
space is with the low-dimensional axes PCA projects the data onto. Thus, like wavelet 289 
decompositions, PCA identifies variability in data. But instead of identifying variability at 290 
different timescales in a timeseries, PCA identifies variables (or combination of variables) in 291 
tabular data along which the data vary most. If a group of original variables (columns) have high 292 
magnitude loadings for a given principal component, then that principal component can be 293 
thought of as a combination of those original variables. In other words, the resulting components 294 
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from PCA describe low-dimensional linear structure in data which in turn corresponds to simple, 295 
high-level concepts. Examining the loadings matrix is one of the best methods for adding 296 
interpretability to the abstract components that result from a PCA projection. 297 

2.3 Streamflow analysis 298 

2.3.1 Quantifying Streamflow Regime 299 

Traditional methods for describing streamflow regime include over 600 flow regime 300 
metrics available in the literature that describe concepts such as variability in monthly flow, 301 
annual maximum of 90-day moving average of flow, low flood pulse count, etc., and are 302 
collectively both diverse and in many cases redundant (Olden and Poff 2003). We calculated a 303 
subset of these metrics that are commonly used in hydrology, based on the availability of 304 
statistical packages and recent flow regime papers. First, we calculated the “Magnificent 305 
7” (Mag7; Archfield et al. 2014). Second, we calculated 171 metrics from the Hydrological 306 
Index Tool (HIT; Henriksen et al. 2006), reimplemented in the EflowStats package (Archfield et 307 
al. 2013). Finally, we calculated the 11 metrics from Sabo and Post (SP; Sabo & Post 2008), for 308 
a total of 189 metrics. Given previously identified redundancy in in streamflow metrics (Olden 309 
and Poff 2003), we are confident that this set covers the full range of hydrological variability. 310 

To identify the amount of redundancy in the selected metrics we applied PCA using the R 311 
package FRK and the NNGP method (Zammit2-Mangion & Cressie, 2017). We retained 7 312 
dimensions for further analysis and which we hereafter refer to as “PCA Metrics.” These 7 313 
dimensions collectively explained 68% of the variability in the 189 streamflow metrics. We 314 
summarized the top correlates suggested by the loadings matrix (see section 2.2) to provide 315 
qualitative descriptors of the resulting metrics. Separately, we quantified streamflow regime 316 
using a frequency decomposition. Classically, frequency decompositions are performed using the 317 
discrete-time Fourier transform, yielding an output that quantifies the variability in the signal at 318 
different timescales using a unit called “spectral power” (Unpingco 2014). Recently it has 319 
become more common to use a related analysis called a Wavelet transform (Carey et al., 2013; 320 
Labat, 2010; Sang, 2013; Smith et al., 1998; White et al., 2005), which generates a blended time-321 
frequency decomposition of the input. We then averaged spectral power across time to obtain a 322 
frequency-only representation of the original signal, after finding that this technique produced 323 
distinct peaks at plausible frequencies with minimal noise. We calculated the time-averaged 324 
wavelet decomposition using the default settings of the WaveletComp R package (Rösch and 325 
Schmidbauer 2018). While several wavelet forms are possible to choose from within the 326 
WaveletComp package, we chose the Morlet wavelet, which is considered suitable for many 327 
climate-linked timeseries (Torrence & Compo, 1998).  328 

2.3.2 Similarities between streamflow metrics and frequency decomposition 329 

We calculated Spearman correlations between each frequency’s spectral power and each 330 
of the 189 flow metrics across all catchments in the dataset. Seeking to confirm the results of the 331 
correlation analysis through an alternate technique, we also trained machine learning models to 332 
predict each of the streamflow metrics using the frequency decompositions as inputs. To account 333 
for variability between models and divisions of data, 18 models were trained on each of the 189 334 
streamflow metrics. For each metric, 9 were random forest regressors and 9 were gradient 335 
boosting regressors. Data were divided with an 80:20 training to testing ratio, with the divisions 336 
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done randomly and independently for each model. Models were then validated on the 20% 337 
portion reserved for testing and an r-squared was calculated between model output and the actual 338 
values of the given streamflow metric for the 20% testing data. Finally, the “feature 339 
importances” were extracted from each model to determine which input features were most 340 
important in the models’ decision-making processes (Frei et al., 2021). Models were 341 
implemented in Python using the Sci-kit Learn library and feature importances were extracted 342 
using the “feature_importance_” method (Pedregosa et al., 2011). 343 

To connect the previously-calculated PCA axes to frequency analyses, we ran a 344 
Spearman correlation analyses between each of these PCA metrics and the spectral power of 345 
each frequency. Similar to each of the 189 flow metrics, we also trained 360 machine learning 346 
models, with an even split between random forest regressors and gradient boosting regressor 347 
models, to predict each PCA metric using the frequency domain, again with a unique, random 348 
80:20 split between training and testing data. 349 

Structure in the outputs of these three analyses suggested that variability at shorter 350 
timescales was linked to variability at longer timescales. To isolate and quantify this 351 
phenomenon, we calculated the pairwise spearman rank correlation between the spectral powers 352 
at each frequency and the spectral powers at all other frequencies. 353 

2.3.3 Identifying controls on streamflow regime 354 

Whereas in the previous section we sought to quantify similarities between methods for 355 
describing streamflow regime, in the following section we describe analyses in which we sought 356 
to understand which catchment characteristics are the best predictors (and therefore likely 357 
controls) of flow regime. Consequently, we trained three separate machine learning models, a 358 
decision tree regressor, a random forest regressor, and a gradient boosting regressor, to predict 359 
each of the PCA metrics (which we consider concise surrogates for the full 189 flow metrics we 360 
calculated) from the 117 catchment characteristic input features. We used the k-folds validation 361 
process with a k of 10, meaning that we trained 10 separate models on different 90:10 splits of 362 
data and validated each model on the unique 10% of the data not used for training that model. 363 
Validation was done by calculating model r-squared between predictions and ground truth. Prior 364 
to training, data were normalized using min/max normalization. As before, feature importances 365 
were extracted to understand which input features (i.e. catchment characteristics) were most 366 
important in determining flow regime. To confirm these results we also ran a Spearman 367 
correlation analysis between the 117 streamflow metrics and the spectral power for each 368 
frequency. All correlation analyses in this paper were implemented using the Scipy library in 369 
python (Virtanen et al., 2020). 370 

Additionally, we trained three classes of machine learning models to predict the spectral 371 
power of streamflow timeseries at different frequencies. Similar to the machine learning analysis 372 
predicting streamflow metrics from wavelet analyses, for each of the 1101 frequencies identified 373 
by the wavelet analysis, we trained 20 random forest regressors and 20 gradient boosting 374 
regressors to predict spectral power using catchment characteristics. We divided data with an 375 
80:20 training to testing ratio, with the divisions done randomly and independently for each 376 
model. Models were then validated on the 20% portion reserved for testing and an r-squared was 377 
calculated between model output and the actual values of the given streamflow metric for the 378 
20% testing data. Data were normalized to be mean zero and standard deviation of 1. The 379 
importance of each prediction feature was then extracted from the models and features were 380 
grouped into categories to determine which categories of features were most important for 381 
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predicting streamflow regime. These results were also confirmed by calculating the Spearman 382 
correlation between each of the 117 catchment characteristics and the spectral power for each 383 
frequency. 384 

3 Results 385 

3.1 Similarities between streamflow metrics and frequency decompositions 386 

Several lines of evidence suggested that streamflow metrics and frequency 387 
decompositions carry a substantial amount of similar information. For example, the average 388 
maximum Spearman correlation coefficient between the 189 flow metrics and any frequency in 389 
the frequency decompositions was 0.46 (supplemental figures S1 and S2). Similarly, the average 390 
r-squared for machine learning models trained to predict the 189 flow metrics exclusively using 391 
the frequency decomposition was 0.33 (supplemental figures S3 and S4). And finally, the 392 
average r-squared for machine learning models that were trained to predict the 7 PCA flow 393 
metrics exclusively using the frequency decomposition was 0.42. Together, these results indicate 394 
that frequency decompositions such as the wavelet transform describe between 30-45% of the 395 
same information as streamflow metrics (or alternatively that both approaches describe 396 
phenomena that are highly correlated). 397 

3.2 Low-dimensional structure in streamflow timeseries 398 

PCA analysis of streamflow metrics suggested that substantial low-dimensional linear 399 
structure exists alongside a nontrivial amount of nonlinear structure in streamflow data: 68% of 400 
the variance in the original 189 flow metrics could be explained in 7 PCA axes, each capturing 401 
increasingly less variability in the data (supplemental figure S5). PCA metrics that explained 402 
more variance in the original 189 metrics tended to correlate more strongly to the frequency 403 
domain (e.g. metrics 1-4), while those that explained less variance in the original metrics tended 404 
to relate less strongly to the frequency domain (e.g. metrics 5-7) (supplemental figure S7). A 405 
summary of the loading matrices of each metric are found in Table 1, and more extensive 406 
descriptions of the matrices are given in supplemental tables S2-S8. The spatial distributions of 407 
the metrics across the globe are plotted in supplemental figure S6.  408 
 409 

Table 1. List of top seven principal components derived from 189 flow metrics calculated for 3,685 river flow 
time series.  

PCA 
(%variance
explained) 

Name Description of correlates Hypothesized cause(s) 

1, (26%) Magnitude High total amount of flow, high minimum flows 
(rarely dry), and low flow variation in high flows

Big rivers 

2, (16%) High-frequency 
stability 

Long-lasting but infrequent high flows, large 
portion of flux occurs at high flows, few reversals 
or short-term changes in direction, few low flow 
events, red or black noise in the daily discharge 

data, and strong and skewed seasonal signal. 

Big rivers (surface-
dominated or unduly influenced 

by high-flow tributaries) 

3, (9%) Low-frequency 
stability 

High interannual flow stability, low event 
flashiness, predictable interannual high 

High overall storage, low 
synchrony among sub-
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flows, low flood frequency, high base flow catchments, groundwater 
dominated 

4, (6%) Interannual 
variability 

Low interannual stability in high flow magnitude 
and duration, low stability in annual flow, low 

seasonality, low annual flow (specific and 
absolute), variable timing of annual min and max 

flow, frequent floods, skewed annual 
flows, variable event response, short-lived flow 

events 

Arid or semi-arid sites 

5, (6%) High and 
stable baseflow 

High baseflow (rarely dry), high 
skewness, low exceedance flows, frequent 

floods of moderate magnitude, variable 
flow, variable moderate flows, variable event 

response 

Near-surface groundwater 

6, (3%) Variable 
baseflow 

Variability in number of no-flow days, very few 
and short baseflow pulses, high flow 

constancy and predictability (same timing of 
variation), more zero-flow months, little range in 

daily flows, little 
autocorrelation, higher minimum annual 

flow, later arrival of minimum flow (freshet 
pattern), high skewness, more no-flow days 

Snowmelt, intermittency, semi-
arid, flashy 

7, (2%) Daily 
variability 

High spread in daily flows, low magnitude of 
interannual high flows, consistently 

rapid changes in flow, low variability in no-flow 
days, short and small pulses, more no-flow 

months, seasonally variable flooding, high signal 
to noise, variable monthly flows, later arrival of 

max flows (monsoonal), high interannual 
variability, frequent floods 

Arid, small 
headwaters, Mediterranean 

 410 

Wavelet analysis of streamflow timeseries also suggested that streamflow data are highly 411 
compressible (and therefore easily summarized). Spectral power of high frequencies was 412 
negatively correlated with spectral power of low frequencies (figure 4). This indicates that a 413 
tradeoff exists between changes in flow that occur over several days and changes in flow that 414 
occur over several months or years. This structure also indicates that streamflow data are 415 
extremely low-dimensional when represented in the frequency domain. Figure 5 demonstrates 416 
the tradeoff between long and short-term variability in flow data using example hydrographs and 417 
their associated frequency decompositions from our dataset. 418 

 419 
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seen in streams around the world. Therefore, our primary purpose in this paper was to explore 531 
possible methods for describing streamflow regime, and then to leverage those methods to 532 
identify patterns in and drivers of flow regime. Given the complexity that is traditionally 533 
attributed to streamflow regime (Dey & Mujumdar, 2022; Sivapalan, 2006; Tetzlaff et al., 2008), 534 
the large number of different hydrological models (Horton et al., 2022), and the number of 535 
parameters these models usually take (Dhami & Pandey, 2019), we were surprised by the low-536 
dimensionality (i.e. simplicity) that global streamflow data consistently expressed through a 537 
variety of analyses. At its core, this low dimensionality was driven by linkages of streamflow 538 
properties between timescales. Below, we discuss our findings in light of current ecological 539 
challenges and hydrological theory, with particular emphasis on the importance of understanding 540 
timescales as interacting units with low effective dimensionality. 541 

 542 
4.1 Are streamflow metrics or frequency decompositions better? 543 
 544 
 Streamflow metrics and frequency decompositions such as wavelet analyses facilitate 545 
different, albeit related insights into streamflow regime. Streamflow metrics are not limited by a 546 
strict mathematical framework and therefore describe a wide range of phenomena, including 547 
variability, timing, and volume of flow with precise, albeit poorly organized, detail. Data-driven 548 
techniques such as PCA can counter this disorganization by identifying latent low-dimensional 549 
structure in streamflow metrics. One of the key contributions of this work was to apply data-550 
driven structure identification techniques to unmodeled streamflow data at a global scale. Indeed, 551 
PCA analysis suggested that globally, streamflow metrics are inherently compressible along 552 
linear manifolds, with 68% of the variability in flow data explained by 7 linear principal 553 
components. However, our analysis also showed that a substantial portion of the information 554 
provided by streamflow metrics (the remaining 32%) is not well described by linear structures. 555 
In other words, streamflow metrics, and by extensions streamflow data, contain an inherently 556 
information rich component, and thus the large number of metrics used to describe streamflow is 557 
well-justified. We suggest that streamflow is both a simple and  complex phenomenon, with 558 
minor, complex (high-dimensional) structures emerging on top of the dominant, simple (low-559 
dimensional) patterns that are consistent at global scales. This dominant compressibility has 560 
previously been attributed to redundancy in streamflow metrics (Olden and Poff 2003)—not an 561 
unlikely outcome given the sheer number of metrics available. However, the disorganization 562 
inherent within this approach also belies that the dominant low-dimensional structure is in-part a 563 
manifestation of linkages in flow properties among timescales. Identifying these linkages is 564 
another key contribution of this work. Our results suggest that these linkages arise from a small 565 
number of hydrological phenomena that are tuned by relatively few catchment properties such as 566 
drainage basin size, mean annual temperature, precipitation, and land use. Streamflow metrics 567 
fail to identify these linkages because they have not traditionally been organized by timescale 568 
and analyzed as an interacting set of variables. This is one of the great advantages of frequency 569 
decompositions—they organize phenomena in a timeseries by their duration, from days to 570 
decades. Complex dynamics are quantified with a concise vocabulary: the amplitude, phase, 571 
waveform, and vertical shift of waves of varying frequency. This vocabulary resides at a level of 572 
abstraction that is perhaps uncomfortably distant from real-world biogeochemical cycling but 573 
that is nonetheless remarkably useful for organizing structure in data, identifying processes and 574 
interactions that would otherwise be invisible. 575 
 576 
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We further suggest that as biogeochemical datasets increase in temporal and spatial 577 
scales, data-driven descriptors based on low-dimensional structure are key for several reasons: 1) 578 
they provide sanity checks of intuitive notions or concepts common in sub-disciplines that are 579 
otherwise quantitatively unfalsifiable (Kipper, 2021). For example, in hydrology the notions of 580 
“semi-arid watersheds” and “snow-driven watersheds” are commonly employed in the literature 581 
(Arheimer et al., 2017; Cosh et al., 2008; Manning et al., 2022; Poon & Kinoshita, 2018). We 582 
suggest that these intuitive concepts represent informal, expert-driven versions of dimension 583 
reduction (Bates, 2020; Wolff, 2019). Confirming that our expert-derived vernacular corresponds 584 
to patterns in data is critical as policy decisions are made regarding restoration efforts and global 585 
climate-change action. 2) Correlating low-dimensional structure with system characteristics is a 586 
first step towards developing understandable, causal mathematical models that can more reliably 587 
be used to predict system behavior under novel conditions such as climate change. We 588 
distinguish data-driven descriptors (low-dimensional structure) from data-driven models, which 589 
tend to be black-box models whose generalizability to novel conditions is harder to verify 590 
(Rudin, 2019). 3) Low-dimensional structure forms a concise vocabulary for communicating 591 
major issues to non-experts (see (Eckmann & Tlusty, 2021; Lum et al., 2013; Nicolau et al., 592 
2011) for examples from other fields), significantly aiding interdisciplinary discussions. In the 593 
realm of biogeochemistry, where so many organisms, processes, and societal communities are 594 
involved, succinct communication is key for progress to be made in the face of increasing 595 
environmental degradation (Abbott, Bishop, Zarnetske, Hannah, et al., 2019; Frei et al., 2021). 596 
 597 
4.2 Streamflow Metrics Can be Predicted from Temperature, Precipitation, and Catchment Size 598 
 599 
 Multiple analyses independently suggested that only a few catchment properties 600 
(temperature, precipitation, and catchment size) were necessary for predicting the dominant 601 
structures in streamflow regime data. This was true regardless of the method used for quantifying 602 
flow regime. For example, three types of machine learning models suggested that PCA flow 603 
metrics could be predicted almost exclusively from temperature, precipitation, and catchment 604 
area. When plotted together, the relationships between PCA flow metrics and these variables 605 
were visually obvious, while the relationships between PCA flow metrics and variables not 606 
identified as important by the machine learning models (e.g., forest cover, biome) were markedly 607 
less clear. Similar patterns emerged when a wavelet analysis was used to quantify flow regime: 608 
machine learning analyses consistently identified climate and catchment size as important 609 
predictors of flow variability at all temporal scales considered. Visualizations of the correlations 610 
between these predictors and the frequency domain corroborated these results. However, there 611 
was one important difference between features that were important for predicting PCA flow 612 
metrics and frequency decompositions – the influence of land use. This category grouped several 613 
variables, including percent forest cover, percent shrub, percent snow, etc. into a single label. 614 
And while individual land use characteristics were not particularly important in isolation, 615 
machine learning models consistently ranked this group as a whole to be as important as 616 
catchment area for predicting variability in flow at all timescales longer than a few months. We 617 
speculate that precipitation, temperature, and catchment size may regulate near-universal 618 
hydrological processes that are responsible for the highly compressible components of 619 
streamflow regime (those captured by the 7 PCA metrics) (Giano, 2021; N. LeRoy Poff et al., 620 
1997), and that the more complicated ecohydrological interactions introduced by the myriad 621 
possible land use regimes and geological factors are responsible for streamflow properties that 622 
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were harder to identify with PCA analysis (Bladon et al., 2014; Manning et al., 2022; Tague & 623 
Grant, 2004; Wu et al., 2021)—though we note that land use is likely correlated with climatic 624 
and geological factors. Said differently, our results imply that a simple, emergent physics may 625 
exist at the catchment scale, where a handful of mean catchment properties accurately predict 626 
flashiness, timing, and volume of flow at the basin’s outlet, to the extent that biological 627 
interactions remain simple (Sposito, 2017; Zhou et al., 2015). 628 

Interestingly, dams were not an important predictor of flow regime for any analysis, 629 
which runs contrary to previous results (Arheimer et al., 2017). They did correlate with several 630 
flow metrics, PCA metrics, and certain timescales as indicated by wavelet analysis. However, in 631 
no case were they a primary predictor of flow regime according to multiple machine learning 632 
analyses. This may be because dam number and dam surface area correlate more strongly with 633 
catchment area than any other catchment characteristic; there are very few large rivers that are 634 
not heavily dammed (with significant impacts on global biogeochemical cycling, (Maavara et al., 635 
2020). It may also be that the signal dampening that occurs in large catchments is more 636 
influential than the dynamics introduced by human dam management (Chezik et al., 2017), or 637 
conversely, that dams contribute little to very high flow events wherein dams spill over and large 638 
amounts of water go downstream regardless. Separating cause from correlation in this context 639 
may be impossible. Concordantly, one of the major goals of this work was to use observed  640 
streamflow data to characterize the drivers of streamflow regime in the context of human 641 
domination of the water cycle (Abbott, Bishop, Zarnetske, Hannah, et al., 2019; Chalise et al., 642 
2021; Palmer & Ruhi, 2019). And while it is ambiguous from these results whether a drainage 643 
basin’s area has a larger impact than that imposed by dams, our results strongly suggest that 644 
human alterations to earth’s climate and land surface have the potential to impact river flow to a 645 
degree that is equal to if not greater than that imposed by the construction of dams (Nijssen et al., 646 
2001; Schneider et al., 2013; Wenger et al., 2011; Xenopoulos & Lodge, 2006). 647 

5 Conclusions 648 

In closing, river flow is a critical component of biogeochemical cycling and ecosystem 649 
functioning (Palmer & Ruhi, 2019). Given the massive scale of human alterations to the water 650 
cycle, it has never been more important to understand how climatic, geomorphological, 651 
biological, and industrial factors interact to mediate the rise and fall of rivers. We propose that 652 
river flow can only be understood as a phenomenon occurring across many interacting 653 
timescales. These interactions are visible through stunning low-dimensional structure in 654 
streamflow data that correlates closely with a small number of catchment characteristics. 655 
Together, these results suggest that global river flow dynamics are controlled by just a few 656 
dominant hydrological mechanisms that are locally tuned by land use, geology, and human 657 
infrastructure. The implications of organizing low-dimensional structure within streamflow data 658 
for biogeochemical cycling are broad and far reaching, inasmuch as simplicity provides a lingua 659 
franca for the diverse academic and societal communities whose livelihoods pulse to the rhythm 660 
of earth’s rivers and streams. 661 
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