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Abstract

Impacts of small-scale surface irregularities, or surface roughness, of atmospheric ice crystals on lidar backscattering properties

are quantified. Geometric ice crystal models with various degrees of surface roughness and state-of-the-science light-scattering

computational capabilities are used to simulate single-scattering properties across the entire practical size parameter range. The

simulated bulk lidar and depolarization ratios of polydisperse ice crystals at 532 nm are strongly sensitive to the degree of surface

roughness. Comparisons of these quantities between the theoretical simulations and counterparts inferred from spaceborne lidar

observations for cold cirrus clouds suggest a typical surface roughness range of 0.03–0.15, which is most consistent with direct

measurements of scanning electron microscopic images. The degree of surface roughness needs to be accounted for to properly

interpret lidar backscattering observations of ice clouds.
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Key Points: 7 

• Sensitivities of the backscattering properties to the surface roughness of atmospheric ice 8 

crystals are theoretically investigated. 9 

• The depolarization ratio is markedly sensitive to the degree of surface roughness of ice 10 

crystals.   11 

• The lidar and depolarization ratios observed by CALIOP are well explained with the ice 12 

model with degree of surface roughness 0.03–0.15.  13 
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Abstract 14 

Impacts of small-scale surface irregularities, or surface roughness, of atmospheric ice crystals on 15 

lidar backscattering properties are quantified. Geometric ice crystal models with various degrees 16 

of surface roughness and state-of-the-science light-scattering computational capabilities are used 17 

to simulate single-scattering properties across the entire practical size parameter range. The 18 

simulated bulk lidar and depolarization ratios of polydisperse ice crystals at 532 nm are strongly 19 

sensitive to the degree of surface roughness. Comparisons of these quantities between the 20 

theoretical simulations and counterparts inferred from spaceborne lidar observations for cold 21 

cirrus clouds suggest a typical surface roughness range of 0.03–0.15, which is most consistent 22 

with direct measurements of scanning electron microscopic images. The degree of surface 23 

roughness needs to be accounted for to properly interpret lidar backscattering observations of ice 24 

clouds. 25 

 26 

Plain Language Summary 27 

Lidar (Light Detection and Ranging) instruments on satellites use reflected, or backscattered, 28 

laser beams to investigate ice clouds in the atmosphere. However, it has long been a challenge to 29 

interpret lidar signals, called backscattering properties, to accurately infer ice cloud 30 

characteristics. This study uses theoretical simulations to investigate how small-scale surface 31 

irregularities of ice crystals affect the lidar signals reflected from ice clouds. These simulations 32 

demonstrate the significant impacts of the small-scale surface irregularities of ice crystals on 33 

backscattering. Comparisons between the theoretical simulations and satellite lidar observations 34 

confirm the necessity to assume a moderate degree of small-scale surface irregularities to explain 35 

lidar observations of typical ice clouds. 36 
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1 Introduction 37 

Atmospheric ice crystals often exhibit small-scale surface irregularities or roughness 38 

(Cross, 1968; Magee et al., 2014), which are caused mainly by depositional growth and 39 

sublimation under super- and sub-saturated conditions. Roughening of ice crystal surfaces has 40 

been observed via laboratory experiments (Pfalzgraff et al., 2010; Schnaiter et al., 2016; 41 

Butterfield et al., 2017) and in-situ measurements in cirrus clouds (Ulanowski et al., 2014; 42 

Magee et al., 2021). Compared to pristine ice crystals with smooth surfaces, those with 43 

roughened surfaces tend to have featureless phase function near backscattering angles, which 44 

corresponds to smaller asymmetry factor values. It has been demonstrated that surface roughness 45 

is a critical factor affecting passive remote sensing of ice cloud properties (Yang et al., 2008; van 46 

Diedenhoven et al., 2013; Hioki et al., 2016) and estimation of ice cloud radiative effects (Yi et 47 

al., 2013; Järvinen et al., 2018).    48 

Surface roughness effects on the shortwave scattering properties of ice crystals have been 49 

theoretically investigated based mainly on the principles of geometric optics (Macke et al., 1996; 50 

Yang & Liou, 1998), because rigorous light-scattering computational methods lead to an 51 

enormous computational burden for typical ice crystal sizes in the ultra-violet to near-infrared 52 

spectral regime. However, geometric optics methods compute inaccurate single-scattering 53 

properties of ice crystals near the backscattering angle due to inherent limitations, particularly a 54 

lack of consideration of coherent backscattering enhancement (CBE). The more sophisticated 55 

Physical Geometric Optics Method (PGOM), implemented by either the surface-integral or 56 

volume-integral approach, fully considers phase interference of outgoing waves (Yang & Liou, 57 

1996, 1997), and produces consistent numerical results (Yang et al., 2019). PGOM has been 58 

numerically implemented for relatively simple ice particles (e.g., columns and plates) and 59 
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aggregates of convex particles (e.g., 8-column aggregates; see Yang et al., 2019 and references 60 

cited therein).   61 

The challenge in light-scattering computations for nonspherical particles, particularly in 62 

the case of large size parameters, has long hampered the accuracy of inferred ice cloud properties 63 

from lidar observations. Specifically, the physical interpretation of the backscattering properties 64 

of ice crystals, such as the lidar and depolarization ratios, is largely empirical (Zhou & Yang, 65 

2015; Ding et al., 2016), leading to substantial uncertainties in inferred ice cloud quantities. As 66 

surface roughening in ice crystals is prevalent globally in ice clouds (van Diedenhoven et al., 67 

2020), this study aims to quantify the impact of surface roughness based on a combination of 68 

state-of-the-science rigorous and approximate light-scattering computational algorithms applied 69 

to geometrically roughened ice crystal models.               70 

 71 

2 Methods 72 

2.1 Geometrically roughened ice crystal models 73 

In this study, the degree of surface roughness is defined in terms of the variance (𝜎 ) of 74 

the two-dimensional Gaussian distribution 𝑃 𝑍 , 𝑍  of local planar surface slopes (Liu et al., 75 

2013; Saito & Yang, 2022a), which originates from a rough ocean surface model (Cox & Munk, 76 

1954) and is described as  77 

𝑃 𝑍 , 𝑍 = 𝑒 ⁄ ,       (1) 78 

where 𝑍 = 𝜕𝑍 𝜕𝑥⁄  and 𝑍 = 𝜕𝑍 𝜕𝑦⁄  are the slopes of local planar facets along two axes 79 

orthogonal to the normal direction 𝑍 in reference to an un-tilted regular crystal facet described 80 
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 100 

2.2 Computational methods 101 

To simulate the single-scattering properties of roughened ice crystals, we use the 102 

numerically accurate Invariant-Imbedding T-matrix Method (IITM; Johnson, 1988; Bi & Yang, 103 

2014; and references cited therein), for the largest possible size parameter cases. As the 104 

computational burden increases exponentially with the size parameter, previous studies limited 105 

simulations of geometrically roughened ice crystals to size parameter 𝑘𝐷 up to ~150, where the 106 

modified wavenumber is 𝑘 = 2𝜋 𝜆⁄ , 𝐷  is the particle maximum dimension, and 𝜆  is the 107 

wavelength. Leveraging the computational capabilities provided by the Texas A&M University 108 

High-Performance Research Computing (TAMU HPRC) facilities, we perform scattering 109 

property simulations with IITM for roughened ice crystals with 𝑘𝐷 up to approximately 316.  110 

For larger size parameters, we use the Improved Geometric Optics Method (IGOM; Yang 111 

& Liou, 1996) which is a simplified form of PGOM. However, IGOM considers the ray 112 

spreading effect but the ray-tracing procedure neglects the phase interference among scattered 113 

waves associated fundamentally with different outgoing rays. This simplification results in 114 

inaccuracy in backscattering directions. Saito and Yang (2022b) derived a semi-physical CBE 115 

correction formula from Maxwell’s equations to substantially reduce the systematic biases in the 116 

backscattering properties computed with IGOM. With a combination of IITM for small-to-117 

moderate size parameters (𝑘𝐷 ≤ 316) and IGOM with a CBE correction (hereinafter referred to 118 

as IGOM+CBE) for large size parameters, the single-scattering property simulations for 119 

roughened ice crystals across the entire practical size parameter range are performed. For smooth 120 

particles, IITM with an efficient scheme utilizing axial symmetry is performed for 𝑘𝐷 ≤ 464, 121 

and PGOM is performed for larger size parameters. 122 
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 123 

3 Results and Discussion  124 

3.1 Phase matrix of roughened ice crystals 125 

Figure 2 shows the six nonzero phase matrix elements of compact hexagonal ice crystals 126 

with various degrees of surface roughness at wavelength 532 nm, which are computed with 127 

IITM. Size parameter 𝑘𝐷 = 316 in these simulations corresponds to an ice crystal maximum 128 

diameter of 26.8 µm. Halo peaks appear at scattering angles of approximately 22° and 46° in the 129 

phase functions of smooth to moderately roughened ice crystals (𝜎 < 0.1) but are suppressed 130 

for more roughened ice crystals (Bi & Yang, 2014). The angular variations of the phase matrix at 131 

larger scattering angles seem sensitive to smaller degrees of surface roughness. For example, the 132 

phase matrices at scattering angles around halo peaks are similar between smooth and slightly 133 

roughened (𝜎 = 0.01 ) cases, while they are different at backward scattering angles (e.g., 134 > 120°). Moreover, in Fig. 2a, the phase functions near the backscattering angle show distinct 135 

differences between smooth and all roughened ice crystals. 136 
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and more rapidly suppressed when the degree of surface roughness increases, particularly for the 149 

46° halo peak (van Diedenhoven, 2014). 150 

van de Hulst (1957) states that a pencil of light with its basal width of the order 𝑙𝜆 can 151 

retain its ray characteristics over a distance of the order 𝑙 𝜆 according to the Fresnel–Huygens 152 

principle, where 𝑙 and 𝜆 are the geometric width of the ray and wavelength of light. Ding et al. 153 

(2020) further validate this statement using the vector Kirchhoff integral equation. A major 154 

difference in particle geometry between smooth and roughened ice crystals is the sizes of the 155 

individual planar facets of a particle. With 𝐿 defined as the maximum length of a facet of an ice 156 

crystal, we obtain 𝐿 𝜆 ≫ 𝑘𝐷  for a smooth ice crystal with 𝐿 = 23.19  µm but 𝐿 𝜆 < 𝑘𝐷  for 157 

roughened ice crystals with 𝐿 = 0.58  µm in the present case.  From the geometric optics 158 

perspective, distinct halo peaks quantified with IITM imply that the refraction of electromagnetic 159 

waves is determined mainly by the macroscopic shape rather than the small facets of the ice 160 

crystal rough surface, when the surface roughness is not significant and has a scale comparable 161 

to 𝜆. For better understanding of these halo peaks for a roughened ice crystal from the physical 162 

perspective, the Debye series expansion of the T-matrix (Bi et al., 2018; Bi & Gouesbet, 2022) 163 

may be a useful approach. 164 

 165 

3.2 Lidar backscattering properties 166 

The lidar ratio 𝑆 and depolarization ratio 𝛿 are two fundamental backscattering properties 167 

for lidar-based remote sensing applications. For a single ice crystal, these ratios are defined as  168 

𝑆 = ,          (2) 169 
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(dashed lines) geometric optics methods, for size parameters 10 to 10000 (x-axis scales).  (c-d) 184 

Bulk optical properties corresponding to (a-b), for effective radius 2 to 100 μm (x-axis scales). 185 

 186 

The backscattering properties of roughened ice crystals computed with IGOM+CBE are 187 

consistent with IITM at the size parameter upper limit, except with lidar ratios (Fig. 3a) for 188 𝜎 = 0.01 and 0.5 that may be associated with simplified assumptions in the CBE correction.  189 

Because of weak ice absorptivity at wavelength 532 nm, the backscattering properties tend to 190 

approach their respective asymptotic values for larger size parameters, as indicated by 191 

IGOM+CBE simulations. In Fig. 3b, moderate fluctuations in the IGOM+CBE backscattering 192 

properties originate from Monte Carlo noise associated with the ray-tracing process (Saito & 193 

Yang, 2022b).  194 

Bulk optical properties of polydisperse ice crystals are obtained from a weighted average 195 

over the single-scattering properties of smooth and roughened ice crystals. The particle size 196 

distribution (PSD) is assumed to be a gamma distribution with an effective variance of 0.26 197 

(Saito & Yang, 2022a) obtained from in-situ observations of ice cloud PSDs (Heymsfield et al., 198 

2013). The bulk lidar and depolarization ratios of the polydisperse ice crystals are computed 199 

based on Eqs. (1–2) with replacing the single-scattering properties with the bulk ice crystal 200 

counterparts. Figures 3c–d show the bulk backscattering properties of smooth and roughened 201 

hexagonal column ice crystals for effective radii 2–100 µm. The backscattering properties of 202 

roughened ice crystals show a weak dependence on effective radius > 20 µm. In contrast, those 203 

of a smooth ice crystal consistently show a negative correlation with effective radius. 204 

 205 
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3.3 Comparison with spaceborne lidar observations 206 

We compare the theoretical backscattering properties of smooth and roughened ice 207 

crystals with the counterparts estimated from the Cloud-Aerosol Lidar with Orthogonal 208 

Polarization (CALIOP) observations (Winker et al., 2009). We use the version 4.20 CALIOP 209 

level-2 cloud layer 5km product and select single-layer transparent cirrus clouds with a middle 210 

cloud temperature 𝑇 ≤ −60 °C, where ice particles are typically small (Platt et al., 1987, 2002) 211 

as less water vapor is available for ice crystal growth in a colder atmosphere. The lidar ratio is 212 

derived from the constrained retrievals utilizing the two-way transmissivity of ice clouds (Young 213 

& Vaughan, 2009). The particulate depolarization ratio is derived from the measured volume 214 

depolarization ratio with the Rayleigh scattering contribution subtracted (Hu et al., 2009).  215 

Figure 4 shows the climatological distributions of the lidar and depolarization ratios of 216 

cold cirrus clouds observed by CALIOP in 2009. CALIOP points in an off-nadir direction to 217 

avoid substantial influence from horizontally aligned ice crystals (Saito & Yang, 2019) in the 218 

present analysis. The observed lidar and depolarization ratios are densely populated in a range 𝑆 219 

of 10–45 sr and 𝛿 of 0.3–0.6. The backscattering properties of smooth ice crystals are far from 220 

this range, but those of roughened ice crystals (𝜎 = 0.01–0.5, and especially 0.03–0.15) tend to 221 

be within the range. Interestingly, this roughness range is also consistent with a range of 222 

estimated surface roughness from 0.01–0.3 using stereographic SEM measurements of ice 223 

crystals in a laboratory (Neshyba et al., 2013, Butterfield et al., 2017).  224 
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Reichardt et al. (2002) reported two distinct correlations among the lidar ratio, 240 

depolarization ratio, and temperature of cirrus clouds from ground-based lidar observations. A 241 

strong positive correlation between the lidar and depolarization ratios occurring at warmer 242 

temperatures (above −40°C) is well explained by the presence of horizontally oriented planar ice 243 

crystals (e.g., Saito et al., 2017). However, a reported slight negative correlation between the 244 

lidar and depolarization ratios occurring at colder temperatures (below −50°C) has been an open 245 

question. Figure 5 shows correlations among backscattering properties, temperature, and surface 246 

roughness obtained from CALIOP observations of single-layer transparent cirrus clouds with 247 𝑇 ≤ −40 °C and theoretical backscattering simulations. The roughness variations can mimic the 248 

temperature dependence of the CALIOP-based backscattering properties of ice clouds. Although 249 

a definitive conclusion cannot be obtained from this analysis, a potential temperature dependence 250 

of the surface roughness of ice crystals could be a candidate to explain the slight anti-correlation 251 

of the lidar and depolarization ratios of cold cirrus clouds. 252 

 253 
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Figure 5. (circles) Median and quartile ranges of the lidar and depolarization ratios of ice clouds 254 

with various middle cloud temperatures (indicated by blue colors) obtained from CALIOP 255 

observations. (squares) Theoretical counterparts with various degrees of surface roughness 256 

(indicated by red colors) and an effective radius of 30 µm are coplotted.  257 

 258 

4 Conclusions  259 

 This study performs single-scattering property simulations of smooth and roughened 260 

hexagonal column ice crystals over a wide size parameter range to investigate the impact of 261 

surface roughness on backscattering properties. State-of-the-science light-scattering 262 

computational methods and realistic ice crystal models reveal distinct differences in the lidar 263 

ratio between smooth and roughened ice crystals. The depolarization ratio is especially sensitive 264 

to the degree of surface roughness. Comparisons between theoretical backscattering properties 265 

with various degrees of surface roughness and those estimated from CALIOP observations imply 266 

that surface roughness is essential to robust explanation of observed lidar backscattering signals 267 

associated with cold cirrus clouds, and imply possible temperature dependence of dominant 268 

degrees of surface roughness of ice crystals.  269 

The present study indicates a robust path forward for a better interpretation of lidar-270 

derived backscattering signals by using the microphysical properties of ice crystals.  Further 271 

research using sophisticated polarimetric lidar observations and these ice crystal backscattering 272 

property models should provide knowledge of a wider range of morphological characteristics of 273 

ice clouds. 274 

 275 
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