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Abstract

A budget approach is used to disentangle drivers of the seasonal mixed layer carbon cycle at Station ALOHA (A Long-term

Oligotrophic Habitat Assessment) in the North Pacific Subtropical Gyre (NPSG). The budget utilizes data from the WHOTS

(Woods Hole - Hawaii Ocean Time-series Site) mooring, and the ship-based Hawai‘i Ocean Time-series (HOT) in the North

Pacific Subtropical Gyre (NPSG), a region of significant oceanic carbon uptake. Parsing the carbon variations into process

components allows an assessment of both the proportional contributions of mixed layer carbon drivers, and the seasonal

interplay of drawdown and supply from different processes. Annual net community production reported here is at the lower end

of previously published data, while net community calcification estimates are 4- to 7-fold higher than available sediment trap

data, the only other estimate of calcium carbonate export at this location. Although the observed seasonal cycle in dissolved

inorganic carbon (DIC) in the NPSG has a relatively small amplitude, larger fluxes offset each other over an average year, with

major supply from physical transport, especially lateral eddy transport throughout the year and entrainment in the winter,

and biological carbon uptake in the spring. Gas exchange plays a smaller role, supplying carbon to the surface ocean between

Dec-May, and outgassing in Jul-Oct. Evaporation-precipitation (E–P) is variable with precipitation prevailing in the first- and

evaporation in the second half of the year. The observed total alkalinity signal is largely governed by E–P, with a somewhat

stronger net calcification signal in the wintertime.

Hosted file

951939_0_art_file_10526779_rmrcvc.docx available at https://authorea.com/users/565835/

articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-

near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach

Hosted file

951939_0_supp_10526780_rmqn01.docx available at https://authorea.com/users/565835/articles/

612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-

hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach

Hosted file

1

https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach


P
os
te
d
on

13
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
09
15
18
.8
11
66
81
1/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

951939_0_video_10526782_rmqn02.gif available at https://authorea.com/users/565835/articles/

612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-

hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach

Hosted file

951939_0_video_10526783_rmqn02.gif available at https://authorea.com/users/565835/articles/

612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-

hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach

2

https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach
https://authorea.com/users/565835/articles/612710-quantifying-net-community-production-and-calcification-at-station-aloha-near-hawai-i-insights-and-limitations-from-a-dual-tracer-carbon-budget-approach


manuscript submitted to Global Biogeochemical Cycles 

 

 1 
Quantifying net community production and calcification at Station ALOHA near 2 

Hawai’i: Insights and limitations from a dual tracer carbon budget approach 3 

Lucie A. C. M. Knor1, Christopher L. Sabine1, Adrienne J. Sutton2, John Dore3, 4 
Angelicque E. White1, James Potemra1, and Robert A. Weller4 5 

1University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA 6 
2NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, USA 7 
3Montana State University, Bozeman, Montana, USA 8 
4Woods Hole Oceanographic Institution, Falmouth, Massachusetts, USA 9 

Corresponding author: Lucie Anna Christa Maria Knor (luciek@hawaii.edu)   10 

Key Points: 11 

• First calculation of community calcification with a budget approach at this location, 12 
results exceed reported sediment trap data. 13 

• Calculated net community production confirms net autotrophy over a year, on the lower 14 
end of previous estimates. 15 

• It is important to better constrain physical, especially horizontal, transport of carbon to 16 
further investigate mixed layer carbon cycling.  17 
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Abstract 18 

A budget approach is used to disentangle drivers of the seasonal mixed layer carbon cycle 19 
at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) in the North Pacific 20 
Subtropical Gyre (NPSG). The budget utilizes data from the WHOTS (Woods Hole - Hawaii 21 
Ocean Time-series Site) mooring, and the ship-based Hawai‘i Ocean Time-series (HOT) in the 22 
North Pacific Subtropical Gyre (NPSG), a region of significant oceanic carbon uptake. Parsing 23 
the carbon variations into process components allows an assessment of both the proportional 24 
contributions of mixed layer carbon drivers, and the seasonal interplay of drawdown and supply 25 
from different processes. Annual net community production reported here is at the lower end of 26 
previously published data, while net community calcification estimates are 4- to 7-fold higher 27 
than available sediment trap data, the only other estimate of calcium carbonate export at this 28 
location. Although the observed seasonal cycle in dissolved inorganic carbon (DIC) in the NPSG 29 
has a relatively small amplitude, larger fluxes offset each other over an average year, with major 30 
supply from physical transport, especially lateral eddy transport throughout the year and 31 
entrainment in the winter, and biological carbon uptake in the spring. Gas exchange plays a 32 
smaller role, supplying carbon to the surface ocean between Dec-May, and outgassing in Jul-Oct. 33 
Evaporation-precipitation (E–P) is variable with precipitation prevailing in the first- and 34 
evaporation in the second half of the year. The observed total alkalinity signal is largely 35 
governed by E–P, with a somewhat stronger net calcification signal in the wintertime.  36 

Plain Language Summary 37 

The ocean carbon cycle is a complicated system. In it, chemical compounds react, are moved by 38 
ocean physics, altered by organisms, and exchange with CO2 in the atmosphere. To explore how 39 
the ocean will continue to take up CO2 from the atmosphere, and how much will be removed into 40 
the deep ocean, we need to know how these processes influence ocean carbon. Here, we 41 
investigate them over a year. We create a model from observations of two carbon compounds, 42 
together with calculated estimates of processes (evaporation and precipitation, transport through 43 
the water, and air-sea exchange) to back out the influence of two important reaction pairs 44 
executed by organisms: Photosynthesis and respiration, and calcification and dissolution. Over a 45 
year, the surface community at this location near Hawai‘i in the Pacific photosynthesizes more 46 
than it respires, removing 66 grams of CO2 per square meter. Also, marine calcifyers perform 47 
calcification, and our estimates are much higher than previous measurements from sediment 48 
traps. Gas exchange and evaporation-precipitation vary with the seasons in opposite directions, 49 
and there are carbon inputs from horizontal transport throughout the year, and from water 50 
column mixing in the winter. 51 
  52 
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Assessment), one of the longest running oceanic time-series at >30 years, the considerable 79 
complexity of this oligotrophic “ocean desert” has been and continues to be investigated, 80 
with a focus on biogeochemical cycling of carbon and nutrients, from various angles. 81 
Identifying and quantifying the processes at work in the subtropical oligotrophic gyres is 82 
difficult due to the very low signal-to-noise ratio in inorganic carbon and associated 83 
parameters, and the episodic nature and patchiness of biological variability (Church et al., 84 
2013). Well-constrained community production and calcification would provide an important 85 
puzzle piece for understanding current and future ocean regimes in this important ecosystem. 86 

Using total alkalinity (TA) and dissolved inorganic carbon (DIC) as tracers, a mass balance 87 
of mixed layer carbon production is constructed at Station ALOHA. Both the organic (Net 88 
Community Production, NCP) and inorganic (Net Community Calcification, NCC) 89 
components of the biological pump are quantified based on the differing stoichiometry of the 90 
reactions of interest (Fassbender et al., 2016, 2017). This allows the evaluation of seasonal 91 
and interannual variability in drivers of carbon cycling in the NPSG. Thanks to the 92 
abundance of complementary and redundant datasets at this well-studied location, multiple 93 
approaches to quantify several of the mass balance terms can be evaluated for consistency. 94 
Sensitivity analyses of physical transport terms, evaporation and precipitation, and mixed 95 
layer definition can illuminate the limitations of an upper ocean carbon budget at this 96 
location with present data resolution in space and time.  97 

1.2 Study area: Station ALOHA 98 

Station ALOHA is a time-series study site with a sampling radius of 9.66 km (6 nm) at 99 
22°45’N, 158°W in the NPSG, 100km north of O‘ahu, Hawai‘i. Since 1988, approximately 100 
monthly cruises to Station ALOHA have been executed by the Hawai‘i Ocean Time-series 101 
(HOT) program, capturing a variety of oceanographic parameters including thermohaline 102 
structure, water column chemistry, primary production, plankton community structure, 103 
particle export, and currents throughout the water column. In addition, since 2004, moorings 104 
within Station ALOHA (2004-2007: MOSEAN Hale-Aloha 105 
[www.pmel.noaa.gov/co2/story/HALE-ALOHA] and since 2007: WHOTS 106 
[www.soest.hawaii.edu/whots/; 107 

www.pmel.noaa.gov/co2/story/WHOTS)]) have been recording higher-frequency variability 108 
of atmospheric and surface ocean pCO2 (3-hourly), meteorological data, surface and sub-109 
surface currents (from an Acoustic Doppler current profiler (ADCP) and vector measuring 110 
current meters (VMCM, Weller & Davis (1980)), and temperature and salinity in the upper 111 
155 m (from conductivity, temperature, depth sensors (CTDs)). The unique combination and 112 
extent of observations at this site have enabled multiple ground-breaking discoveries in 113 
oceanography, such as the ubiquity of marine archaea, and also including the identification of 114 
important patterns influencing carbon biogeochemical cycling (Karl & Church, 2018). The 115 
Hawai‘i Ocean Time-series is one of the places where the decrease in surface ocean pH due 116 
to anthropogenic CO2 emissions was first clearly documented. Many researchers have 117 
conducted studies on the carbon cycle at Station ALOHA, mainly in the 1990s and early 118 
2000s (e.g., Dore et al., 2003, 2009; Keeling et al., 2004; Brix et al., 2004, 2006; Quay & 119 
Stutsman, 2003; Neuer et al., 2002; Letelier et al., 2000; Karl et al., 1996; Winn et al., 1994, 120 
1998). These studies on biology, physics, and especially the CO2-carbonate system, carbon 121 
cycling, and biological production at this location provide the groundwork for this study. 122 
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1.3 The ecosystem and carbon cycle at Station ALOHA 123 

The ocean in the NPSG is persistently oligotrophic throughout the year with a warm, 124 
nutrient-depleted surface layer that is largely isolated from the nutrient-rich deeper waters 125 
year-round. Seasons referred to here are defined as spring (March-May), summer (June-126 
August), fall (September-November) and winter (December-February). Most biogeochemical 127 
parameters show little seasonality compared to both more temperate environments and other 128 
modes of variability (e.g., Karl & Church, 2017; Church et al., 2013). The sea surface 129 
temperature only varies by about 4-5°C seasonally (e.g., Brix et al., 2004). The mixed layer 130 
is relatively shallow year-round, between 20-120 m (Karl & Lukas, 1996), and the average 131 
mixed layer depth changes between ≈ 30-40 m in the summer-fall and ≈ 70-90 m in the 132 
winter. An important component of seasonal variability is the presence of cyclones and 133 
associated cold fronts in the winter, which result in strong winds and temporary deepening of 134 
the mixed layer (Karl, 1999). The mixed layer only reaches the top of the deep nutricline in 135 
late winter to early spring (Ascani et al., 2013). Due to minimal nutrient input, a microbial 136 
regeneration loop prevails, where nutrients are largely recycled within the surface layer (Brix 137 
et al., 2006). Nitrogen fixation is most variable during the late summer, and generally 138 
supplies around 27-45% of particulate nitrogen export (Böttjer et al., 2017). Larger particle 139 
export pulses between July-August are supported by diatom-diazotroph assemblages 140 
(DDAs), driven by a competitive transition from DDAs in the early summer to other 141 
diazotrophs (Follett et al., 2018). 142 

Part of the declared goals of the Hawaii Ocean Time-series are to explore “1) The linkages 143 
between seasonal, interannual and long-term (…) variability and trends in ocean physics, 144 
chemistry, and biology. 2) Processes underlying physical and biogeochemical temporal 145 
variability. 3) The role of physical forcing on carbon fluxes, including rates of biologically 146 
mediated carbon transformations, air-sea CO2 exchange, and carbon export.” (Church et al., 147 
2013).  A great deal of effort has already gone into research projects tackling these 148 
relationships, but many questions remain unanswered. For example, there is a disagreement 149 
in values of NCP from in situ compared to in vitro methodologies, discussed in detail by 150 
Duarte et al. (2013), Ducklow & Doney (2013), and Williams et al. (2013). Additionally, 151 
discrepancies between satellite estimates and sediment trap data, which both underestimate 152 
NCP compared to mass balance calculations such as the present budget, have been 153 
established and addressed, for example, by Emerson (2014). One of the main difficulties in 154 
resolving annual net community production and carbon export with upper ocean mass 155 
balance calculations has been the inability to fully constrain relevant lateral and vertical 156 
transport terms (Keeling et al., 2004; Dore et al., 2003). To complement previous estimates 157 
of NCP from other authors using various methodologies, this study aims to independently 158 
constrain all physical transport components, thanks to available high temporal resolution data 159 
from the WHOTS mooring, as well as horizontal gradient climatologies from neural 160 
networks (Sutton et al., 2014, Broullón et al., 2019, 2020). Additionally, a seasonal view of 161 
net community calcification is provided for the first time at this location. 162 
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2 Data and Methods 163 

2.1 Budget components 164 

This carbon budget quantifies a seasonal climatology from a time-dependent monthly mass 165 
balance of carbon (DIC and TA in µmol kg-1), integrated over the mixed layer. It is based on 166 
a methodology developed by Fassbender and colleagues (Fassbender et al., 2016, 2017). DIC 167 
and TA are used as dual tracers.  168 

(1) 𝜕𝐷𝐼𝐶𝜕𝑡 = 𝜕𝐷𝐼𝐶𝜕𝑡 ฬீ௔௦ா௫ + 𝜕𝐷𝐼𝐶𝜕𝑡 ฬ௉௛௬௦ + 𝜕𝐷𝐼𝐶𝜕𝑡 ฬா௩௔௣,௉௥௘௖௜௣ + 𝜕𝐷𝐼𝐶𝜕𝑡 ฬ஻௜௢ 

(2) 
𝜕𝑇𝐴𝜕𝑡 = 𝜕𝑇𝐴𝜕𝑡 ฬ௉௛௬௦ + 𝜕𝑇𝐴𝜕𝑡 ฬா௩௔௣,௉௥௘௖௜௣ + 𝜕𝑇𝐴𝜕𝑡 ฬ஻௜௢ 

The observed changes in DIC and TA can be decomposed into individual process 169 
components that are calculated independently: physical transport, evaporation and 170 
precipitation, and, for DIC, gas exchange (Equations 1-2). With all of the process 171 
components and the observed change constrained, the change due to biological processes 172 
is determined from the residual. To examine the seasonal changes, monthly averages are 173 
used for each term. Monthly averages of the variables are computed for months with 174 
>20% data coverage. The physical components of change in DIC and TA over time (gas 175 
exchange, evaporation and precipitation (via concentration and dilution of carbon 176 
species), horizontal and vertical physical transport) are then evaluated and integrated over 177 
the mixed layer.  178 

Finally, the biological term is separated into organic (NCP) and inorganic (NCC) 179 
components of biological carbon production, based on stoichiometric ratios from 180 
Anderson & Sarmiento (1994). Because organic matter- and calcium carbonate 181 
production have different effects on DIC vs. TA, we have four equations and four 182 
unknowns and can rearrange to explicitly solve for the changes due to NCP and NCC 183 
(Equations 3-6). A derivation of these equations can be found in the Supplemental 184 
Information of Fassbender et al. (2017). Many of the inputs required for the budget terms 185 
are only available as seasonal climatologies, so the results represent average annual 186 
cycles. For individual terms, several different methods were tested to evaluate 187 
consistency. These approaches are listed in Table 1, and described in detail in the 188 
respective sections and the Supplemental Information. Method A in Table 1 is the 189 
preferred methodology.  190 

(3) 𝜕𝐷𝐼𝐶𝜕𝑡 ฬே஼௉ = ൬𝜕𝑇𝐴𝜕𝑡 ฬ஻௜௢ − 2 × 𝜕𝐷𝐼𝐶𝜕𝑡 ฬ஻௜௢൰ቀ−2 + −17117 ቁ  
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(4) ∂DIC∂t ฬ୒େେ =  ∂TA∂t ฬ୆୧୭ − ቀ−17117ቁ × ∂DIC∂t ฬ୒େ୔2  

(5) 
∂TA∂t ฬ୒େେ = 2× ∂DIC∂t ฬ୒େେ

(6) 
∂TA∂t ฬ୒େ୔ = ൬−17117൰ × ∂DIC∂t ฬ୒େ୔

Term Method A Alternative approaches/Sensitivity tests 

Physical 
Transport: 
Lateral advection 

Average current, 
seasonal gradient 
fit + lateral eddy 

flux 

WHOTS current climatology, 
gradient climatology + no eddy 

flux 

Average current, gradient 
climatology + lateral eddy flux 

Physical 
Transport: Eddy 
Diffusivity 

Density gradient Heat budget 

Evaporation– 
Precipitation Salinity budget Meteorological sensors Salinity normalization 

Mixed Layer 
Depth T offset (–0.5°C) Density offsets (+0.03 kg m3, 

+0.125 kg m3) T offset (–1°C) 

Table 1. Summary of preferred methodology used for the carbon budget (Method A) and 191 
alternative approaches for sensitivity tests of individual terms.  192 

2.2 Total alkalinity and dissolved inorganic carbon 193 

The high temporal resolution time-series from the WHOTS mooring sensors between 2004-194 
2019 is of two carbonate system parameters, seawater pCO2 (pCO2sw) and pH. However, 195 
because the seawater pH record has significant data gaps and pH is not an ideal parameter to 196 
pair with pCO2sw to calculate DIC and TA, we use an alternative approach (McLaughlin et 197 
al., 2015; Sutton et al., 2016). To approximate DIC and TA concentrations at the same 198 
temporal resolution, two steps are necessary. First, a regression of salinity and alkalinity from 199 
HOT cruise surface data, collected at near-monthly frequency, yields a linear regional 200 
salinity-alkalinity relationship. This relationship is then applied to the WHOTS mooring 201 
surface salinity time series, which results in a high-resolution alkalinity time-series. From 202 
measured pCO2sw and calculated alkalinity, all CO2 carbonate system parameters, including 203 
DIC, are calculated with the CO2SYS Python package “PyCO2SYS”, an adaptation from the 204 
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MATLAB version (pyco2sys.readthedocs.io; Humphreys et al., 2022a, b). Constants used are 205 
Sulpis et al. (2020) for carbonic acid and bicarbonate dissociation constants (K1 and K2), and 206 
Dickson (1990) for KSO4. All other values used are the default terms in the PyCO2SYS 207 
package (i.e., default 0 for nutrient concentrations, KHF from Dickson & Riley (1979), and 208 
the boron-chlorinity ratio from Uppström (1974)).  209 

2.3 Mixed layer depth 210 

Mixed layer depth (MLD) is calculated using a criterion based on a –0.5 °C change in 211 
temperature relative to the temperature at a 10-m reference depth (Sprintall & Tomczak, 212 
1992). This criterion is one of many that is commonly used at Station ALOHA (e.g., Brix et 213 
al., 2004; Keeling et al., 2004). MLD is calculated from the daily average of temperature 214 
profiles measured by WHOTS mooring CTD sensors (sampling every minute at 5-10 m 215 
spacing), interpolated to a one-meter grid. To match the temporal resolution of the budget 216 
calculation, the monthly mean of the daily values is used. Visual inspection of all HOT TA 217 
and DIC profiles used for the analysis indicated that the –0.5 °C temperature threshold most 218 
appropriately captures in situ carbon system dynamics compared to other commonly used 219 
criteria (see Figure S1, Movies S1-2 for profiles and MLD). To test for sensitivity of the 220 
analysis to MLD definition, a comparison was made to three other MLD definitions: a -1°C 221 
temperature threshold (Hastenrath & Merle, 1987), as well as +0.03 kg m-3 and +0.125 kg m-222 
3 density thresholds (De Boyer Montégut et al., 2004; Levitus, 1982), all relative to a 10-m 223 
reference depth. 224 

2.4 Gas exchange 225 

The contribution of gas exchange to monthly DIC change is calculated using wind speed, 226 
SST, salinity, pCO2air and salinity-normalized pCO2sw data all from WHOTS mooring 227 
sensors (Wind speed: http://uop.whoi.edu/currentprojects/WHOTS/whotsarchive.html, CTD: 228 
ftp://mananui.soest.hawaii.edu/pub/hot/whots/, pCO2: Sabine et al., 2012; Sutton et al., 229 
2012), as well as empirical relationships: 230 

(7) 
𝜕𝐷𝐼𝐶𝜕𝑡 ฬீ௔௦ா௫௖௛௔௡௚௘ = 𝑘 × 𝐾ு × Δ𝑝𝐶𝑂ଶ 
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Where k is the piston velocity based on wind speeds at 10m above the surface (Liu et al., 231 
1979), Schmidt number (Wanninkhof, 1992), and a second-order gas transfer 232 
parameterization (Ho et al., 2006), and KH is the CO2 solubility constant (Weiss, 1974). 233 
Details on this calculation are listed in the Supplemental Information. All measurements are 234 
averaged hourly, except for the pCO2sw and pCO2air data, which is interpolated linearly to 235 
hourly data from measurements taken every three hours. Gas exchange is evaluated hourly 236 
and then averaged monthly. 237 

2.5 Physical transport 238 

The physical transport term described for DIC in Equation 8, and exactly the same for TA, 239 
comprises horizontal transport, vertical entrainment and diffusion (adapted from Fassbender 240 
et al., 2016, 2017). Individual terms and their units are listed below and in Table 2. 241 

(8)  𝜕𝐷𝐼𝐶𝜕𝑡 ฬ௉௛௬௦ = 𝜕𝐷𝐼𝐶𝜕𝑡 ฬ௅௔௧௘௥௔௟ ௧௥௔௡௦௣௢௥௧ + 𝜕𝐷𝐼𝐶𝜕𝑡 ฬா௡௧௥௔௜௡௠௘௡௧ + 𝜕𝐷𝐼𝐶𝜕𝑡 ฬ஽௜௙௙௨௦௜௢௡ 

Symbol Quantity Calculation/Source Units
uML Average mixed layer 

current speed 
WHOTS mooring sensors. Mean value from monthly averages 
over the complete WHOTS time-series. 

m/s

κHOR Lateral eddy diffusivity Zhurbas & Oh (2004). m2/s∇DIC Horizontal DIC/TA gradient 
climatologies 

Neural networks from World Ocean Atlas climatologies. 
Broullón et al. (2019), Broullón et al. (2020) 

µmol/kg/m

w-h Vertical velocity at the ML 
base 

Ekman pumping velocity from ASCAT wind stress curl  m/s

κZ Eddy diffusivity Climatology based on density gradients at the base of the 
mixed layer. Keeling et al. (2004) 

m2/s
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Table 2. Terms and their units for the physical transport component of the carbon budget. 242 

2.5.1 Lateral transport 243 

The complete lateral transport term is calculated as the sum of horizontal background 244 
advection, and lateral eddy transport: 𝒖ெ௅ ∙ ∇𝐷𝐼𝐶 + 𝜅ுைோ∇ଶ𝐷𝐼𝐶. For background 245 
advection, current speeds (𝒖ெ௅) and horizontal gradients in DIC and TA (∇𝐷𝐼𝐶) are 246 
required, while the lateral eddy transport is quantified as a lateral eddy diffusivity (𝜅ுைோ) 247 
times the Laplacian of DIC and TA fields (∇ଶ𝐷𝐼𝐶).  248 

Horizontal fields of TA and DIC have been quantified elsewhere using multiple linear 249 
regression (e.g., Fassbender et al., 2016, 2017) or neural network analysis (e.g., Bittig et 250 
al., 2018; Carter et al., 2018). Climatologies around Station ALOHA from a neural 251 
network are available for both DIC (Broullón et al., 2020) and TA fields (Broullón et al., 252 
2019). These networks networks, trained on the GLODAPv2 dataset and then applied to 253 
World Ocean Atlas (WOA) 2013 climatological data, were tested with Station ALOHA 254 
data and proved reliable for predicting TA and DIC in this region. They are used here to 255 
calculate horizontal gradients and the Laplacian of TA and DIC fields.  256 

Advection was calculated using the overall mean WHOTS velocity in the mixed layer, 257 
and the mean plus the annual harmonic fit to the DIC and TA gradients from the Broullón 258 
et al. (2019, 2020) climatologies. In situ (WHOTS mooring) current speed measurements 259 
are available at high temporal resolution, but horizontal current speeds at this location are 260 
dominated by mesoscale eddies (Moreno et al., 2022, Figure 3a), which are not resolved 261 
by the large-scale (1°x1°) and long-term seasonal mean TA and DIC fields. An 262 
investigation into current speed variability revealed that there is no clear annual cycle 263 
(see Figure S3.2). Therefore, the overall mean current speeds with gradient climatologies 264 
best represent the advective component of this budget. The mean zonal component of the 265 
current is westward (-0.04 m s-1), and the average meridional current is northward, but 266 
barely indistinguishable from zero at 0.008 m s-1. This is consistent with well-established 267 
knowledge of large-scale circulation patterns at this location. 268 

In order not to neglect the important contribution of mesoscale eddies (see e.g., Barone et 269 
al., 2019), a lateral eddy transport term is added to quantify the influence of the advective 270 
component of mesoscale eddies on the tracer budget. An average lateral eddy diffusivity 271 
from Zhurbas & Oh, (2004) of 8 x 103 is multiplied by the average divergence of the 272 
horizontal gradient field from Broullón et al. (2019, 2020), interpolated to a 2° latitude x 273 
15° longitude grid to reduce noise. For the eddy contribution, a single average value is 274 
used throughout the whole year, while the advective term is at a climatological monthly 275 
resolution based on overall (non-varying) average current speed and an annual harmonic 276 
fit of monthly gradient values. An error of 100% is assigned to the lateral eddy transport.  277 

2.5.2 Entrainment and diffusion 278 

The entrainment term is the flux through the base of the mixed layer, primarily during 279 
times of local mixed-layer deepening. The relevant upward vertical velocity component is 280 
estimated as monthly mean Ekman pumping from Advanced Scatterometer (ASCAT) 281 
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daily wind stress curl data (from APDRC: http://www.apdrc.soest.hawaii.edu/) plus 282 
changes in mixed layer depth over time (neglecting horizontal advection of the mixed 283 
layer gradient). This term is only evaluated for periods of net entrainment; during 284 
detrainment, the properties of the water remaining in the mixed layer are not affected by 285 
the properties immediately below. Using the sum of these two terms (upward velocity 286 
and change over time in MLD), entrainment is then calculated from consecutive HOT 287 
cruise profiles in subsequent months and scaled to a monthly value, assuming that the 288 
increment of water below the first MLD is mixed into the ML by the time of the 289 
following profile. A total of 4 HOT cruise profiles (2%) were excluded due to a mismatch 290 
between MLD values and water column DIC/TA data.  291 

 As for vertical diffusive transport, vertical gradients (∂DIC/∂z) are calculated 292 
from HOT cruise profiles (again, at near-monthly resolution). The diffusion coefficient or 293 
eddy diffusivity (Kz), which governs turbulent diffusion across the bottom of the mixed 294 
layer, is not very well constrained due to considerable temporal and spatial variability, 295 
and lack of well resolved measurements (Cronin et al., 2015). It is established that 296 
turbulent diffusion is orders of magnitude higher in the surface mixed layer than in the 297 
thermocline below (e.g., Fernández-Castro et al., 2014). Previous budget or mass-balance 298 
based studies of carbon export at this location often used non-varying, representative Kz 299 
values (Table S1). However, diffusivity has been shown to vary substantially between 300 
seasons (e.g. Cronin et al., 2015). Here, we use a climatology from Keeling et al. (2004) 301 
that was calculated from measurements of the vertical density gradient just below the 302 
mixed layer.  303 

The entrainment term is a composite of true monthly averages and near-monthly profiles, 304 
while the diffusive term and the lateral eddy transport term are based on climatological 305 
values, and hence do not resolve interannual variability. Physical transport contributions 306 
can therefore only be evaluated seasonally. 307 

Methods for the sensitivity analysis using alternative approaches (Table 1) for the 308 
physical transport term are detailed in the Supplemental Information and include using 309 
time-varying current speed climatologies from in situ sensors for lateral advection, as 310 
well as a heat budget calculation adapted from Cronin et al. (2015) for diffusive transport.  311 

2.6 Evaporation – precipitation 312 

Adapted from Fassbender et al. (2016, 2017), E–P is determined as the residual of a mixed 313 
layer salinity budget (as in equation 8), and then scaled to units of µmol kg-1 according to 314 
equations 9-10. Additionally, evaporation (E) and precipitation (P) are calculated using two 315 
other approaches, to evaluate their consistency and sensitivities: A direct E-P calculation 316 
from meteorological sensors, and salinity normalization are described in the Supplemental 317 
Information. 318 
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(9) 
𝜕𝑆𝑎𝑙𝜕𝑡 ฬா–௉ = 𝜕𝑆𝑎𝑙𝜕𝑡 − 𝜕𝑆𝑎𝑙𝜕𝑡 ฬ௉௛௬௦ 

(10) 
𝜕𝐷𝐼𝐶𝜕𝑡 ฬா–௉ = 𝜕𝑆𝑎𝑙𝜕𝑡 ฬா–௉ × 𝐷𝐼𝐶𝑆𝑎𝑙 ฬ௧ୀ଴ 

2.7 Error analysis 319 

The error of the linear alkalinity-salinity fit is estimated as the standard error of the estimate 320 
(equation 11). The uncertainty of high-resolution DIC is evaluated using the error 321 
propagation tool of CO2SYS (Orr et al., 2018). Assigned uncertainties – the SE of calculated 322 
TA, as well as measurement errors for remaining parameters – are reported in Table 3. 323 

(11) 𝑆𝐸 =  ඨ∑ሺ𝑇𝐴௠௘௔௦ + 𝑇𝐴௖௔௟௖ሻଶ𝑁 − 2  

Quantity Error Source

Total Alkalinity 4.95  
µmol kg-1 Standard Error 

DIC 7.7  
µmol kg-1 CO2SYS error propagation (Orr et al., 2018) 

Temperature 0.002 °C Reported by manufacturer (Sea-Bird Scientific) 

Salinity 0.012 Mandujano et al. (2016) 

pCO2sw 2 µatm Sutton et al. (2014) 

pCO2air 1 µatm Sutton et al. (2014) 

MLD (h) 2.4 m ¼ of vertical separation of sensors (Fassbender et al., 2016) 

Piston velocity (k) 30% Nightingale et al. (2000), Fassbender et al. (2016) 

Wind speed 0.1 m/s https://journals.ametsoc.org/view/journals/atot/37/4/jtech-d-19-
0132.1.xml 

Carbon quotient in 
Redfield ratio 14 Anderson & Sarmiento (1994) 

Turbulent eddy 
Diffusivity (Kz) 2.2 x 10-5 Standard deviation of climatological means 

Lateral eddy transport 100% Assigned since there are no uncertainties reported for KLAT 
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Emerson et al. (1997)a O2/Ar/N2 budget Early 1990s 0-100m -2.7 ±1.7 -7.4 ± 4.7 

Sonnerup et al. (1999)a CFC model 1991 0-100m -2.2 ± 0.5 -6.0 ± 1.4 
Hamme & Emerson 

(2006)a O2/Ar/N2 budget 2000 –2001 0-115m -1.1 ± 0.5 -3.0 ± 1.4 

Benitez-Nelson et al. 
(2001) 

234Th /238U disequilibri-
um 1999 – 2000 0-150m -1.5 ± 0.8 -4.0 ± 2.3 (PC 

flux) 

Brix et al. (2006) Diagnostic box model 
(DIC & δ13C) 1989 –2000 0-150m -3.1 ± 0.3  -8.5 ± 0.8 

Ferrón et al. (2021) O2/Ar 2014 –2018 0-150m -1.5 ± 0.4 -4.1 ±1.1 

Riser & Johnson (2008)a O2 budget 2002 –2005 0-150m -1.6 ± 0.2 -4.4 ± 0.5 

Emerson (2014) Average of literature 
values - - -2.5 ± 0.7 -6.8 ± 1.9 

This study Carbon budget (DIC & 
TA), Method A 2005 - 2019 ML -1.5 ± 1.7 -3.4 ± 2.8 

Table 4. Literature comparison of average NCP rates and aNCP values at Station ALOHA.    421 
a – adapted from Ferrón et al., (2021). 422 

 423 

Study Term Value Units 
Karl et al. 2021 Average HOT PIC flux 2001-2019 24.2 mg CaCO3 m-2 d-1

    2.9 mg C m-2 d-1

Dong et al. 2019 CaCO3 flux near ALOHA @100m depth 71.1 mg CaCO3 m-2 d-1

    8.5 mg C m-2 d-1

Betser et al. 1985 Pteropod (aragonite) fluxes at 100m. 21°N, Western 
North Pacific 

32.6 mg CaCO3 m-2 d-1

   3.9 mg C m-2 d-1

Sabine 1995a Carbonate flux from dissolution 40 mg CaCO3 m-2 d-1

    4.8 mg C m-2 d-1

Sabine & Mackenzie 
1995 

Sediment trap CaCO3 flux - HOT-7 200m 40.3 mg CaCO3 m-2 d-1

    4.8 mg C m-2 d-1

Sabine & Mackenzie 
1995 

Sediment trap CaCO3 flux - HOT-9 200m 40.7 mg CaCO3 m-2 d-1

    4.8 mg C m-2 d-1

Sabine & Mackenzie 
1995 

Sediment trap CaCO3 flux - HOT-11 200m 39.4 mg CaCO3 m-2 d-1

    4.7 mg C m-2 d-1

Sabine & Mackenzie 
1995 

Sediment trap CaCO3 flux - HOT-15 200m 40.8 mg CaCO3 m-2 d-1

    4.9 mg C m-2 d-1

This study Mean mixed layer TA change from NCC 170 mg CaCO3 m-2 d-1

    20.4 mg C m-2 d-1



424 
425 

426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 

439 

440 
441 

442 

443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 

Table
units.

Resu
vs m
studie
(see T
trap r
Sedim
an in
overe
quant
insigh
to pre
terms
show

Figur
avera

4.1.1 G

A
es
&
un
W
an
d
an
to
co
P
p

e 5. Literatur
. 

lts of this stu
ean 2.0 mol
es, none of t
Table 4).  B
results, whic
ment traps ar
norganic ca
estimation a
tify most of
hts from the
evious repor
s are listed 

ws NCP and N

re 7. Sensit
age aNCP (7

Gas exchange

Annual CO2 
stimates bas

& Stutsman 
nderway pC

WHOTS moo
nd underway
ifferences in
n average of
o calculated 
onsiderably 
ossible cont
CO2) due to

manuscri

re comparis

udy are on th
l m-2, see Ta
the aNCP est

By contrast, a
ch constitute
re known to

arbon flux m
at this site. A
f the terms 
divergence 

rts. The alter
in Table 1 a
NCC calcula

tivity test fo
7a) and aNC

e 

invasion he
sed on pCO2
(2003): 0.6 

CO2 data (Ta
oring (Sutto
y pCO2 syst
n wind spee
ffset of abou
pCO2 from 
when integ
tributors to 

o measuring 

ipt submitted t

on of averag

he lower end
able 4.1). H
timates are s
average aNC
e the only a
 provide a lo
making up 
A sensitivity
of this carb
we see in av

rnative meth
and expande
ated using th

or all differe
CC (7b).  

ere is 0.37 m
 calculated f
± 0.4 mol 

akahashi et a
n et al., 201
tems was pr
d parameter
ut 8 µatm in
HOT measu
rated over t
this offset 
depth (<1m

to Global Bioge

 

ge carbonate

d of the repo
However, giv
significantly
CC is four to
available da
ower-end est
30% of to

y analysis i
bon budget c
verage aNCP

hods used for
ed upon in t

hese methods

ent methodo

mol m2. Thi
from discret
C m-2, Dor

al., 2009) but
17). A discre
reviously rep
rization (Sut
n measured p
urements, wh
time such as

include dif
m for WHOT

geochemical Cy

e fluxes at St

orted range f
ven error est
y different fro
o seven time

ataset with w
timate for P
otal carbon 
investigating
can shine a
P, and espec
r E–P, horiz
the Supplem
s.  

ologies show

is estimate i
te TA and D
re et al. (20

ut equivalent 
epancy betw
ported as 60
tton et al. (2
pCO2 at the 
hich is small
s in integrat
fferences in 
TS, 5-30m f

ycles 

tation ALOH

for aNCP at 
timates here
om the resul
es larger tha
which to com
PIC and PC e

export is 
g different m
a light on th
cially aNCC 
ontal transpo

mental Infor

wing resulti

is much low
DIC measurem

009): ~0.5 m
t to earlier es
ween WHOT
0%, and exp
2017)). Addi
WHOTS m

l (2% of the 
ted annual f

n temperatur
for discrete 

HA in differe

this location
e and in prev
lts presented
an HOT sedi
mpare (Tabl
export fluxes
likely to b

methodologi
he origins of

values comp
ort, and diffu

rmation. Figu

ing Monte C

wer than prev
ments (e.g. 
mol C m-2)
stimates from
TS flux estim
plained part
itionally, the

mooring comp
mean) but g

flux calculat
re (and ther
data), condi

ent 

n (1.5 
vious 

d here 
iment 
le 5). 
s, but 

be an 
ies to 
f and 
pared 

fusion 
ure 7 

 

Carlo 

vious 
Quay 
, and 
m the 
mates 
ly by 
ere is 
pared 
grows 
tions. 
refore 
itions 



manuscript submitted to Global Biogeochemical Cycles 

 

within the mooring measurement apparatus (equilibrator) not representing mean mixed 455 
layer pCO2, or a systematic underestimation of pCO2 calculated from TA & DIC. For this 456 
budget, both underestimated ingassing in the spring/summer and overestimated 457 
outgassing in the fall would entail underestimated NCP rates for these same months, and 458 
could partly be responsible for the relatively low aNCP reported here. Additionally, since 459 
for this budget CO2 invasion is converted to a concentration change and then integrated 460 
over the mixed layer, the choice in mixed layer depth definition also impacts the gas 461 
exchange term, with a shallower mixed layer accentuating both outgassing and ingassing 462 
signals (see Figure S4b).  463 

4.1.2 Horizontal transport 464 

The contribution of advection and diffusion to the DIC budget has been unclear in both 465 
magnitude and seasonality in previous studies (Dore et al., 2014, 2009; Keeling et al., 466 
2004). Despite the extraordinarily abundant data from the long-standing Hawaii Ocean 467 
Time-series project, the high-resolution data needed in both time and space to accurately 468 
quantify physical transport fluxes of carbon species has not been available. Nonetheless, 469 
progress in quantifying both horizontal and vertical inputs of DIC and TA may be 470 
possible by using newer data products including the high temporal resolution WHOTS 471 
mooring current speeds and horizontal gradient climatologies from neural networks 472 
(Broullón et al., 2019, 2020).  473 

Unfortunately, data availability for horizontal gradients and eddy diffusivity still restricts 474 
us to a seasonal budget. The effect of using a time-varying current speed climatology 475 
instead of average current speeds to constrain horizontal transport illustrates a basic 476 
problem with using a seasonal budget approach at this location, where seasonality 477 
explains only a small fraction of the variability. For both DIC and TA, interannual 478 
variability is much larger than the amplitude of a seasonal cycle, with a variance in 479 
monthly averages of about 30-50 µmol kg-1 between years, but an average seasonal cycle 480 
of only about 15 µmol kg-1. As discussed in the methods section, current speeds at this 481 
location are dominated by mesoscale eddies, and also do not vary strongly with season at 482 
Station ALOHA (see Figure S3.2).  483 

For a sensitivity check, using a current speed climatology from WHOTS ADCPs, instead 484 
of the average current speed used in Method A, drastically changes the horizontal 485 
transport term for TA and DIC (Figure S4), and consequently also NCC and NCP (Figure 486 
7b). This is mainly based on the average direction of transport for individual months of 487 
the current climatology (Figure S2). However, this average direction does not represent 488 
any “real” seasonality in current speed and direction, as the currents have been shown to 489 
have no significant seasonality (Figure S3) – so the seasonality of the modified advective 490 
term is questionable. At locations of previous studies using this approach (Fassbender et 491 
al., 2016, 2017), horizontal contributions to the overall carbon budget were negligible or 492 
small compared to other budget components. Due to a much smaller contribution of 493 
vertical mixing and entrainment, at this location the advective term becomes the most 494 
important physical transport process (Figure 4). It is therefore likely that the discrepancy 495 
between NCP & NCC calculated here and literature values can partly be explained by the 496 
inability to meaningfully evaluate this important term on a seasonal time-scale.  497 
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This illustrates the need for data on horizontal gradients of surface carbonate chemistry 498 
parameters at higher spatiotemporal resolution, as will hopefully be achieved by 499 
promising current and future endeavors using floats, autonomous vehicles, and satellites 500 
(e.g., Nicholson et al., 2022; Nickford et al., 2022). With data on variability in TA/DIC 501 
gradients at the spatiotemporal scale of mesoscale eddies, the construction of a carbon 502 
budget at the appropriate time scale(s) would be possible, and the importance of 503 
horizontal transport for carbon cycling at this location could be investigated.  504 

The annual cycle calculated here using Method A shows advective DIC and TA loss 505 
especially in the early spring (DIC) and summer (TA), driven by a small zonal 506 
component of the gradient, both parameters increasing to the west. Interestingly, previous 507 
studies have neglected zonal transport due to the small gradients (e.g., Dore et al., 2009, 508 
Keeling et al., 2004), and indeed meridional gradients in DIC and TA are much steeper 509 
throughout the year, with both parameters increasing northward (see Supplemental 510 
Information, Figure S3c-d). However, the weak mean meridional flow (average 0.008 m 511 
s-1) contributes only a small loss, the net advective term is dominated by the stronger 512 
mean zonal flow acting on the seasonally varying zonal gradient. 513 

4.1.3 Vertical transport 514 

For the vertical transport term, a heat budget based on Cronin et al. (2015) was 515 
constructed to constrain eddy diffusivity in a different way (see Supplemental 516 
Information). Since there are order of magnitude differences in the climatological 517 
diffusivity values generated by the Keeling et al. (2004) and the Cronin et al. (2015) 518 
approach, a sensitivity analysis to the choice of diffusivity coefficients was performed. 519 
Generally, due to increasing DIC with depth (a positive vertical DIC gradient), higher Kz 520 
will lead to increased diffusive DIC fluxes into the mixed layer, which, in turn, 521 
propagates to a larger biological term and more DIC drawdown from NCP (essentially 522 
balancing higher Kz input values). For TA, the relationship is less straightforward due to 523 
an alkalinity maximum associated with the North Pacific Tropical Water (NPTW) at 524 
Station ALOHA that varies in location relative to the mixed layer (Lukas & Santiago-525 
Mandujano, 2008). Both time-varying Kz estimates show a peak in diffusive transport in 526 
the spring, and the shape of the annual cycles is remarkably similar, but they differ by an 527 
order of magnitude across their whole range (Figure S5). The Keeling et al. (2004) data is 528 
more in line with literature data, and the calculation based on the heat budget yields 529 
(unrealistic) negative values indicating up-gradient transport in the fall. As Table S3 530 
shows, the choice of Kz values strongly impacts the final NCP and NCC results, 531 
especially in the springtime when biological drawdown of DIC is most prevalent. 532 
Therefore, more measurements and refined budget calculations using float and mooring 533 
data to constrain Kz values at various temporal and spatial scales would be very useful for 534 
biogeochemical tracer budgets such as this one.  535 

4.1.4 Evaporation – precipitation 536 

E–P using a salinity budget (Method A) vs. salinity normalization are very similar, while 537 
the calculation based on WHOTS measurements yields much smaller fluxes (Figure S4, 538 
S5). They all converge on (maximum) net evaporation during the summer/fall, between 539 
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June and October. With the direct calculation from mooring sensors, net evaporation 540 
persists throughout the year, while the other two approaches largely indicate net 541 
precipitation earlier in the year (Feb-May). The large discrepancy between the salinity-542 
based and the directly measured approaches can partly be explained by rainfall 543 
measurements. Mooring precipitation sensors do not match satellite, shipboard or model 544 
results, largely due to the extreme patchiness of rainfall.  545 

However, it is also likely that unresolved advective processes affect the salinity-based 546 
calculation, but that those contributions are cancelled out in the final carbon budget. The 547 
residual of the salinity budget contains all errors and fluxes that are not accounted for in 548 
the physical transport terms. E–P is the residual of the salinity budget, and appears to be 549 
driving most of the observed salinity variations; this suggests an underestimation of 550 
physical transport terms, as local precipitation and evaporation are not expected to be the 551 
main control of sea surface salinity. We assume that any unresolved processes affecting 552 
salinity are essentially conservative mixing processes (i.e., they affect TA and DIC 553 
proportionally), such as advection of regional gradients in salinity (and TA, DIC) from 554 
local precipitation differences that are not captured by 1°x1° climatological fields. 555 
Consequently, the use of the salinity budget for the E–P term is beneficial for the final 556 
carbon mass balance. Since the (scaled) salinity physical transport term is subtracted 557 
from the DIC/TA physical transport terms, any biases that they both exhibit should cancel 558 
out, similarly as discussed in Fassbender et al. (2016, Equation 10); while this shows 559 
again that the physical transport term taken alone is likely not resolving important 560 
contributions, this increases the confidence in final NCC and NCP values. 561 

4.1.5 Mixed-layer depth 562 

Several definitions of mixed layer depth have been used at Station ALOHA, including the 563 
density criteria of +0.03 kg m-3 from De Boyer Montégut et al. (2004) (e.g. Ferrón et al., 564 
2021; Barone et al., 2019; Karl et al., 2021), and 0.125 kg m-3 from Levitus (1982) (e.g., 565 
Dore et al., 2003, 2009, 2014; Quay & Stutsman, 2003; Wilson et al., 2015), as well as 566 
the temperature criterion of -1°C from Hastenrath & Merle (1982) (e.g. Venrick, 1993; 567 
Cortés et al., 2001). All MLD criteria yield very similar NCC estimates. While the 568 
general shape of the seasonal DIC changes from NCP is the same for all MLD estimates, 569 
the magnitude of these fluxes varies more between different estimates, leading to 570 
differences of cumulative aNCP from 0.25 mol m-2 using the +0.03 kg m-3 density 571 
criterion (shallower ML definition) to ~2 mol m-2 using a -1°C temperature threshold 572 
(deeper ML definition). Although all of these estimates are within the aNCP error, this 573 
illustrates the importance of MLD definition for mixed layer carbon budgets.  574 

It is worth mentioning that discrepancies between multiple approaches to some of these terms 575 
could only be exposed due to the unusual abundance of various complementary and 576 
redundant datasets at Station ALOHA, and could have easily gone unnoticed in other 577 
locations with less available data. There are issues with constraining seasonal fluxes of 578 
several key contributors to the carbon budget at this location compared to other studies, but 579 
the challenges adapting this approach are interesting results themselves: At Station ALOHA, 580 
where seasonal changes in mixed layer depth and stratification are much smaller than in the 581 
temperate ocean, constraints on (horizontal) transport from mesoscale eddies at the 582 
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appropriate spatial resolution become a crucial ingredient for an accurate mixed layer carbon 583 
budget, and depending on MLD definition, NCP can differ by about 100%. Additionally, and 584 
nonetheless, valuable insights can be gained from the budget components and final 585 
aNCC/aNCP estimates obtained from the most reliable (Method A) combination of 586 
methodologies, including a comparison of identified drivers of the seasonal carbon cycle and 587 
their relative contributions and timing to previously published studies. 588 

4.2 Drivers of the seasonal carbon cycle 589 

Previous studies that utilized carbon budget models at Station ALOHA either constrained 590 
vertical diffusive fluxes and inferred horizontal transport (Keeling et al., 2004), or vice versa 591 
(Quay & Stutsman, 2003), with results varying considerably based on these assumptions. 592 
According to Keeling et al. (2004), the main processes behind mixed layer DIC variability 593 
are biological productivity, gas exchange and horizontal transport, as well as a period of 594 
winter entrainment. There is agreement that the largest signal is a summer drawdown of 595 
(salinity normalized) DIC due to biological activity (Quay & Stutsman, 2003; Keeling et al., 596 
2004). The amplitude of this seasonal DIC drawdown is dampened, because gas exchange is 597 
strongest around the same time, but acts in opposite direction: The air to sea flux is highest in 598 
spring (around April), when NCP strongly decreases mixed-layer DIC (Keeling et al., 2004). 599 
These observations are largely confirmed by this study, with a small difference in timing. 600 
Maximum ingassing occurs in March-April, and maximum drawdown from NCP in May-601 
Aug (Figure 6a). This is consistent with a peak in primary productivity later in the spring due 602 
to increased light and nutrient availability (from deepening PAR attenuation and a shoaling 603 
nutricline), and potential contribution from nitrogen-fixing cyanobacteria that are known to 604 
bloom with increasing stratification in the late summer (e.g., Karl & Church, 2017). The 605 
main processes that dampen the spring DIC drawdown here are physical transport, as well as 606 
ingassing of DIC between March-May, both at about 1-2 µmol kg-1 mo-1. Later in the 607 
summer, the continued biological DIC drawdown from NCP is enhanced by outgassing of 608 
DIC, but dampened by excess evaporation and by increased physical transport inputs.  609 

In a recent study on net community production at Station ALOHA from oxygen dynamics, 610 
Ferrón et al. (2021) reported lower NCP rates between December and February, followed by 611 
an increase through June and then mostly high values (i.e., net autotrophy) through 612 
November. In this study, the NCP increase starts later, from Apr-Jun, and we observe a shift 613 
to near- zero NCP by October. Ferrón et al. (2021) suggest that their NCPML values in the 614 
late fall might be too high and suggest correcting for entrainment diffusive fluxes of oxygen 615 
by up to 65-100% for individual months between Sep-Nov, which would lead to a 12% 616 
reduction in their aNCP estimate.  617 

Studies on calcium carbonate production and dissolution at Station ALOHA and in the NPSG 618 
are relatively sparse. Some studies in the 1980s and 1990s (e.g., Betser et al., 1984; Sabine et 619 
al., 1995; Sabine & Mackenzie, 1995). Sabine & Mackenzie (1995) reported an export of 620 
around 40mg CaCO3 m-2 d-1, and interestingly first detected the presence of calcium 621 
carbonate particles from benthic, more soluble calcifying organisms living on shallow, near-622 
coastal banks in the water column at this location. To our knowledge, so far there have been 623 
no attempts to quantify seasonal variability in calcification/dissolution and CaCO3 export 624 
dynamics at Station ALOHA. Cortés et al. (2001) studied the ecology of coccolithophores, an 625 
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important calcifying phytoplankton, and found extremely low abundances throughout most 626 
of the year. Only during March and September/October, a fairly specific range of 627 
environmental conditions regarding temperature (20-25°C), salinity (34.9-35.2), nutrients 628 
(0.004-0.07µmol/kg nitrate, <0.025µmol/kg phosphate), and light availability (2-25µE m-2 s-629 
1) appears to enable these higher cell densities (Cortés et al., 2001). Only a very small 630 
fraction of zooplankton at Station ALOHA was reported to be made up of shelled pteropods 631 
(Steinberg et al., 2008), but they are likely a significant contributor to PIC export due to their 632 
large size. Foraminifera, calcifying zooplankton, were examined by Monteagudo (2016) 633 
using bottom-moored sediment traps, and found to be more abundant during the summer 634 
months. Boeuf et al. (2019) investigated species composition of particles retained in deep sea 635 
sediment traps, and found foraminifera to be sporadically present in large concentrations, and 636 
pteropods generally abundant in deep sea particles. The sparse information on these three 637 
most important groups of calcifying organisms illustrates the highly variable nature of PIC 638 
export at Station ALOHA for each of them, highlighting the need for more species-specific 639 
studies of these organisms and the drivers of associated export events.  640 

5 Conclusions and outlook 641 

This study is a first attempt to quantify seasonality in calcification/dissolution dynamics at 642 
Station ALOHA, and results show annual net calcification of 0.5 mol m-2. This exceeds all 643 
previously reported fluxes from sediment trap data, with maximum export occurring during 644 
December-April.  645 

The mixed layer ecosystem at Station ALOHA is confirmed to be net autotrophic over a year, at 646 
about 1.5 mol C m-2. Biological drawdown during March-September exceeds the inputs from 647 
physical transport processes, which are positive throughout the year with a distinct fall-winter 648 
peak. Contributions to DIC changes from evaporation and precipitation and gas exchange show 649 
clear opposing seasonal cycles. 650 

At Station ALOHA, it would be particularly beneficial to resolve more than the annual cycle of 651 
carbon parameters, as variability on other time-scales is large compared to seasonal variations. 652 
This would require, most urgently, a dataset constraining regional horizontal gradients in 653 
alkalinity and DIC at near-monthly time scales, as could potentially be developed from 654 
algorithms employing satellite data, as well as regional-scale ocean models.  655 

Further research into the impacts of climate change on the drivers of the upper ocean carbon 656 
cycle, such changes in stratification, precipitation, and biological productivity is needed. The 657 
mixed layer carbon budget approach illustrates that a shift in timing or magnitude of the relevant 658 
processes over a year could significantly impact observed carbon chemistry, and therefore CO2 659 
source vs. sink behavior of the NPSG.   660 
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Open Research 680 

Shipboard Hawaii Ocean Time-series bottle and CTD data is available through the HOTDOGS 681 

database at https://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html. WHOTS and MOSEAN 682 

mooring pCO2, SST and salinity data are available at 683 

https://www.nodc.noaa.gov/ocads/oceans/Moorings/WHOTS_158W_23N.html and 684 

https://www.nodc.noaa.gov/ocads/oceans/Moorings/MOSEAN.html. WHOTS subsurface CTD, 685 

ADCP and VMCM datasets can be found at ftp://mananui.soest.hawaii.edu/pub/hot/whots/, while 686 

surface meteorological data and heat flux can be accessed via 687 

http://uop.whoi.edu/currentprojects/WHOTS/whotsarchive.html, 688 

http://uop.whoi.edu/ReferenceDataSets/whotsreference.html, and 689 

http://tds0.ifremer.fr/thredds/catalog/CORIOLIS-OCEANSITES-GDAC-690 

OBS/DATA_GRIDDED/WHOTS/catalog.html?dataset=CORIOLIS-OCEANSITES-GDAC-691 

OBS/DATA_GRIDDED/WHOTS/. Wind stress data is available at 692 

http://apdrc.soest.hawaii.edu/erddap/griddap/hawaii_soest_a6ab_91f7_b38f.html. Satellite SST used 693 

in the heat budget can be accessed at 694 

http://apdrc.soest.hawaii.edu/thredds/dodsC/las/oisst_avhrrv20/data_apdrc.soest.hawaii.edu_dods_695 

public_data_NOAA_SST_OISST_AVHRR_daily_v2.0.jnl.   696 
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